首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is the most important foliar disease of sugar beet worldwide. Control strategies for CLS rely heavily on quinone outside inhibitor (QOI) fungicides. Despite the dependence on QOIs for disease control for more than a decade, a comprehensive survey of QOI sensitivity has not occurred in the sugar beet growing regions of France or Italy. In 2010, we collected 866 C. beticola isolates from sugar beet growing regions in France and Italy and assessed their sensitivity to the QOI fungicide pyraclostrobin using a spore germination assay. In total, 213 isolates were identified with EC50 values greater than 1.0???g?ml?1 to pyraclostrobin, all of which originated from Italy. To gain an understanding of the molecular basis of QOI resistance, we cloned the full-length coding region of Cbcytb, which encodes the mitochondrial QOI-target enzyme cytochrome b in C. beticola. Cbcytb is a 1,162-bp intron-free gene with obvious homology to other fungal cytb genes. Sequence analysis of Cbcytb was carried out in 32 QOI-sensitive (<0.080???g?ml?1) and 27 QOI-resistant (>1.0???g?ml?1) isolates. All tested QOI-resistant isolates harboured a point mutation in Cbcytb at nucleotide position 428 that conferred an exchange from glycine to alanine at amino acid position 143 (G143A). A PCR assay developed to discriminate QOI-sensitive and QOI-resistant isolates based on the G143A mutation could detect and differentiate isolates down to approximately 25?pg of template DNA. Microsatellite analyses suggested that QOI resistance emerged independently in multiple genotypic backgrounds at multiple locations. Our results indicate that QOI resistance has developed in some C. beticola populations in Italy and monitoring the G143A mutation is essential for fungicide resistance management in this pathosystem.  相似文献   

2.
In a survey conducted during October 1995, single-lesion isolates of the sugar beet leaf-spot fungus, Cercospora beticola , were tested for sensitivity to the sterol demethylation inhibiting fungicides (DMIs) flutriafol and bitertanol. The isolates were collected from fields in three different areas of northern Greece. Fields at Serres and Imathia had been sprayed with DMIs for about 15 years to control sugar beet leaf-spot. At the third site, Amyndeon, DMI fungicides had not been used. From each area 150 isolates were tested. ED50 values were calculated for individual isolates by regressing the relative inhibition of colony growth against the natural logarithm of the fungicide concentration. The mean ED50 values for flutriafol for the Serres, Imathia and Amyndeon populations were 1·07, 0·73 and 0·5 µg mL−1, respectively (significantly different at P  = 0·05). For bitertanol the mean ED50 values for the Serres and Imathia populations were 0·72 and 0·81 µg mL−1, respectively, which were not significantly different at P  = 0·05. The mean ED50 value of the Amyndeon population was 0·48 µg mL−1, which was significantly lower than those of the other two populations ( P  < 0·05). A cross-resistance relationship was found to exist between the two triazole fungicides tested when log transformed ED50 values of 60 isolates were subjected to a linear regression analysis ( r  = 0·81).  相似文献   

