首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The increasing cost and scarcity of water for irrigation is placing pressure on Australian dairy farmers to utilize water more efficiently, and as result, water use efficiency (WUE) of forages is becoming an important criterion for sustainable dairy production. This study was conducted to identify more water use efficient forage species than the dominant dairy forage, perennial ryegrass (Lolium perenne L.). Seventeen annual forage species were investigated under optimum irrigation (I1) and two deficit irrigation treatments (nominally 66 and 33% of irrigation water applied to the optimal level), over 3 years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Forages with the highest yield generally had the highest WUEt (total yield/evapotranspiration). Under optimal irrigation, there was a three-fold difference in mean annual WUEt between forages, with maize (Zea mays L.) having the highest (42.9 kg ha−1 mm−1) and cowpea (Vigna unguiculata (L.) Walp.) the lowest (13.5 kg ha−1 mm−1), with 11 of the forage species having a greater WUEt than perennial ryegrass. The ‘harvested’ forages maize, wheat, triticale (Triticosecale rimpaui Wittm.) and maple pea (Pisum sativium L.) generally had higher mean WUEt (26.7-42.9 kg ha−1 mm−1) than the remaining forages which were defoliated multiple times to simulate grazing (13.5-30.1 kg ha−1 mm−1). The reduction in annual WUEt in response to deficit irrigation was greatest for the warm season forages with up to 30% reduction for maize, while most of the cool season annuals were not significantly affected by deficit irrigation at the levels imposed. In order to maximize WUEt of any forage, it is necessary to maximize yield, as there is a strong positive relationship between yield and WUEt. However, while WUEt is an important criterion for choosing dairy forages, it is only one factor in a complex system. Choice of forages must be considered on a whole farm basis and include consideration of yield, nutritive value, cost of production and risk.  相似文献   

2.
In this paper, we discuss the effect of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas. A field experiment was conducted at the Dingxi Agricultural Experiment Station during 2000–2002. According to the experimental design, the CO2 concentration increased to 14.5, 40 and 54.5 μmol mol−1, respectively, by NH4HCO3 (involving CO2) application, direct application of CO2 gas and combination of fertilizer NH4HCO3 plus CO2 application, which are equal to CO2 concentration of the Earth's atmosphere in the next 5, 15 and 20 years. The fertilizer application was divided into three levels: application of NH3NO3 (250 kg h m−2), NH4HCO3 (500 kg h m−2) and no fertilizer. Irrigation was divided into two levels: with 90 mm irrigation in the growth period and without irrigation. They can be combined as eight treatments. Each treatment was replicated three times. The results showed that elevated CO2 concentration owing to CO2 application leads to remarkable increase in leaf area index (LAI) and shoot biomass, and also generates the higher value of leaf area duration (LAD) that can benefit the photosynthesis in the growth stage and yield increase in crop compared than the no CO2 application treatment. When CO2 concentration elevated by 14.5, 40 and 54.5 μmol mol−1 with irrigation and fertilization, correspondingly, the grain yield increased by 6.3, 13.1 and 19.8%, respectively, whereas without irrigation and fertilization, the grain yield increased by only 4.2% when CO2 concentration increased to 40 μmol mol−1. Meanwhile, irrigation and fertilization can result in larger and deeper root system and have significantly positive influences on higher value of root/shoot (R/S) and water use efficiency. The grain yields in irrigation, irrigation plus NH3NO3 application and irrigation plus application of NH4HCO3 treatments are 73.4, 148.0 and 163.6% higher than that of no-irrigated and no-fertilized treatment, suggesting that both irrigation and fertilizer application contribute to remarkable increase of crop yield. In all treatments, the highest water use efficiency (WUE, 7.24 kg h m−2 mm−1) and grain yield (3286 kg h m−2) consistently occurred in the treatment with 90 mm irrigation plus fertilizer NH4HCO3 and elevated CO2 concentration (54.5 μmol mol−1), suggesting that this combination has an integrated beneficial effect on improving WUE and grain yield of spring wheat. These results may offer help to maintain and increase the crop yields in semi-arid areas.  相似文献   

