首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An inductive method for recognizing vegetation complexes is presented. These complexes can be used to define landscape units. The method is demonstrated with regard to the river and rivulet valleys of the Black Forest in south-western Germany. It is based on surveys of locally occurring plant communities in homogeneous landscape units, using a cover-abundance scale for the areal extension of each community. The communities have first been established on the basis of the usual relevés of small homogeneous plots.The surveys are called sigma relevés (sigma = Greek for sum), Sigma relevés can be arranged in tables by the usual classification method in order to establish vegetation complexes. Characteristic and differential communities can be elaborated to characterize the vegetation complexes. The specific spatial distribution of each complex reflects certain physical-geographical and anthropo-geographical characteristics. Some applied aspects can be included for each vegetation complex, for example, lists of woody species typical for a landscape unit. From the point of view of water economy such a survey is useful since many efforts are being made to plant woody species in accordance with natural conditions along river and rivulet embankments.  相似文献   

2.
We determined changes in willow (Salixspp.) cover in two valleys of the eastern slope of Rocky Mountain National Park,Colorado, USA, and related these changes to suspected causative factors. Changes in vegetation were inferred from digital maps generated from aerial photo-interpretation and field surveys conducted with a global positioning system. The decrease in riparian shrub cover was approximately 20% in both valleys over the period between 1937/46 and 1996, while the decline in tall willow (> 2 m tall) cover was estimated to be approximately 55%in both valleys. Suppressed willows (< 1.5 m tall) were predominantly located in areas affected by flooding and in areas where major river reductions were observed. Both valleys had sites that were being colonized by willows in wet meadows, and open areas created by flood disturbance. The potential causes of willow decline are many. Willow decline was associated with simplification of river spatial pattern, i.e., less complex branching and channelization, and a large flood disturbance. The causes of the reduction in river meanders were not determined, but are likely related to a decline in beavers, an increase in elk, and, possibly climate change. An increase in elk placed increased browsing pressure on willow during the period of the willow decline. Other factors such as climate changes and human activities could have also contributed to the willow decline. The persistence of these riparian ecosystems depends in large part on biotic interactions, particularly between willow, beaver, and elk. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
4.
Grevilliot  F.  Muller  S. 《Landscape Ecology》2002,17(1):19-33
The river valley of the French upper Meuse and its floodplain, constitutes a relatively natural ecosystem which still contains many endangered species of high conservation value. For example, several birds (Crex crex, Numenius arquata) as well as plant species (Gratiola officinalis, Inula britannica, Teucrium scordium, Ranunculus lingua and Mentha pulegium) which have declined seriously in France in recent times are found in the upper Meuse floodplain. Phytosociological studies and water level measurements have shown that the floristic diversity is mainly influenced by hydrological fluctuations and agricultural practices. The plant communities are structured along a topographical gradient in the high water bed reflecting the duration of floods and the ground water table depth. Agricultural practices have influenced the vegetation changes by selecting species adapted to particular management practices (e.g., fertiliser use, grazing, cutting regime). The data collected in this study from the upper Meuse as enabled 13 grassland and wetland ecotopes to be defined which are correlated with different environmental factors. Fertiliser use, grazing and reduction in the frequency of the cutting lead to a lower species richness because they encourage competitive species. However, it is also demonstrated, that maximum biodiversity is not always synonymous with high conservation value because some impoverished ecosystems, e.g., sedges and tall forb formations, may contain endangered plant and bird species. Knowledge of the boundaries between the different plant communities enables likely changes in floristic composition after modification of one or more site factors to be forecasted. Such factors include, water table depth and flood frequency, cutting regime, fertiliser use and grazing pressure. Thus, the definition of these ecotopes, corresponding to correlations between water regime, agricultural practice and vegetation composition, could lead to the establishment of guidelines for water and agricultural managements that could be involved in restoration projects.  相似文献   