3.
BACKGROUND: Cercospora leaf spot (CLS), caused by the fungus Cercospora beticola, is the most serious foliar disease of sugar beet (Beta vulgaris L.) worldwide. Disease control is mainly achieved by timely fungicide applications. In 2011, CLS control failures were reported in spite of application of quinone outside inhibitor (QoI) fungicide in several counties in Michigan, United States. The purpose of this study was to confirm the resistant phenotype and identify the molecular basis for QoI resistance of Michigan C. beticola isolates. RESULTS: Isolates collected in Michigan in 1998 and 1999 that had no previous exposure to the QoI fungicides trifloxystrobin or pyraclostrobin exhibited QoI EC50 values of ?0.006 µg mL?1. In contrast, all isolates obtained in 2011 exhibited EC50 values of > 0.92 µg mL?1 to both fungicides and harbored a mutation in cytochrome b (cytb) that led to an amino acid exchange from glycine to alanine at position 143 (G143A) compared with baseline QoI‐sensitive isolates. Microsatellite analysis of the isolates suggested that QoI resistance emerged independently in multiple genotypic backgrounds at multiple locations. A real‐time PCR assay utilizing dual‐labeled fluorogenic probes was developed to detect and differentiate QoI‐resistant isolates harboring the G143A mutation from sensitive isolates. CONCLUSION: The G143A mutation in cytb is associated with QoI resistance in C. beticola. Accurate monitoring of this mutation will be essential for fungicide resistance management in this pathosystem. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
5.
6.
Cercospora beticola is the main causal agent of cercospora leaf spot on sugar beet and has a large negative impact on the yield and quality of sugar beet production worldwide. Previous studies have shown that both mating type idiomorphs of C. beticola are present in natural populations, suggesting that C. beticola is heterothallic and may be reproducing sexually. Cercospora beticola isolates are diverse in the morphology of their conidia, onset of disease symptoms and fungicide resistance. To find the source of this diversity and to determine if sexual reproduction occurs in this fungus, C. beticola populations were collected from Western Europe, Iran and New Zealand. The mating types of these isolates were determined and AFLP analyses were used to study the genetic diversity in these populations. The mating type ratios did not deviate significantly from a 1:1 ratio in most of the populations and AFLP analyses showed high levels of genetic variation within and between the populations, with 86·4% of the isolates having unique genotypes. All populations were in significant linkage disequilibrium but levels of disequilibrium were low, and loci from only one primer pair were in significant gametic equilibrium in populations from the Netherlands and Italy. From these results there is the possibility that C. beticola reproduces sexually. High levels of gene flow among the samples from Europe demonstrated a single panmictic European population. This study confirms C. beticola to be a genetically highly diverse species, supporting the assumption that some populations are reproducing sexually.  相似文献   

7.
Possible Root Infection of Cercospora beticola in Sugar Beet   总被引:1,自引:0,他引:1  
A potential primary infection site of the foliar pathogen Cercospora beticola in sugar beet is described. Sugar beet seedlings of the susceptible cv. Auris were grown in a standard soil for 14 days. A monoconidial culture of a C. beticola isolate was grown to produce conidia. In experiment 1, roots were immersed in a conidial suspension of isolate code IRS 00-4, or in tap water (control), for 2 days. After incubation seedlings were potted in a peat – fine river sand mixture and placed at low relative humidity (RH) (<80%) or high RH (100%). Twelve days after infection, seedlings at high RH showed more disease incidence (90%) than seedlings grown at low RH (disease incidence = 25%), whereas no disease symptoms developed in the control seedlings. Cercospora leaf spots (CLSs) developed on the cotyledons, leaves, petioles and stems of the seedlings. In experiment 2, roots were immersed in a conidial suspension of isolate code IRS 00-2 for 5 h. Thirty-four days after infection at high RH, 100% disease incidence was observed in the treated seedlings and one CLS in the control treatment. First indications of leaf spot development were observed as reddish purple discolouration of individual parenchymatic cells. Because splash dispersal and symptoms due to infested soil were excluded, we showed that it is possible to obtain CLS symptoms in sugar beet seedlings when their roots were immersed in conidial suspensions of C. beticola, thus demonstrating that roots can be a primary infection site.  相似文献   