3.
Agriculture in sub-Saharan Africa is a low-input low-output system primarily for subsistence. Some of these areas are becoming less able to feed the people because of land degradation and erosion. The aim of this study is to characterize the potential for increasing levels of soil carbon for improving soil quality and carbon sequestration. A combination of high- and low-resolution imagery was used to develop a land use classification for an area of 64 km2 near Omarobougou, Mali. Field sizes were generally small (10–50 ha), and the primary cultivation systems are conventional tillage and ridge tillage, where tillage is performed by a combination of hand tools and animal-drawn plows. Based on land use classification, climate variables, soil texture, in situ soil carbon concentrations, and crop growth characteristics, the EPIC-Century model was used to project the amounts of soil carbon sequestered for the region. Under the usual management practices in Mali, mean crop yield reported (1985–2000) for maize is 1.53 T ha−1, cotton is 1.2 T ha−1, millet is 0.95 T ha−1, and for sorghum is 0.95 T ha−1. Year-to-year variations can be attributed to primarily rainfall, the amount of plant available water, and the amount of fertilizer applied. Under continuous conventional cultivation, with minimal fertilization and no residue management, the soil top layer was continuously lost due to erosion, losing between 1.1 and 1.7 Mg C ha−1 over 25 years. The model projections suggest that soil erosion is controlled and that soil carbon sequestration is enhanced with a ridge tillage system, because of increased water infiltration. The combination of modeling with the land use classification was used to calculate that about 54 kg C ha−1 year−1 may be sequestered for the study area with ridge tillage, increased application of fertilizers, and residue management. This is about one-third the proposed rate used in large-scale estimates of carbon sequestration potential in West Africa, because of the mixture of land use practices.  相似文献   

4.
The carbon footprint (CF) of milk production was analysed at the farm gate for two contrasting production systems; an outdoor pasture grazing system in New Zealand (NZ) and a mainly indoor housing system with pronounced use of concentrate feed in Sweden (SE). The method used is based on the conceptual framework of lifecycle assessment (LCA), but only for greenhouse gas (GHG) emissions. National average data were used to model the dairy system in each country. Collection of inventory data and calculations of emissions were harmonised to the greatest extent possible for the two systems. The calculated CF for 1 kg of energy corrected milk (ECM), including related by-products (surplus calves and culled cows), was 1.00 kg carbon dioxide equivalents (CO2e) for NZ and 1.16 kg CO2e for SE. Methane from enteric fermentation and nitrous oxide emissions from application of nitrogen (as fertiliser and as excreta dropped directly on the field) were the main contributors to the CF in both countries. The most important parameters to consider when calculating the GHG emissions were dry matter intake (DMI), emission factor (EF) for methane from enteric fermentation, amount of nitrogen applied and EF for direct nitrous oxide emissions from soils. By changing one parameter at a time within ‘reasonable’ limits (i.e. no extreme values assumed), the impact on the total CF was assessed and showed changes of up to 15%. In addition, the uncertainty in CF estimates due to uncertainty in EF for methane from enteric fermentation and nitrous oxide emissions (from soil and due to ammonia volatilisation) were analysed through Monte Carlo simulation. This resulted in an uncertainty distribution corresponding to 0.60-1.52 kg CO2e kg−1 ECM for NZ and 0.83-1.56 kg CO2e kg−1 ECM for SE (in the prediction interval 2.5-97.5%). Hence, the variation within the systems based on the main EF is relatively large compared with the difference in CF between the countries.  相似文献   

