首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of different strategies for genotyping populations on variance components and heritabilities estimated with an animal model under restricted maximum likelihood (REML), genomic REML (GREML), and single‐step GREML (ssGREML). A population with 10 generations was simulated. Animals from the last one, two or three generations were genotyped with 45,116 SNP evenly distributed on 27 chromosomes. Animals to be genotyped were chosen randomly or based on EBV. Each scenario was replicated five times. A single trait was simulated with three heritability levels (low, moderate, high). Phenotypes were simulated for only females to mimic dairy sheep and also for both sexes to mimic meat sheep. Variance component estimates from genomic data and phenotypes for one or two generations were more biased than from three generations. Estimates in the scenario without selection were the most accurate across heritability levels and methods. When selection was present in the simulations, the best option was to use genotypes of randomly selected animals. For selective genotyping, heritabilities from GREML were more biased compared to those estimated by ssGREML, because ssGREML was less affected by selective or limited genotyping.  相似文献   

2.
Single-step genomic best linear unbiased prediction with the Algorithm for Proven and Young (APY) is a popular method for large-scale genomic evaluations. With the APY algorithm, animals are designated as core or noncore, and the computing resources to create the inverse of the genomic relationship matrix (GRM) are reduced by inverting only a portion of that matrix for core animals. However, using different core sets of the same size causes fluctuations in genomic estimated breeding values (GEBVs) up to one additive standard deviation without affecting prediction accuracy. About 2% of the variation in the GRM is noise. In the recursion formula for APY, the error term modeling the noise is different for every set of core animals, creating changes in breeding values. While average changes are small, and correlations between breeding values estimated with different core animals are close to 1.0, based on the normal distribution theory, outliers can be several times bigger than the average. Tests included commercial datasets from beef and dairy cattle and from pigs. Beyond a certain number of core animals, the prediction accuracy did not improve, but fluctuations decreased with more animals. Fluctuations were much smaller than the possible changes based on prediction error variance. GEBVs change over time even for animals with no new data as genomic relationships ties all the genotyped animals, causing reranking of top animals. In contrast, changes in nongenomic models without new data are small. Also, GEBV can change due to details in the model, such as redefinition of contemporary groups or unknown parent groups. In particular, increasing the fraction of blending of the GRM with a pedigree relationship matrix from 5% to 20% caused changes in GEBV up to 0.45 SD, with a correlation of GEBV > 0.99. Fluctuations in genomic predictions are part of genomic evaluation models and are also present without the APY algorithm when genomic evaluations are computed with updated data. The best approach to reduce the impact of fluctuations in genomic evaluations is to make selection decisions not on individual animals with limited individual accuracy but on groups of animals with high average accuracy.  相似文献   

3.
The purpose of this study was to examine accuracy of genomic selection via single‐step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix ( G ) is replaced by an approximation of G ?1 based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G ?1 and the approximated G ?1 via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G ?1 and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method.  相似文献   

4.
Genomic selection is a method to predict breeding values using genome‐wide single‐nucleotide polymorphism (SNP) markers. High‐quality marker data are necessary for genomic selection. The aim of this study was to investigate the effect of marker‐editing criteria on the accuracy of genomic predictions in the Nordic Holstein and Jersey populations. Data included 4429 Holstein and 1071 Jersey bulls. In total, 48 222 SNP for Holstein and 44 305 SNP for Jersey were polymorphic. The SNP data were edited based on (i) minor allele frequencies (MAF) with thresholds of no limit, 0.001, 0.01, 0.02, 0.05 and 0.10, (ii) deviations from Hardy–Weinberg proportions (HWP) with thresholds of no limit, chi‐squared p‐values of 0.001, 0.02, 0.05 and 0.10, and (iii) GenCall (GC) scores with thresholds of 0.15, 0.55, 0.60, 0.65 and 0.70. The marker data sets edited with different criteria were used for genomic prediction of protein yield, fertility and mastitis using a Bayesian variable selection and a GBLUP model. De‐regressed EBV were used as response variables. The result showed little difference between prediction accuracies based on marker data sets edited with MAF and deviation from HWP. However, accuracy decreased with more stringent thresholds of GC score. According to the results of this study, it would be appropriate to edit data with restriction of MAF being between 0.01 and 0.02, a p‐value of deviation from HWP being 0.05, and keeping all individual SNP genotypes having a GC score over 0.15.  相似文献   