5.
The impact of agricultural practices on the dynamics of weed invasion in a rural landscape was studied by describing the spatial distribution of Chaerophyllum aureum populations colonising less intensive managed hay meadows. Polyphenol compounds were used as individual markers to identify the structure of C. aureum diversity, in terms of its scale and patterns, within and between fields along the bottom of a Pyrenean valley. The results revealed, firstly, the existence of a dominant `genotype' successfully colonising the entire area, and secondly, the maintenance of high levels of polyphenol diversity within five different populations. This spatial arrangement of `genetic' population diversity was obviously not related to the natural reproduction and dispersal patterns of this species, but to human practices of hay production, the principal effect of which is to mix seeds of different genetic origin and thus accelerate and amplify the colonisation process of adapted `genotypes'.  相似文献   

6.
Agricultural intensification has led to dramatic losses in biodiversity over the past several decades. Many studies have shown the effects of intensification on vegetation or soil communities at field or local scales. However, the functional significance of biodiversity may only appear at larger spatial and temporal scales, due to exchanges among local ecosystems throughout a landscape. To examine how patterns of biodiversity loss are reflected at larger spatial scales, plant and soil biodiversity and associated indicators of ecosystem functions were assessed in riparian areas over a 150 km2 agricultural landscape in the Sacramento Valley of California. Publicly-available GIS data were first used to classify and select sites over the range of soils, topography and plant community types. Representative sites from the landscape were sampled for soil physiochemical properties, as well as microbial, nematode, and plant communities. Higher agricultural intensification, based on field and landscape indices, was negatively correlated with richness and diversity of plant and soil taxa, and was related to indicators of ecosystem functions, such as increased soil nitrate and phosphorus loading, decreased riparian health ratings, and lower soil carbon, soil microbial biomass and soil food web structure. Both field- and landscape-scale factors played important roles in the measured losses. The study area was composed of a wide array of soils, vegetation, and land management, indicating that the observed trends transcended site-specific conditions.  相似文献   

7.
Ungulate herbivores create patterns of forage availability, plant species composition, and soil fertility as they range across large landscapes and consume large quantities of plant material. Over time, herbivore populations fluctuate, producing great potential for spatio-temporal landscape dynamics. In this study, we extend the spatial and temporal extent of a long-term investigation of the relationship of landscape patterns to moose foraging behavior at Isle Royale National Park, MI. We examined how patterns of browse availability and consumption, plant basal area, and soil fertility changed during a recent decline in the moose population. We used geostatistics to examine changes in the nature of spatial patterns in two valleys over 18 years and across short-range and long-range distance scales. Landscape patterns of available and consumed browse changed from either repeated patches or randomly distributed patches in 1988–1992 to random point distributions by 2007 after a recent record high peak followed by a rapid decline in the moose population. Patterns of available and consumed browse became decoupled during the moose population low, which is in contrast to coupled patterns during the earlier high moose population. Distributions of plant basal area and soil nitrogen availability also switched from repeated patches to randomly distributed patches in one valley and to random point distributions in the other valley. Rapid declines in moose population density may release vegetation and soil fertility from browsing pressure and in turn create random landscape patterns.  相似文献   

8.
Fire frequency can affect pattern and diversity in plant communities and landscapes. We had the opportunity to study changes due to recurring wildfires on the same sites over a period of 50 years in the Massif des Aspres (southern France). The study was carried out in areas occupied byQuercus suber andQ. ilex series. A comparison of historical and cartographical documents (vegetation maps covering a 50 year interval and an accurate map of major wildfires during this period) allowed us to determine the changes occurring over time with or without fire action. Plant communities were grouped into three main vegetation types: forests, treed shrublands and shrublands. The passage of three successive wildfires on the same site led to a decrease in forest areas and an increase in shrublands; however, shrublands were already present before the first fire of the period under consideration. Less frequent fire occurrence induced more complex heterogeneity and greater landscape diversity. In the study region as a whole, with or without fire action, a significant decrease in forest surfaces was recorded, whereas there was an increase of unforested communities such as treed shrublands and shrublands. In some parts of the Massif fires increased the homogeneity of the landscape, in other parts they created a greater heterogeneity and diversity of plant communities.  相似文献   