5.
Furrow diking in conservation tillage   总被引:2,自引:0,他引:2  
Crop production in the Southeastern U.S. can be limited by water; thus, supplemental irrigation is needed to sustain profitable crop production. Increased water capture would efficiently improve water use and reduce supplemental irrigation amounts/costs, thus improving producer's profit margin. We quantified infiltration (INF), runoff (R), and sediment (E) losses from furrow diked (+DT) and non-furrow diked (−DT) tilled conventional (CT) and strip tillage (ST) systems. In 2008, a field study (Tifton loamy sand, Typic Kandiudult) was established with DT, ST, and CT systems. In 2009, a field study (Faceville loamy sand, Typic Kandiudult) was established with DT and ST systems. Treatments (6) included: CT − DT, CT + DT, ST1 (1-year old) − DT, ST1 + DT, ST10 (10-year old) − DT, and ST10 + DT. Simulated rainfall (50 mm h−1 for 1 h) was applied to each 2-m × 3-m plots (n = 3). Runoff and E were measured from each 6-m2 plot. ST1 + DT plots had 80-88% less R than ST1 − DT plots. Any disturbance associated with DT in ST1 systems did not negatively impact E values. For both soils, CT − DT plots represented the worst-case scenario in terms of measured R and E; ST + DT plots represented the best-case scenario. Trends for R, E, and estimated plant available water (PAW) values decreased in order of CT − DT, CT + DT, ST1 − DT, ST1 + DT, ST10 − DT, and ST10 + DT treatments. From a hydrology standpoint, ST1 − DT plots behaved more similarly to CT plots than to other ST plots; from a sediment standpoint, ST1 − DT plots behaved more similarly to other ST plots than to CT plots. DT had no effect on ST10 plots. CT − DT and ST10 + DT plots resulted in 5.9 (worst-case) and 8.1 (best-case) days of water for crop use, a difference of 2.2 days of water for crop use or 37%. Compared to the CT − DT treatment, an agricultural field managed to CT + DT, ST1 − DT, ST1 + DT, ST10 − DT, and ST10 + DT would save a producer farming the CT − DT field $5.30, $9.42, $13.55, $14.14, and $14.14 ha−1, respectively, to pump the amount of water lost to R and not saved as INF back onto the field. The most water/cost savings occurred for CT and ST1 plots as a result of DT. Savings for CT + DT, ST1 − DT, and ST1 + DT treatments represent 27%, 47%, and 68% of the cost of DT ($20 ha−1) and 37%, 67%, and 96% of the savings a producer would have if managing the field to ST for 10 years without DT (ST10 − DT) in a single 50-mm rainfall event. For row-crop producers in the Southeastern U.S. with runoff producing rainfall events during the crop growing season, DT is a management practice that is cost-effective from a natural resource and financial standpoint for those producers that continue to use CT systems and especially those that have recently adopted ST systems into their farming operations.  相似文献   

6.
Agricultural soils emit about 50% of the global flux of N2O attributable to human influence, mostly in response to nitrogen fertilizer use. Recent evidence that the relationship between N2O fluxes and N-fertilizer additions to cereal maize are non-linear provides an opportunity to estimate regional N2O fluxes based on estimates of N application rates rather than as a simple percentage of N inputs as used by the Intergovernmental Panel on Climate Change (IPCC). We combined a simple empirical model of N2O production with the SOCRATES soil carbon dynamics model to estimate N2O and other sources of Global Warming Potential (GWP) from cereal maize across 19,000 cropland polygons in the North Central Region (NCR) of the US over the period 1964-2005. Results indicate that the loading of greenhouse gases to the atmosphere from cereal maize production in the NCR was 1.7 Gt CO2e, with an average 268 t CO2e produced per tonne of grain. From 1970 until 2005, GHG emissions per unit product declined on average by 2.8 t CO2e ha−1 annum−1, coinciding with a stabilisation in N application rate and consistent increases in grain yield from the mid-1970’s. Nitrous oxide production from N fertilizer inputs represented 59% of these emissions, soil C decline (0-30 cm) represented 11% of total emissions, with the remaining 30% (517 Mt) from the combustion of fuel associated with farm operations. Of the 126 Mt of N fertilizer applied to cereal maize from 1964 to 2005, we estimate that 2.2 Mt N was emitted as N2O when using a non-linear response model, equivalent to 1.75% of the applied N.  相似文献   

7.
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO3-N in soil and nitrate (NO3) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs (804-1622 kg N ha−1) greater than exported N (463-597 kg N ha−1). Hence, throughout the irrigation period, high NO3 concentrations (up to 388 mg L−1 at T200) and DOC (up to 142 mg L−1 at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN.  相似文献   

