首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 3 毫秒
1.
    
Soil management practices can have negative or positive effects on soil quality. Our objective was to assess the effect of long‐term agricultural practices by evaluating selected soil physical and chemical properties. Soil samples were collected from two depths (0 to 15 and 15 to 30 cm) within a native pasture and an adjacent agricultural field that was being used for three different crop rotations. Soil quality was quantified using aggregate stability, bulk density, soil texture and available water content as physical properties and pH, electrical conductivity, organic matter and available phosphorus as chemical properties. The farmland soils were functioning at 71 and 70 per cent of their full potential at the 0‐ to 15‐ and 15 to 30‐cm‐depth increments, respectively, whereas those from the pasture were functioning at 73 and 69 per cent, respectively. The assessment showed substantial loss in soil organic carbon following 50 years of farmland cultivation. Tillage and fertilizer applications were presumably the primary reasons for weaker spatial dependence within farmland at the 0‐ to 15‐cm depth. Grazing was postulated as the main reason for weaker spatial dependence within the pasture soils at the 15‐ to 30‐cm depth. Overall, we conclude that 50 years of cultivation has not caused soil quality to decline to a point that threatens sustainability of the agricultural fields. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We developed a synthetic index of biological soil quality (IBQS) based on soil macro-invertebrate community patterns to assess soil quality. In 22 sites representing the diversity of agroecosystems encountered in France, invertebrate communities co-varied significantly with a set of 14 parameters describing the physical and chemical properties of soil (co-inertia, p < 0.001; RV = 0.70). Using hierarchical classification, sites could be separated into four homogeneous groups and, using the ‘indicator value’ method, 46 indicator taxa characteristic of one or another of these groups were identified. We then used a formula that takes into account the abundance of indicator species and their respective indicator values to score soils from 1 to 20. IBQS was able to detect the effects of management practices on soil quality. Soil quality varied from 6 to 20 in forests, 7 to 9 in pastures and 2 to 9 in crops respectively. This suggests that well-managed crops and pastures may have better soil quality than some forests. Our results confirm that soil macro-invertebrates provide an integrative measure of soil quality and that the proposed index can be used either in short- or long-term monitoring, provided that it is calibrated and validated with respect to the regional context of the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号