9.
Forty-eight years of landscape change on two contiguous Ohio landscapes   总被引:5,自引:0,他引:5  
This study analyzes the current and historic structure of two contiguous, rural landscapes covering approximately 242 km2 in central Ohio, USA: a till plain landscape with relatively homogeneous topography and soils, and a moraine landscape with greater geomorphological diversity and heterogeneity. These landscapes were chosen because they were both heavily dominated by agriculture during 1900–1940 and were both initially surveyed by the metes-and-bounds system. They differed, however, in the temporal pattern of settlement and development and in the inherent agricultural capability of their soils. We combined analysis of aerial photographs from 1940, 1957, 1971, and 1988 with historical archives and other available mapped data in a GIS data base to facilitate analysis of both spatial and temporal patterns of change. On the moraine, the agricultural matrix decreased over time as forest, urban/suburban areas, and industry increased. In contrast, on the till plain agricultural landcover increased through 1988, with concommitant decreases in upland forest and oak savanna. The moraine landscape exhibited greater diversity and equitability than the till plain on each date. The till plain had its greatest diversity and equitability in 1940, whereas the moraine increased in diversity and equitability during each time period. The undulating topography of the moraine encouraged landcover dynamism rather than stability, whereas the more homogeneous till plain exhibited considerable inertia. Patch and matrix shape remained constant and predominantly angular over the 48 year study period. Differences in the physical environment, especially topography and soil capability, and the socioeconomic environment, especially agricultural policies and patterns of urbanization, resulted in these two contiguous landscapes having different trajectories of change. It is clear from this study that socioeconomic factors must be combined with the physical setting to fully understand patterns of change in human-dominated landscapes.  相似文献   

10.

Context

The effects of agricultural intensification on service-providing communities remain poorly studied in perennial cropping systems. However, such systems differ greatly from annual cropping systems in terms of spatio-temporal dynamics and levels of disturbance. Identifying how land use changes at different scales affect communities and ecosystem services in those habitats is of major importance.

Objectives

Our objectives were to examine the effects of local and landscape agricultural intensification on ground beetle community structure and weed seed predation services.

Methods

We examined the effects of local vegetation management and landscape context on ground beetle community structure and weed seed predation in 20 vineyards of southwestern France in 2013 and 2014. Vineyards were selected along a landscape complexity gradient and experienced different management of local vegetation.

Results

The activity-density of ground beetles decreased with increasing landscape complexity while species richness and evenness remained unchanged. Phytophagous and macropterous species dominated ground beetle communities. Seed predation was positively related to the activity-density of one species, Harpalus dimidiatus, and was not affected by local management or landscape context. We found that within-year temporal diversity in ground beetle assemblages increased with landscape complexity.

Conclusions

Our study shows that increasing the proportion of semi-natural habitats in vineyard landscapes enhances the temporal diversity of ground beetles. However, we also found that measures targeting specific species delivering biological control services are a reasonable strategy if we are to maximize natural pest control services such as weed seed regulation to support crop production and reduce agrochemical use.
  相似文献   

11.
Using the vegetation maps of island, inland and mountainous rural regions in Hiroshima Prefecture in western Japan, landscape structures in terms of the size and number of patches are compared, and the characteristics of the disturbance regimes creating each landscape are discussed. Landscape structure in the island rural region is the most heterogeneous, because factors which alter the landscape structure are the most complex. This heterogeneity is established and kept by the agricultural land uses and natural disturbances such as forest fire and pine-disease. At the mountainous rural region, the landscape mosaic is characterized by the relatively large patches composed of conifer plantations and secondary deciduous oak forests. This is the result of the forestry. The inland region landscape is the most homogeneous, because factors which alter landscape structure are now absent. The complex of the physical, biological and anthropogenic forces makes the landscape unique to each region.  相似文献   