8.
Plant water status is a key factor impacting crop growth and agricultural water management. Crop water stress may alter canopy temperature, the energy balance, transpiration, photosynthesis, canopy water use efficiency, and crop yield. The objective of this study was to calculate the Crop Water Stress Index (CWSI) from canopy temperature and energy balance measurements and evaluate the utility of CWSI to quantify water stress by comparing CWSI to latent heat and carbon dioxide (CO2) flux measurements over canopies of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.). The experiment was conducted at the Yucheng Integrated Agricultural Experimental Station of the Chinese Academy of Sciences from 2003 to 2005. Latent heat and CO2 fluxes (by eddy covariance), canopy and air temperature, relative humidity, net radiation, wind speed, and soil heat flux were averaged at half-hour intervals. Leaf area index and crop height were measured every 7 days. CWSI was calculated from measured canopy-air temperature differences using the Jackson method. Under high net radiation conditions (greater than 500 W m−2), calculated values of minimum canopy-air temperature differences were similar to previously published empirically determined non-water-stressed baselines. Valid measures of CWSI were only obtained when canopy closure minimized the influence of viewed soil on infrared canopy temperature measurements (leaf area index was greater than 2.5 m2 m−2). Wheat and maize latent heat flux and canopy CO2 flux generally decreased linearly with increases in CWSI when net radiation levels were greater than 300 W m−2. The responses of latent heat flux and CO2 flux to CWSI did not demonstrate a consistent relationship in wheat that would recommend it as a reliable water stress quantification tool. The responses of latent heat flux and CO2 flux to CWSI were more consistent in maize, suggesting that CWSI could be useful in identifying and quantifying water stress conditions when net radiation was greater than 300 W m−2. The results suggest that CWSI calculated by the Jackson method under varying solar radiation and wind speed conditions may be used for irrigation scheduling and agricultural water management of maize in irrigated agricultural regions, such as the North China Plain.  相似文献   

9.
Physically, evaporative demand is driven by net radiation (Rn), vapour pressure (ea), wind speed (u2), and air temperature (Ta), each of which changes over time. By analyzing temporal variations in reference evapotranspiration (ET0), improved understanding of the impacts of climate change on hydrological processes can be obtained. In this study, variations in ET0 over 58 years (1950-2007) at 34 stations in the Haihe river basin of China were analyzed. ET0 was calculated by the FAO Penman-Monteith formula. Calculation of Kendall rank coefficient was done by analyzing the annual and seasonal trends in ET0 derived from its dependent climate variables. Inverse distance weighting (IDW) was used to analyze the spatial variation in annual and seasonal ET0, and in each climate variable. An attribution analysis was performed to quantify the contribution of each input variable to ET0 variation. The results showed that ET0 gradually decreased in the whole basin over the 58 years at a rate of −1.0 mm yr−2, at the same time, Rn, u2 and precipitation also decreased. Changes in ET0 were attributed to the variations in net radiation (−0.9 mm yr−2), vapour pressure (−0.5 mm yr−2), wind speed (−1.3 mm yr−2) and air temperature (1.7 mm yr−2). Looking at all data on a month by month basis, we found that Ta had a positive effect on dET0/dt (the derivative of reference evapotranspiration to time) and Rn and u2 had negative effects on dET0/dt. While changes in air temperature were found to produce a large increase in dET0/dt, changes in other key variables each reduced rates, resulting in an overall negative trend in dET0/dt.  相似文献   

10.
Information on suspended sediment load is crucial to water management and environmental protection. Suspended sediment loads for three major rivers (Mississippi, Missouri and Rio Grande) in USA are estimated using artificial neural network (ANN) modeling approach. A multilayer perceptron (MLP) ANN with an error back propagation algorithm, using historical daily and weekly hydroclimatological data (precipitation P(t), current discharge Q(t), antecedent discharge Q(t−1), and antecedent sediment load SL(t−1)), is used to predict the suspended sediment load SL(t) at the selected monitoring stations. Performance of ANN was evaluated using different combinations of input data sets, length of record for training, and temporal resolution (daily and weekly data). Results from ANN model were compared with results from multiple linear regressions (MLR), multiple non-linear regression (MNLR) and Autoregressive integrated moving average (ARIMA) using correlation coefficient (R), mean absolute percent error (MAPE) and model efficiency (E). Comparison of training period length was also made (4, 3 and 2 years of training and 1, 2 and 3 years of testing, respectively). The model efficiency (E) and R2 values were slightly higher for the 4 years of training and 1 year of testing (4 * 1) for Mississippi River, indifferent for Missouri and slightly lower for Rio Grande River. Daily simulations using Input 1 (P(t), Q(t), Q(t−1), SL(t−1)) and three years of training and two years of testing (3 * 2) performed better (R2 and E of 0.85 and 0.72, respectively) than the simulation with two years of training and three years of testing (2 * 3) (R2 and E of 0.64 and 0.46, respectively). ANN predicted daily values using Input 1 and 3 * 2 architecture for Missouri (R2 = 0.97) and Mississippi (R2 = 0.96) were better than those of Rio Grande (R2 = 0.65). Daily predictions were better compared to weekly predictions for all three rivers due to higher correlation within daily than weekly data. ANN predictions for most simulations were superior compared to predictions using MLR, MNLR and ARIMA. The modeling approach presented in this paper can be potentially used to reduce the frequency of costly operations for sediment measurement where hydrological data is readily available.  相似文献   