8.
Sugar beet is a major crop in Morocco and Cercospora leaf spot is one of its most important fungal diseases. In Morocco, thiophanate methyl (benzimidazole) and difenoconazole (demethylation inhibitor, DMI) have been used extensively in the management of Cercospora leaf spot. In this study, samples of Cercospora beticola Sacc were collected from four major production areas. The identification of all isolates was confirmed using a PCR test with specific primers. Radial mycelia growth of each isolate in unmodified potato dextrose agar medium was compared to mycelia growth in the same medium modified with thiophanate methyl (1, 5, 10 and 50 ppm) or the DMIs difenoconazole, epoxiconazole and tetraconazole (0.1, 0.5, 1, 5, 10 and 50 ppm) or the quinone outside inhibitors (QOIs) azoxystrobin and trifloxystrobin (1, 5, 10 and 50 ppm). The percentage of inhibition obtained was used for the half maximal effective concentration (EC50) calculation. All the isolates showed resistance to the thiophanate methyl molecule to different degrees. Three groups were identified: low resistance with EC50 less than 100 ppm, moderate resistance with EC50 between 100 and 1000 ppm, and very resistant with EC50 more than 1000 ppm. For difenoconazole, 41% of isolates were sensitive (EC50 < 0.05 ppm) and 59% were resistant, while for tetraconazole and epoxiconazole 6% were sensitive (EC50 < 0.01 ppm), 66.7 % had medium resistance (0.01 < EC50 < 1 ppm) and 27.3% were resistant (EC50 > 1 ppm). For QOIs, azoxystrobin was less effective for mycelial inhibition than trifloxystrobin, with 54.5% of isolates with resistance to azoxystrobin (EC50 > 100 ppm).  相似文献   

9.
10.
The resistance to strobilurin-related fungicides and its molecular basis in laboratory mutant isolates of Cercospora beticola was investigated. After ultraviolet mutagenesis, mutants with high, moderate or low resistance levels to pyraclostrobin were isolated from a wild-type strain of C. beticola. Fungitoxicity tests on the response of resistant isolates on medium containing pyraclostrobin and salicylhydroxamate (SHAM), a specific inhibitor of cyanide-resistant (alternative) respiration, indicated that the biochemical mechanism of alternative oxidase was not responsible for the reduced sensitivity to pyraclostrobin for half of the mutants. Cross-resistance studies with other inhibitors of the cytochrome bc 1 complex of the mitochondrial respiratory chain showed that the mutation(s) for resistance to pyraclostrobin also reduced the sensitivity of mutant strains to other Qo inhibitors such as azoxystrobin and fenamidone, but not to the Qi inhibitor cyazofamid. No effect of pyraclostrobin-resistant mutation(s) on fungitoxicity of the carboxamide boscalid, the triazoles epoxiconazole and flutriafol and to the benzimidazole benomyl, which affect other cellular pathways or other steps of the respiratory chain, was observed. Study of fitness parameters showed that most mutants had a significant reduction in sporulation and pathogenicity compared to the wild-type parental isolate. However, experiments on the stability of the resistant phenotype did not show a significant reduction of the resistance for half of the mutants when grown for at least four generations on pyraclostrobin-free medium. Molecular analysis of cytochrome b cDNA, isolated from the wild-type and the pyraclostrobin-resistant mutant isolates, revealed two novel amino acid replacements at positions involved in Qo resistance in other species. The glycine (GGT) to serine (AGT) replacement at position 143 (G143S) was found in the isolate with the highly resistant phenotype. The second amino acid change was the replacement of phenylalanine (TTC) by valine (GTC) at position 129 (F129V), which was found in a mutant strain with the moderately resistant phenotype. Four additional mutations located in conserved regions of the mitochondrial cytochrome b gene (I154L, N250D, E256G and V261D) were detected in some mutant isolates of C. beticola but their possible role in Qo-resistance needs further investigation. This is the first study reporting C. beticola strains resistant to Qo inhibitor fungicides due to the biochemical mechanism of target-site modification, resulting from amino acid changes in the mitochondrial cytochrome b␣gene.  相似文献   