12.
The presettlement tree cover (1831–33) of 3 townships in a southern Wisconsin landscape was analyzed using original survey records. Four forest types were identified: closed forest, open forest, savanna, and prairie. Comparisons of vegetation types and landscape pattern were made between the east and west sides of the Pecatonica River, which bisects the landscape and could have acted as a natural fire barrier. West of the river, presettlement tree species richness and diversity were lower and trees were smaller in diameter and less dense than to the east. The major vegetation types to the west were prairie (42% of landscape) and savanna (40%), both fire-susceptible types. Prairie was more common on gentle slopes than on other landforms. To the east, the landscape was 70% forested (closed plus open forest). Here, prairie was more frequent on steep dry sites. These vegetation differences, including the contrasting landscape placement of prairie, are attributed to distinct site characteristics and to disturbance (fire) regimes, with the west likely having more frequent fires. In terms of the four vegetation types, the east landscape was more homogeneous, being dominated by closed forest (50%). West of the Pecatonica River, the landscape was more heterogeneous because of the high proportion of both prairie and savanna; however, in terms of flammability of vegetation, the west was essentially homogeneous (82% prairie plus savanna).  相似文献   

13.
Wildfires and landscape patterns in the Eastern Iberian Peninsula   总被引:12,自引:2,他引:10  
The relations between disturbance regime and landscape patterns have been developed from a theoretical perspective, but few studies have tested these relations when forces promoting opposing heterogeneity patterns are simultaneously operating on a landscape. This work provides quantitative evidence of these relations in areas dominated by human activity, showing that landscape heterogeneity decreases disturbance spread. In turn, disturbance introduces a source of landscape heterogeneity, but it is not enough to counterbalance the homogeneity trend due to agricultural abandonment. Land cover changes and wildfire occurrence (fires larger than 0.3 km2) have been monitored in the Tivissa municipality (208.4 km2) (Catalonia, NE Spain) from 1956 to 1993. Land cover maps were obtained from 1956, 1978 and 1993 and they were overlaid with fire occurrence maps obtained for the 1975–1995 period from 60 m resolution remote sensing images, which allow the identification of burned areas by sudden drops in Normalized Difference Vegetation Index (NDVI). Changes in landscape patterns in relation to fire regime have been analyzed considering several parameters: patch density, mean patch size, mean distance to the nearest neighbour of the same category, edge density, and the Shannon diversity index. In the 1956–1993 period there is a trend to increasing landscape homogenization due to the expansion of shrub­lands linked to a decrease in forest surface, and to the abandonment of agricultural lands. This trend, however, is not constant along all the period. Fires are more likely to occur in woody, homogenous areas, increasing landscape heterogeneity, as observed in the 1978–1993 period. This increase in heterogeneity does not counterbalance the general trend to landscape homogenization as a consequence of agricultural abandonment and the coalescence of natural vegetation patches.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

14.
Context

Wild flowering plants and their wild insect visitors are of great importance for pollination. Montane meadows are biodiversity hotspots for flowering plants and pollinators, but they are contracting due to tree invasion.

Objectives

This study quantified flowering plants and their flower-visitor species in montane meadows in the western Cascade Range of Oregon. Species diversity in small, isolated meadows was expected to be lower and nested relative to large meadows. Alternatively, landform features may influence richness and spatial turnover.

Methods

Flowering plants and their visitors were sampled in summers of 2011–2017 in twelve montane meadows with varying soil moisture. All flowering plants and all flower-visitors were recorded during five to seven 15 min watches in ten 3?×?3 m plots in each meadow and year.