11.
Improved water capture and erosion reduction through furrow diking   总被引:2,自引:0,他引:2  
Crop production in Georgia and the Southeastern U.S. can be limited by water; thus, supplemental irrigation is often needed to sustain profitable crop production. Increased water capture would efficiently improve water use and reduce irrigation amounts and other input costs, thus improving producer's profit margin. We quantified water capturing and erosional characteristics of furrow diking by comparing runoff (R) and soil loss (E) from furrow diked (DT) and non-furrow diked tilled (CT) systems. A field study (Faceville loamy sand, Typic Kandiudult) was established (2006 and 2007) near Dawson, GA with DT and CT systems managed to irrigated cotton (Gossypium hirsutum L.). Treatments included: DT vs. CT; DT with and without shank (+/− S); and rainfall simulation performed (0, 60 days after tillage, DAT). Simulated rainfall (50 mm h−1 for 1 h) was applied to all 2 m × 3 m plots (n = 3). All runoff and E were measured from each flat, level sloping 6-m2 plot (slope = 1%). Compared to CT, DT decreased R and E by 14-28% and 2.0-2.8 times, respectively. Compared to DT − S, DT + S decreased R and E by 17-56% and 26% to 2.1 times, respectively. Compared to sealed/crusted soil conditions at 60 DAT, simulating rainfall on a freshly tilled seedbed condition (DAT = 0) decreased R by 69% to 3.4 times and increased E by 27%. DT0 + S + RF0 plots (best-case scenario) had 2.8 times less R, and 2.6 times less E than CT − S + RF60 plots (worst-case). Based on $1.17 ha-mm−1 to pump irrigation water and $18.50 ha−1 for DT, a producer in the Coastal Plain region of Georgia would recover cost of DT by saving the first 16 ha-mm of water. The DT + S system is a cost-effective management practice for producers in Georgia and the Southeastern U.S. that positively impacts natural resource conservation, producer profit margins, and environmental quality.  相似文献   

12.
Winter wheat (Triticum aestivum L. cv. Kenong9204) was grown in open top chambers with either ambient or elevated CO2 concentrations (358 ± 19 μmol mol−1 or 712 ± 22 μmol mol−1, respectively) in well-watered or drought conditions. Although elevated CO2 did not significantly affect the height of the plants at harvest, it significantly increased the aboveground biomass by 10.1% and the root/shoot ratio by 16.0%. Elevated CO2 also significantly increased the grain yield (GY) by 6.7% when well-watered and by 10.4% when drought stressed. Specifically, in the well-watered condition, this increase was due to a greater number of ears (8.7% more) and kernels (8.6). In the drought condition, it was only due to a greater number of spikes (17.1% more). In addition, elevated CO2 also significantly increased the water use efficiency (WUE) of the plants by 9.9% when well-watered and by 13.8% under drought conditions, even though the evapotranspiration (ET) of the plants did not change significantly. Elevated CO2 also significantly increased the root length in the top half of the soil profile by 35.4% when well-watered and by 44.7% under drought conditions. Finally, elevated CO2 significantly increased the root water uptake by 52.9% when well-watered and by 10.1% under drought conditions. These results suggest that (1) future increases in atmospheric CO2 concentration may have a significant effect on wheat production in arid and semiarid areas where wheat cultivation requires upland cropping or deficit irrigation; (2) wheat cultivars can be developed to have more tillers and kernels through selective breeding and field management; and (3) fertilizer and water management in topsoil will become increasingly important as atmospheric CO2 concentration rises.  相似文献   

13.
The Kyoto Protocol recognises trees as a sink of carbon and a valid means to offset greenhouse gas emissions and meet internationally agreed emissions targets. This study details biological carbon sequestration rates for common plantation species Araucaria cunninghamii (hoop pine), Eucalyptus cloeziana, Eucalyptus argophloia, Pinus elliottii and Pinus caribaea var hondurensis and individual land areas required in north-eastern Australia to offset greenhouse gas emissions of 1000 t CO2e. The 3PG simulation model was used to predict above and below-ground estimates of biomass carbon for a range of soil productivity conditions for six representative locations in agricultural regions of north-eastern Australia. The total area required to offset 1000 t CO2e ranges from 1 ha of E. cloeziana under high productivity conditions in coastal North Queensland to 45 ha of hoop pine in low productivity conditions of inland Central Queensland. These areas must remain planted for a minimum of 30 years to meet the offset of 1000 t CO2e.  相似文献   