5.
The present study investigated the effects of the choices of animals of reference populations on long‐term responses to genomic selection. Simulated populations comprised 300 individuals and 10 generations of selection practiced for a trait with heritability of 0.1, 0.3 or 0.5. Thirty individuals were randomly selected in the first five generations and selected by estimated breeding values from best linear unbiased prediction (BLUP) and genomic BLUP in the subsequent five generations. The reference populations comprise all animals for all generations (scenario 1), all animals for 6‐10 generations (scenario 2) and 2‐6 generations (scenario 3), and half of the animals for all generations (scenario 4). For all heritability levels, the genetic gains in generation 10 were similar in scenarios 1 and 2. Among scenarios 2 to 4, the highest genetic gains were obtained in scenario 2, with heritabilities of 0.1 and 0.3 as well as scenario 4 with heritability of 0.5. The inbreeding coefficients in scenarios 1, 2 and 4 were lower than those in BLUP, especially within cases with low heritability. These results indicate an appropriate choice of reference population can improve genetic gain and restrict inbreeding even when the reference population size is limited.  相似文献   

6.
Simulated and swine industry data sets were utilized to assess the impact of removing older data on the predictive ability of selection candidate estimated breeding values (EBV) when using single‐step genomic best linear unbiased prediction (ssGBLUP). Simulated data included thirty replicates designed to mimic the structure of swine data sets. For the simulated data, varying amounts of data were truncated based on the number of ancestral generations back from the selection candidates. The swine data sets consisted of phenotypic and genotypic records for three traits across two breeds on animals born from 2003 to 2017. Phenotypes and genotypes were iteratively removed 1 year at a time based on the year an animal was born. For the swine data sets, correlations between corrected phenotypes (Cp) and EBV were used to evaluate the predictive ability on young animals born in 2016–2017. In the simulated data set, keeping data two generations back or greater resulted in no statistical difference (p‐value > 0.05) in the reduction in the true breeding value at generation 15 compared to utilizing all available data. Across swine data sets, removing phenotypes from animals born prior to 2011 resulted in a negligible or a slight numerical increase in the correlation between Cp and EBV. Truncating data is a method to alleviate computational issues without negatively impacting the predictive ability of selection candidate EBV.  相似文献   

7.
The objective of the present study was to investigate the impact of considering population structure in cow genotyping strategies over the accuracy and bias of genomic predictions. A small dairy cattle population was simulated to address these objectives. Based on four main traditional designs (random, top‐yield, extreme‐yield and top‐accuracy cows), different numbers (1,000; 2,000 and 5,000) of cows were sampled and included in the reference population. Traditional designs were replicated considering or not population structure and compared among and with a reference population containing only bulls. The inclusion of cows increased accuracy in all scenarios compared with using only bulls. Scenarios accounting for population structure when choosing cows to the reference population slightly outperformed their traditional versions by yielding higher accuracy and lower bias in genomic predictions. Building a cow‐based reference population from groups of related individuals considering the frequency of individuals from those same groups in the validation population yielded promising results with applications on selection for expensive‐ or difficult‐to‐measure traits. Methods here presented may be easily implemented in both new or already established breeding programs, as they improved prediction and reduced bias in genomic evaluations while demanding no additional costs.  相似文献   