11.
Thirty single-spore isolates of Cercospora beticola, collected from several fields in northern Greece, representing a broad spectrum sensitivity to the sterol demethylation-inhibiting (DMIs) fungicide flutriafol, were tested for sensitivity to eleven other sterol biosynthesis-inhibiting (SBI) fungicides and to the guanidine fungicide dodine. Sensitivity was measured as EC50 values for each fungicide and log-transformed EC50 values to each fungicide were pairwise correlated and the correlation coefficient estimated. These pairwise comparisons showed high correlation coefficients between the DMIs suggesting a cross-resistance relationship between these fungicides. However, the degree of cross-resistance between DMIs varied greatly. Conversely, low correlation coefficients were obtained for the pair-wise comparisons with the morpholine fungicide fenpropimorph suggesting a lack of cross-resistance between morpholines and DMIs in C. beticola. Similarly, there was no correlation between the sensitivity (EC50 values) to dodine and all the other fungicides tested, indicating that there was no negative cross-resistance relationship between dodine and SBIs in C. beticola. Based on these results, combinations or alternations of fungicides which show no cross-resistance relationship should be used to control the disease in areas where reduced sensitivity to DMIs has been already observed.  相似文献   

12.
P. Racca  E. Jrg 《EPPO Bulletin》2007,37(2):344-349
Cercospora beticola is the most prevalent and damaging fungal disease in German sugar beet growing. Control strategies are based on action thresholds. A model has been developed which forecasts epidemic development (expressed as disease incidence) and signals when action thresholds are overridden. The plot‐specific model, CERCBET 3 uses as input meteorological parameters (temperature, relative humidity), easily accessible agronomic field characteristics and a single recording of C. beticola disease incidence. Extensive validation in 2001–03 showed that, in 80–95% of the cases, CERCBET 3 correctly forecasted the dates when thresholds were overridden. Cultivar diversity in German sugar beet growing is increasing, thus a module has been included into CERCBET 3 which reflects susceptibility to C. beticola by introducing a sporulation factor. In some cases a second or even third fungicide treatment could be necessary to control Cercospora leaf spot and so a further module which models fungicide efficacy has been elaborated. CERCBET 3 is available for sugar beet growers in an interactive form on the Internet platform ISIP, which is provided by the governmental crop protection services of Germany.  相似文献   

13.
14.
甜菜褐斑病内生拮抗菌的筛选、鉴定及其防效测定   总被引:1,自引:0,他引:1  
 Three hundred and one endophytic bacteria strains were isolated from healthy sugar beet plants in severely diseased plots in Changji County,Xinjiang Province.Three endophytic bacteria strains,1-5,4-1 and 4-3,showed relatively strong antagonistic against Cercospora beticola.Strain 1-5 was identified as Paenibacillus polymyxa,while strains 4-1 and 4-3 were as Bacillus flexus and Stenotrophomonas sp. by their morphological,physiological and biochemical characteristics.The results from several experiment trials showed that the endophytic bacteria could reduce the disease incidence of sugar beet.The control efficiency reached from 67.6% to 80.2%, indicating that biocontrol with endophytic bacteria was an alternative and potential method to control sugar beet fungi disease.  相似文献   

15.
ABSTRACT Genetic variability and population structure of Cercospora sorghi from wild and cultivated sorghum were investigated to gain insight into their potential impact on epidemics of gray leaf spot of sorghum in Africa. Population structure was examined using data derived from amplified fragment length polymorphism (AFLP) of C. sorghi by Nei's test for population differentiation, G(ST), and analysis of molecular variation (AMOVA). Two ecological populations of C. sorghi in Uganda were devoid of population structure (G(ST) = 0.03, small ef, CyrillicF(ST) = 0.01, P = 0.291). AMOVA revealed that genetic variability was due mainly to variations within (99%) rather than between (0.35%) populations, and Nei's genetic distance between the two populations was 0.014. Phenetic analysis based on AFLP data and polymerase chain reaction-restriction fragment length polymorphism analyses of the internal transcribed spacer regions of rDNA and mitochondrial small subunit rDNA separated Cercospora cereal pathogens from dicot pathogens but did not differentiate among C. sorghi isolates from wild and cultivated sorghum. Our results indicate that Ugandan populations of C. sorghi compose one epidemiological unit and suggest that wild sorghum, while not affecting genetic variability of the pathogen population, provides an alternative host for generating additional inoculum.  相似文献   