14.
A methodology has been developed to quantify spatial variation of crop yield, evapotranspiration (ET) and water productivity (WPET) using the SEBAL algorithm and high and low resolution satellite images. SEBAL-based ET estimates were validated over an irrigated, wheat dominated area in the Yaqui Valley, Mexico and proved to be accurate (8.8% difference for 110 days). Estimated average wheat yields in Yaqui Valley of 5.5 t ha−1 were well within the range of measured yields reported in the literature. Measured wheat yields in 24 farmers’ fields in Sirsa district, India, were 0.4 t ha−1 higher than SEBAL estimated wheat yields. Area average WPET in the Yaqui Valley was 1.37 kg m−3 and could be considered to be high as compared to other irrigated systems around the world where the same methodology was applied. A higher average WPET was found in Egypt's Nile Delta (1.52 kg m−3), Kings County (CA), USA (1.44 kg m−3) and in Oldambt, The Netherlands (1.39 kg m−3). The spatial variability of WPET within low productivity systems (CV = 0.33) is higher than in high productivity systems (CV = 0.05) because water supply in the former case is uncertain and farming conditions are sub-optimal. The high CV found in areas with low WPET indicates that there is considerable scope for improvement. The average scope for improvement in eight systems was 14%, indicating that 14% ET reduction can be achieved while maintaining the same yield. It is concluded that the proposed methodology is accurate and that better knowledge of the spatial variation of WPET provides valuable information for achieving local water conservation practices in irrigated wheat.  相似文献   

15.
Surface irrigation analysis and design require the knowledge of the variation of the cumulative infiltration water Z (L) (per unit area) into the soil as a function of the infiltration time t (T). The purpose of this study is to evaluate water infiltration and storage under surface irrigation in an alluvial clay soil cultivated with grape yield, and to determine if partially wetted furrow irrigation has more efficient water storage and infiltration than traditional border irrigation. The two irrigation components considered were wet (WT) and dry (DT) treatments, at which water applied when available soil water reached 65% and 50%, and the traditional border irrigation control. Empirical power form equations were obtained for measured advance and recession times along the furrow length during the irrigation stages of advance, storage, depletion and recession. The infiltration (cumulative depth, Z and rate, I) was functioned to opportunity time (to) in minute for WT and DT treatments as: ZWT = 0.528 to0.6, ZDT = 1.2 to0.501, IWT = 19 to−0.4, and IDT = 36 to−0.498. The irrigation efficiency and soil water distribution have been evaluated using linear distribution and relative schedule depth. Coefficient of variation (CV) was 5.2 and 9.5% for WT and DT under furrow irrigation system comparing with 7.8% in border, respectively. Water was deeply percolated as 11.88 and 19.2% for wet and dry furrow treatments, respectively, compared with 12.8% for control, with no deficit in the irrigated area. Partially wetted furrow irrigation had greater water-efficiency and grape yield than both dry furrow and traditional border irrigations, where application efficiency achieved as 88.1% for wet furrow irrigation that achieved high grape fruit yield (30.71 Mg/ha) and water use efficiency 11.9 kg/m3.  相似文献   