8.
The objective of this study was to compare and determine the optimal validation method when comparing accuracy from single‐step GBLUP (ssGBLUP) to traditional pedigree‐based BLUP. Field data included six litter size traits. Simulated data included ten replicates designed to mimic the field data in order to determine the method that was closest to the true accuracy. Data were split into training and validation sets. The methods used were as follows: (i) theoretical accuracy derived from the prediction error variance (PEV) of the direct inverse (iLHS), (ii) approximated accuracies from the accf90(GS) program in the BLUPF90 family of programs (Approx), (iii) correlation between predictions and the single‐step GEBVs from the full data set (GEBVFull), (iv) correlation between predictions and the corrected phenotypes of females from the full data set (Yc), (v) correlation from method iv divided by the square root of the heritability (Ych) and (vi) correlation between sire predictions and the average of their daughters' corrected phenotypes (Ycs). Accuracies from iLHS increased from 0.27 to 0.37 (37%) in the Large White. Approximation accuracies were very consistent and close in absolute value (0.41 to 0.43). Both iLHS and Approx were much less variable than the corrected phenotype methods (ranging from 0.04 to 0.27). On average, simulated data showed an increase in accuracy from 0.34 to 0.44 (29%) using ssGBLUP. Both iLHS and Ych approximated the increase well, 0.30 to 0.46 and 0.36 to 0.45, respectively. GEBVFull performed poorly in both data sets and is not recommended. Results suggest that for within‐breed selection, theoretical accuracy using PEV was consistent and accurate. When direct inversion is infeasible to get the PEV, correlating predictions to the corrected phenotypes divided by the square root of heritability is adequate given a large enough validation data set.  相似文献   

9.
In pig breeding, as the final product is a cross bred (CB) animal, the goal is to increase the CB performance. This goal requires different strategies for the implementation of genomic selection from what is currently implemented in, for example dairy cattle breeding. A good strategy is to estimate marker effects on the basis of CB performance and subsequently use them to select pure bred (PB) breeding animals. The objective of our study was to assess empirically the predictive ability (accuracy) of direct genomic values of PB for CB performance across two traits using CB and PB genomic and phenotypic data. We studied three scenarios in which genetic merit was predicted within each population, and four scenarios where PB genetic merit for CB performance was predicted based on either CB or a PB training data. Accuracy of prediction of PB genetic merit for CB performance based on CB training data ranged from 0.23 to 0.27 for gestation length (GLE), whereas it ranged from 0.11 to 0.22 for total number of piglets born (TNB). When based on PB training data, it ranged from 0.35 to 0.55 for GLE and from 0.30 to 0.40 for TNB. Our results showed that it is possible to predict PB genetic merit for CB performance using CB training data, but predictive ability was lower than training using PB training data. This result is mainly due to the structure of our data, which had small‐to‐moderate size of the CB training data set, low relationship between the CB training and the PB validation populations, and a high genetic correlation (0.94 for GLE and 0.90 for TNB) between the studied traits in PB and CB individuals, thus favouring selection on the basis of PB data.  相似文献   

10.
Accuracy of prediction of estimated breeding values based on genome-wide markers (GEBV) and selection based on GEBV as compared with traditional Best Linear Unbiased Prediction (BLUP) was examined for a number of alternatives, including low heritability, number of generations of training, marker density, initial distributions, and effective population size (Ne). Results show that the more the generations of data in which both genotypes and phenotypes were collected, termed training generations (TG), the better the accuracy and persistency of accuracy based on GEBV. GEBV excelled for traits of low heritability regardless of initial equilibrium conditions, as opposed to traditional marker-assisted selection, which is not useful for traits of low heritability. Effective population size is critical for populations starting in Hardy-Weinberg equilibrium but not for populations started from mutation-drift equilibrium. In comparison with traditional BLUP, GEBV can exceed the accuracy of BLUP provided enough TG are included. Unfortunately selection rapidly reduces the accuracy of GEBV. In all cases examined, classic BLUP selection exceeds what was possible for GEBV selection. Even still, GEBV could have an advantage over traditional BLUP in cases such as sex-limited traits, traits that are expensive to measure, or can only be measured on relatives. A combined approach, utilizing a mixed model with a second random effect to account for quantitative trait loci in linkage equilibrium (the polygenic effect) was suggested as a way to capitalize on both methodologies.  相似文献   

11.
Single‐step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single‐step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non‐genotyped daughters. Genetic values were estimated with the single‐step model and with different reduced single‐step models. Including more relatives of genotyped cows in the reduced single‐step model resulted in a better agreement of results with the single‐step model. Accuracies of genetic values were largest with single‐step and smallest with reduced single‐step when only the cows genotyped were modelled. The results indicate that a reduced single‐step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality.  相似文献   