16.
Two independent bioassays demonstrated an antifungal effect of a basic sugar beet chitinase on Cercospora beticola , the causal agent of leaf spot disease in sugar beet ( Beta vulgaris ). In one assay, the growth of submerged spore cultures of C. beticola in microtitre wells was followed by measuring the increase in absorbance at 620 nm. Addition of chitinase to the culture resulted in a delay in germination and a slower initial growth rate. A more detailed picture of the action of the chitinase on the fungal cell wall was provided by an autoradiographic study. An intense labelling was observed at the apex of fungal hyphae grown in medium containing [3H] N -acetylglucosamine, through incorporation of the radioactive chitin monomer into newly synthesized chitin in the cell wall. After fixation of the fungal specimen, the radioactive labelling could be removed by treatment with purified chitinase, i.e. nascent chitin chains were hydrolysed by the enzyme. When the fungal culture was subjected to a chase phase prior to fixation, the radioactive depositions were less accessible to hydrolysis by the chitinase. HPLC analysis of the radioactive hydrolysis products released from the apex of the fungal hyphae showed that the main products were small chito-oligosaccharides, mainly dimers, trimers and tetramers of chitin.  相似文献   

17.
18.
Krome  K.  Kabsch  U.  Aumann  J. 《植物病害和植物保护杂志》2007,114(6):250-255
Journal of Plant Diseases and Protection - The cytosolic phosphoenolpyruvate carboxylase (PEPC) catalyses the anaplerotic synthesis of oxalacetic acid resulting in the replenishment of citric acid...  相似文献   

19.
Colletotrichum acutatum causes anthracnose on peppers (Capsicum spp.), resulting in severe yield losses in Taiwan. Fungal isolates Coll-153, Coll-365 and Coll-524 collected from diseased peppers were found to differ in pathogenicity. Pathogenicity assays on various index plants revealed that Coll-524 was highly virulent and Coll-153 was moderately virulent to three commercially available pepper cultivars. Both isolates induced anthracnose lesions and produced abundant conidia. Coll-365 was only weakly virulent on pepper fruit, where it caused small lesions and hardly produced conidia on pepper fruit. However, Coll-365 was highly pathogenic to tomato fruit and mango leaves, where it caused anthracnose lesions and formed acervuli and conidia. All three isolates showed similar abilities in the attachment and germination of conidia, formation of highly branched hyphae and appressoria, penetration of cuticles, and infection of epidermal cells on chili peppers. Coll-365 accumulated less turgor pressure in appressoria but produced higher levels of cutinase and protease activity than Coll-153 and Coll-524 did. All three isolates invaded the neighbouring cells through plasmodesmata in chili peppers and showed similar pectinase or cellulase activities in culture. However, the most virulent strain Coll-524 expressed stronger laccase activity and was more resistant to capsaicin compared to Coll-153 and Coll-365. The three isolates are different in numbers and sizes of double-stranded RNAs. Depending on the cultivar genotypes, cellular resistance of chili pepper to C. acutatum might rely on the ability to restrict penetration, colonization, or conidiation of the pathogen. We conclude that the differences in pathogenicity among the three C. acutatum isolates of pepper are attributed to their ability to colonize the host plant.  相似文献   

20.
Pseudomonas was isolated from tomato plants with pith necrosis collected from different areas in Spain and from pepper plants with pith necrosis in Tenerife (Canary Islands). Cultural, biochemical and physiological characteristics of isolates from both hosts were similar to those of the type strain of P. corrugata. Serological heterogeneity was observed among isolates of P. corrugata in immunofluorescence tests. A plasmid of more than 273 MDa was detected in all the isolates. Inoculation of pepper and tomato plants with isolates from both hosts caused similar pith necrosis. This is apparently the first report of P. corrugata on pepper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号