16.
The effects of drip irrigation on the yield and crop water productivity responses of four tea (Camellia sinensis (L.) O. Kuntze) clones were studied four consecutive years (2003/2004-2006/2007), in a large (9 ha) field experiment comprising of six drip irrigation treatments (labelled: I1-I6) and four clones (TRFCA PC81, AHP S15/10, BBK35 and BBT207) planted at a spacing of 1.20 m × 0.60 m at Kibena Tea Limited (KTL), Njombe in the Southern Tanzania in a situation of limited water availability. Each clone × drip irrigation treatment combination was replicated six times in a completely randomized design with 144 net plots each with an area of 72 m2. Clone TRFCA PC81 gave the highest yields (range: 5920-6850 kg dried tea ha−1) followed by clones BBT207 (5010-5940 kg dried tea ha−1), AHP S15/10 (4230-5450 kg dried tea ha−1) and BBK35 (3410-4390 kg dried tea ha−1) and drip irrigation treatment I2 gave the highest yields, ranging from 4954 to 6072 kg dried tea ha−1) compared with those from other treatments (4113-5868 kg dried tea ha−1). Most of these yields exceeded those (4200 kg dried tea ha−1) obtained from overhead sprinkler irrigation system in Mufindi also Southern Tanzania, and Kibena Estate itself. Results showed that drip irrigation of tea not only increased yields but also gave water saving benefits of up to 50% from application of 50% less water to remove the cumulative soil water deficit (treatment I2), and with labour saving of 85% for irrigation. The yield of dried tea per mm depth of water applied, i.e., “the crop water productivity” for drip irrigation of clones TRFCA PC81, BBT207 and BBK35, in 2003/2004 for instance, were 9.3, 8.5 and 7.1 kg dried tea [ha mm]−1, respectively. The corresponding values in 2004/2005 were 2.7, 4.5 and 2.0 kg dried tea [ha mm]−1 while the yield responses from clone AHP S15/10 were linear decreasing by 1 and 1.6 kg dried tea [ha mm]−1 in 2003/2004 and 2004/2005, respectively. In 2005/2006 the crop water productivity from clones TRFCA PC81, AHP S15/10, BBK35 and BBT207 were 4.5, 0.4, 5.2 and 6.9 kg dried tea [ha mm]−1, respectively with quadratic yield response functions to drip irrigation depth of water application. The results are presented and recommendations and implications made for technology-transfer scaling-up for increased use by large and smallholder tea growers.  相似文献   

17.
Heavy rainfall and irrigations during the summer months in the North China Plain may cause losses of nitrogen because of nitrate leaching. The objectives of this study were to characterize the leaching of accumulated N in soil profiles, and to determine the usefulness of Br as a tracer of surface-applied N fertilizer under heavy rainfall and high irrigation rates. A field experiment with bare plots was conducted near Beijing from 5 July to 6 September 2006. The experiment included three treatments: no irrigation (rainfall only, I0), farmers’ practice irrigation (rainfall plus 100 mm irrigation, I100) and high-intensity irrigation (rainfall plus 500 mm irrigation, I500), with three replicates. Transport of surface-applied Br and NO3 (assuming no initial NO3 in the soil profile) and accumulated NO3 in soil profiles were all simulated with the HYDRUS-1D model. The model simulation results showed that Br leached through the soil profile faster than NO3. When Br was used as a tracer for surface-applied N fertilizer to estimate nitrate leaching losses, the amount of N leaching may be overestimated by about 10%. Water drainage and nitrate leaching were dramatically increased as the irrigation rate was increased. The amounts of N leaching out of the 2.1-m soil profile under I0, I100 and I500 treatments were 195 ± 84, 392 ± 136 and 612 ± 211 kg N ha−1, equivalent to about 20 ± 5%, 40 ± 6% and 62 ± 7% of the accumulative N in the soil profile, respectively. N was leached more deeply as the irrigation rate increased. The larger amount of initial accumulated N was in soil profile, the higher percentage of N leaching was. N leaching was also simulated in summer under different weather conditions from 1986 to 2006. The results indicated that nitrate leaching in rainy years were significantly higher than those in dry and normal years. Increasing the irrigation times and decreasing the single irrigation rate after fertilizer application should be recommended.  相似文献   