12.
Reliabilities for genomic estimated breeding values (GEBV) were investigated by simulation for a typical dairy cattle breeding setting. Scenarios were simulated with different heritabilites ( h 2) and for different haplotype sizes, and seven generations with only genotypes were generated to investigate reliability of GEBV over time. A genome with 5000 single nucleotide polymorphisms (SNP) at distances of 0.1 cM and 50 quantitative trait loci (QTL) was simulated, and a Bayesian variable selection model was implemented to predict GEBV. Highest reliabilities were obtained for 10 SNP haplotypes. At optimal haplotype size, reliabilities in generation 1 without phenotypes ranged from 0.80 for h 2 = 0.02 to 0.93 for h 2 = 0.30, and in the seventh generation without phenotypes ranged from 0.69 for h 2 = 0.02 to 0.86 for h 2 = 0.30. Reliabilities of GEBV were found sufficiently high to implement dairy selection schemes without progeny testing in which case a data time-lag of two to three generations may be present. Reliabilities were also relatively high for low heritable traits, implying that genomic selection could be especially beneficial to improve the selection on, e.g. health and fertility.  相似文献   

13.
This study aimed to evaluate a validation reliability of single‐step genomic best linear unbiased prediction (ssGBLUP) with a multiple‐lactation random regression test‐day model and investigate an effect of adding genotyped cows on the reliability. Two data sets for test‐day records from the first three lactations were used: full data from February 1975 to December 2015 (60 850 534 records from 2 853 810 cows) and reduced data cut off in 2011 (53 091 066 records from 2 502 307 cows). We used marker genotypes of 4480 bulls and 608 cows. Genomic enhanced breeding values (GEBV) of 305‐day milk yield in all the lactations were estimated for at least 535 young bulls using two marker data sets: bull genotypes only and both bulls and cows genotypes. The realized reliability (R2) from linear regression analysis was used as an indicator of validation reliability. Using only genotyped bulls, R2 was ranged from 0.41 to 0.46 and it was always higher than parent averages. The very similar R2 were observed when genotyped cows were added. An application of ssGBLUP to a multiple‐lactation random regression model is feasible and adding a limited number of genotyped cows has no significant effect on reliability of GEBV for genotyped bulls.  相似文献   

14.
Breeding programs aiming to improve the performance of crossbreds may benefit from genomic prediction of crossbred (CB) performance for purebred (PB) selection candidates. In this review, we compared genomic prediction strategies that differed in 1) the genomic prediction model used or 2) the data used in the reference population. We found 27 unique studies, two of which used deterministic simulation, 11 used stochastic simulation, and 14 real data. Differences in accuracy and response to selection between strategies depended on i) the value of the purebred crossbred genetic correlation (rpc), ii) the genetic distance between the parental lines, iii) the size of PB and CB reference populations, and iv) the relatedness of these reference populations to the selection candidates. In studies where a PB reference population was used, the use of a dominance model yielded accuracies that were equal to or higher than those of additive models. When rpc was lower than ~0.8, and was caused mainly by G × E, it was beneficial to create a reference population of PB animals that are tested in a CB environment. In general, the benefit of collecting CB information increased with decreasing rpc. For a given rpc, the benefit of collecting CB information increased with increasing size of the reference populations. Collecting CB information was not beneficial when rpc was higher than ~0.9, especially when the reference populations were small. Collecting only phenotypes of CB animals may slightly improve accuracy and response to selection, but requires that the pedigree is known. It is, therefore, advisable to genotype these CB animals as well. Finally, considering the breed-origin of alleles allows for modeling breed-specific effects in the CB, but this did not always lead to higher accuracies. Our review shows that the differences in accuracy and response to selection between strategies depend on several factors. One of the most important factors is rpc, and we, therefore, recommend to obtain accurate estimates of rpc of all breeding goal traits. Furthermore, knowledge about the importance of components of rpc (i.e., dominance, epistasis, and G × E) can help breeders to decide which model to use, and whether to collect data on animals in a CB environment. Future research should focus on the development of a tool that predicts accuracy and response to selection from scenario specific parameters.  相似文献   

15.
Most genomic prediction studies fit only additive effects in models to estimate genomic breeding values (GEBV). However, if dominance genetic effects are an important source of variation for complex traits, accounting for them may improve the accuracy of GEBV. We investigated the effect of fitting dominance and additive effects on the accuracy of GEBV for eight egg production and quality traits in a purebred line of brown layers using pedigree or genomic information (42K single‐nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of hatch date. Additive and dominance genetic variances were estimated using genomic‐based [genomic best linear unbiased prediction (GBLUP)‐REML and BayesC] and pedigree‐based (PBLUP‐REML) methods. Breeding values were predicted using a model that included both additive and dominance effects and a model that included only additive effects. The reference population consisted of approximately 1800 animals hatched between 2004 and 2009, while approximately 300 young animals hatched in 2010 were used for validation. Accuracy of prediction was computed as the correlation between phenotypes and estimated breeding values of the validation animals divided by the square root of the estimate of heritability in the whole population. The proportion of dominance variance to total phenotypic variance ranged from 0.03 to 0.22 with PBLUP‐REML across traits, from 0 to 0.03 with GBLUP‐REML and from 0.01 to 0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits. Inclusion of dominance effects did not improve the accuracy of GEBV, and differences in their accuracies between genomic‐based methods were small (0.01–0.05), with GBLUP‐REML yielding higher prediction accuracies than BayesC for egg production, egg colour and yolk weight, while BayesC yielded higher accuracies than GBLUP‐REML for the other traits. In conclusion, fitting dominance effects did not impact accuracy of genomic prediction of breeding values in this population.  相似文献   

16.
Genotyping females and including them into the reference set for genomic predictions in dairy cattle is considered to provide gains in reliabilities of estimated breeding values for selection candidates. This should especially be true for low heritability traits. By the use of simulation, we extended a genomic reference set for an existing trait by including a fixed number of genotyped first‐crop daughters for one or two generations of reference sires. Moreover, we calculated results for the effects of a similar strategy in a situation where for a new trait the recording of phenotypes has recently started. For this case, we compared the effect of two different genotyping strategies: first, to phenotype cows but to genotype their sires only, and second, to collect phenotypes and genotypes on the same cows. We studied the effects on validation reliabilities and unbiasedness of predicted values for selection candidates. We found that by extending the reference set with genotyped daughters it is possible to increase the validation reliability of genomic breeding values. In the case of a new trait, it is always better to collect and use genotypes and phenotypes on the same animals instead of using only sire genotypes. We found that the benefits that can be achieved are sensitive to the sampling strategy used when selecting females for genotyping.  相似文献   

17.
Different modes of selection in dogs were studied with a special focus on the availability of disease information. Canine hip dysplasia (CHD) in the German shepherd dog was used as an example. The study was performed using a simulation model, comparing cases when selection was based on phenotype, true or predicted breeding value, or genomic breeding value. The parameters in the simulation model were drawn from the real population data. The data on all parents and 40% of their progeny were assumed to be available for the genetic evaluation carried out by Gibbs sampling. With respect to the use of disease records on progeny, three scenarios were considered: random exclusion of disease data (no restrictions, N), general exclusion of disease data (G) and exclusion of disease data for popular sires (P). One round of selection was considered, and the response was expressed as change of mean CHD score, proportion of dogs scored as normal, proportion of dogs scored as clearly affected and true mean breeding value in progeny of popular sires in comparison with all sires. When no restrictions on data were applied, selection on breeding value was three times more efficient than when some systematic exclusion was practised. Higher selection response than in the exclusion cases was achieved by selecting on the basis of genomic breeding value and CHD score. Genomic selection would therefore be the method of choice in the future.  相似文献   