18.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

19.
The objective of this study was to compare the management and economic success of beef production by three types of farm in northwestern Vietnam. The potential of household farms to supply beef for the market and their competition with large farms were examined.The fieldwork was done in 2007 on 73 farms consisting of 58 small mixed farms (small farms), 10 medium mixed farms (medium farms) and 5 specialised large-scale beef farms (large farms) in Son La province. The three types of farm differed in ethnicity (Thai, H’mong, and Kinh), remoteness (lowland, highland), production objectives (subsistence, market output), degree of specialization (mixed farm, specialised beef farm) and integration of production (single farmers, cooperative). Data on biological productivity, inputs and outputs, and the social contribution of cattle production were collected by household and key person interviews, participatory rural appraisal tools and cattle body measurements. Economic values were derived by assessment of market or replacement costs. Quantitative data analysis was done with linear models (PROC GLM) in the SAS software (version 9.1).Lowland small farms had higher costs for cattle production than the highland farms (0.8 Mill. VND head−1 year−1 compared with 0.02 Mill. VND head−1 year−1, respectively). The large farms had high production costs, with an average of 2.5-3.6 Mill. VND head−1 year−1. Cattle brought high benefits of non-cash values to the household farms. The total revenue from cattle was in the range 4.5-11.5 Mill. VND head−1 year−1, which depended on the use of non-market functions of cattle on the household farm. The value of net benefit/kg live weight (LW) of lowland small farms with an average of 39,000 VND/kg LW was significantly higher than that of the medium and small farms in the highlands (26,000 VND/kg LW). However, the small farms kept fewer cattle than the medium farms (average of 2-4 cattle/farm compared with 9 cattle/farm, respectively) because of forage and labour shortages and have no option to further develop cattle production. Keeping larger numbers of cattle based on available natural pasture brought high benefit from stock value as farm liquidity to only the medium farms. This was the most promising type of farm for future development of beef production, given its actual success and the availability of underutilised resources. Large-scale farms suffered high economic losses of 0.3-1.4 Mill. VND cattle−1 year−1, due to the lack of professional management, high feed costs and low animal performance, and showed no potential for developing cattle production.  相似文献   

20.
This study presents a modeling tool to assess emission of greenhouse gases (GHG) from the agricultural sector as affected by land-use and residue utilization options. The overall purpose of this tool is twofold: (i) a spreadsheet model for comprehensive compilation of the direct and indirect emissions from land management, residue-burning and fossil fuel consumption through on-farm and off-farm operations and (ii) a decision support tool to explore economically viable mitigation options through detailed cost–benefit analysis of different technological options. We developed TechnoGAS (technical coefficient generator for mitigation technologies of greenhouse gas emissions from agricultural sectors), which integrates analytical and expert knowledge with regional databases on bio-physical, agronomic and socio-economic features to establish input–output relationships (‘Technical Coefficients’) related to GHG emissions in agriculture. The approach includes emissions of methane (CH4) from rice fields, rice straw burning and cattle; carbon dioxide (CO2) from fossil fuel and soil organic carbon decline as well as nitrous oxide (N2O) from soil, rice straw burning and fertilizer use. To illustrate the approach of the spreadsheet model for comprehensive compilation of emissions, we applied TechnoGAS for an entire rice–wheat cropping cycle in the state of Haryana in northern India as a case study. Twenty technologies of rice production, which can be adopted by farmers, are analysed for their operation-specific emissions including their global warming potential (GWP). The technologies differ in terms of water regime, residue management/utilization, soil management and additives, which represent different mitigation options for GHG emissions. With the current farmers’ practice in various districts in Haryana, soil-borne emissions are the major source of GHG contributing 53% of the average GWP (3288 kg CO2 equivalent ha−1) in rice followed by burning of rice straw (13% of the GWP). Cattle, farm operations, off-farm and inorganic fertilizer contributes 12%, 10%, 10% and 2% of the GWP, respectively. Emissions from wheat are relatively low (1204 kg CO2 equivalent ha−1) as there is no CH4 emission and wheat straw is not burnt. Different mitigation technologies show pronounced effects on the GWP of the rice crop and varied between 1715 kg CO2 equivalent ha−1 with continuous flooding, urea and rice straw used for building materials and 10,020 kg CO2 equivalent ha−1 with continuous flooding, and application of nutrients through organic manure. Compared to current farmers’ practice, 13 technologies are found to have the potential to reduce the GWP by 8–51%, but they also reduce the net income of farmers. Upscaling of the estimates to the entire state of Haryana shows that the GWP with the current farmers’ practice in rice is 2617 Gg CO2 equivalent. Modification of water management from continuous flooding to alternate flooding or application of urea alone instead of urea plus FYM will reduce the GWP by 15% and 29%, respectively, while feeding of rice straw to cattle and supplying N through urea will reduce it by 41% compared to the current practice of burning rice straw and use of FYM. The study shows that the TechnoGAS tool can be used for estimating GHG emission from various land-use types and for identifying promising mitigation options. A detailed cost/benefit analysis is supplied by Wassmann and Pathak [Wassmann, R., Pathak, H., this volume. Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: II. Cost–benefit assessment for different technologies, regions and scales.].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号