18.
Genome‐assisted prediction of genetic merit of individuals for a quantitative trait requires building statistical models that can handle data sets consisting of a massive number of markers and many fewer observations. Numerous regression models have been proposed in which marker effects are treated as random variables. Alternatively, multivariate dimension reduction techniques [such as principal component regression (PCR) and partial least‐squares regression (PLS)] model a small number of latent components which are linear combinations of original variables, thereby reducing dimensionality. Further, marker selection has drawn increasing attention in genomic selection. This study evaluated two dimension reduction methods, namely, supervised PCR and sparse PLS, for predicting genomic breeding values (BV) of dairy bulls for milk yield using single‐nucleotide polymorphisms (SNPs). These two methods perform variable selection in addition to reducing dimensionality. Supervised PCR preselects SNPs based on the strength of association of each SNP with the phenotype. Sparse PLS promotes sparsity by imposing some penalty on the coefficients of linear combinations of original SNP variables. Two types of supervised PCR (I and II) were examined. Method I was based on single‐SNP analyses, whereas method II was based on multiple‐SNP analyses. Supervised PCR II was clearly better than supervised PCR I in predictive ability when evaluated on SNP subsets of various sizes, and sparse PLS was in between. Supervised PCR II and sparse PLS attained similar predictive correlations when the size of the SNP subset was below 1000. Supervised PCR II with 300 and 500 SNPs achieved correlations of 0.54 and 0.59, respectively, corresponding to 80 and 87% of the correlation (0.68) obtained with all 32 518 SNPs in a PCR model. The predictive correlation of supervised PCR II reached a plateau of 0.68 when the number of SNPs increased to 3500. Our results demonstrate the potential of combining dimension reduction and variable selection for accurate and cost‐effective prediction of genomic BV.  相似文献   

19.
Reliable genomic prediction of breeding values for quantitative traits requires the availability of sufficient number of animals with genotypes and phenotypes in the training set. As of 31 October 2016, there were 3,797 Brangus animals with genotypes and phenotypes. These Brangus animals were genotyped using different commercial SNP chips. Of them, the largest group consisted of 1,535 animals genotyped by the GGP‐LDV4 SNP chip. The remaining 2,262 genotypes were imputed to the SNP content of the GGP‐LDV4 chip, so that the number of animals available for training the genomic prediction models was more than doubled. The present study showed that the pooling of animals with both original or imputed 40K SNP genotypes substantially increased genomic prediction accuracies on the ten traits. By supplementing imputed genotypes, the relative gains in genomic prediction accuracies on estimated breeding values (EBV) were from 12.60% to 31.27%, and the relative gain in genomic prediction accuracies on de‐regressed EBV was slightly small (i.e. 0.87%–18.75%). The present study also compared the performance of five genomic prediction models and two cross‐validation methods. The five genomic models predicted EBV and de‐regressed EBV of the ten traits similarly well. Of the two cross‐validation methods, leave‐one‐out cross‐validation maximized the number of animals at the stage of training for genomic prediction. Genomic prediction accuracy (GPA) on the ten quantitative traits was validated in 1,106 newly genotyped Brangus animals based on the SNP effects estimated in the previous set of 3,797 Brangus animals, and they were slightly lower than GPA in the original data. The present study was the first to leverage currently available genotype and phenotype resources in order to harness genomic prediction in Brangus beef cattle.  相似文献   

20.
The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes Cπ in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumina Bovine HD Bead Chip (HD, 777K from 90 samples) and the GeneSeek Genomic Profiler (GGP Indicus HD, 77K from 485 samples). The quality control for the genotypes was applied on each Chip and comprised removal of SNPs located on non-autosomal chromosomes, with minor allele frequency <5%, deviation from HWE (p < 10–6), and with linkage disequilibrium >0.8. The FImpute program was used for genotype imputation. Pedigree-based analyses indicated that meat tenderness is moderately heritable (0.35), indicating that it can be improved by direct selection. Prediction accuracies were very similar across the Bayesian regression models, ranging from 0.20 (Bayes A) to 0.22 (Bayes B) and 0.14 (Bayes Cπ) to 0.19 (Bayes A) for the additive and dominance effects, respectively. ANN achieved the highest accuracy (0.33) of genomic prediction of genetic merit. Even though deep neural networks are recognized to deliver more accurate predictions, in our study ANN with one single hidden layer, 105 neurons and rectified linear unit (ReLU) activation function was sufficient to increase the prediction of genetic merit for meat tenderness. These results indicate that an ANN with relatively simple architecture can provide superior genomic predictions for meat tenderness in Nellore cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号