Results

A total of 178 flowering plant species, 688 flower-visitor species and 137,916 interactions were identified. Richness of flower-visitors was related to meadow patch size, but neither plant nor flower-visitor richness was related to isolation measured as meadow area within 1000 m. Species in small meadows were not nested subsets of those in large meadows. Species replacement accounted for more than 78% of dissimilarity between meadows and was positively related to differences in soil moisture.

Conclusions

Although larger meadows contained more species, landform features have influenced meadow configuration, persistence, and soil moisture, contributing to high plant and insect species diversity. Hence, conservation and restoration of a variety of meadow types may promote landscape diversity of wild plants and pollinators.

  相似文献   

15.
Despite good theoretical knowledge about determinants of plant species richness in mosaic landscapes, validations based on complete surveys are scarce. We conducted a case study in a highly fragmented, traditional agricultural landscape. In 199 patches of 20 representative multi-patch-plots (MPPs, 1 ha) we recorded a total of 371 plant species. In addition to an additive partitioning of species diversity at the (a) patch- and (b) MPP-scale, we adopted the recently proposed ‘specificity’ measure to quantify the contribution of a spatial subunit to landscape species richness (subunit-to-landscape-contribution, SLC). SLC-values were calculated at both scales with respect to various spatial extents. General regression models were used to quantify the relative importance of hypothesis-driven determinants for species richness and SLC-values. At the patch scale, habitat type was the main determinant of species richness, followed by area and elongated shape. For SLC-values, area was more important than habitat type, and its relevance increased with the extent of the considered landscape. Influences of elongated shape and vegetation context were minor. Differences between habitat types were pronounced for species richness and also partly scale-dependent for SLC-values. Relevant predictors at the MPP-scale were nonlinear habitat richness, the gradient from anthropogenic to seminatural vegetation, and the proportions of natural vegetation and rare habitats. Linear elements and habitat configuration did not contribute to species richness and SLC. Results at the MPP-scale were in complete accordance with the predictions of the mosaic concept. Hence, our study represents its first empirical validation for plant species diversity in mosaic landscapes.  相似文献   

16.
The Coruh valley lies within the Caucasus ecological zone, which is considered by the World Wild Fund for Nature and by Conservation International as a one of the biodiversity hotspot in the world. The valley is also recognized by Turkish conservation organizations as an important plant area, an important bird area, a key biodiversity area and has been nominated as a high priority area for protection. This valley is rich in plants and contains 104 nationally threatened plant species of which 67 are endemic to Turkey. Fig (Ficus carica L.) is one of the most important wild edible fruit tree along with pomegranate and olive in the valley. Figs have been used for fresh consumption for centuries and also an important element of natural landscape of the valley. The valley abundantly has black, purple and yellow-green fruited fig trees. In this study we determined some important tree, leaf and fruit morphological characteristics of 50 selected wild grown fig accessions naturally found in the valley. The results showed that the investigated morphological traits of fig accessions displayed significant differences each other. Principal coordinate analysis showed that diversity among the accessions was high and the accessions had black and yellow-green colored fruits were the most diverse groups.  相似文献   

17.
Theories regarding the establishment and persistence of self-naturalising alien species can help in interpreting these processes in designed plant communities with their combination of exotic species and native plant communities. Thus, they may provide a theoretical basis for this kind of landscape design. A case study investigated the influence of plant community conditions (invasibility), species-specific traits (invasiveness), and gap diameter size on the establishment of selected North American prairie forbs in Central European horticultural meadows. Experimental sites were located in Freising, Bavaria. Introduced forbs included Aster laevis, Aster novae-angliae, Aster x salignus, and Aster x versicolor. Establishment success was measured as survival rate and total aboveground dry biomass. Invasibility of the investigated horticultural meadows was strongly related to resource availability, as most influences of plant community traits could ultimately be attributed to this factor. Leaf area and specific leaf area above canopy height of the resident meadow species appear to be the traits that best explained differences in establishment success of the Asters. Gap size influenced species performance mainly on the less productive site, again due to higher availability of resources in the larger gaps. These results are consistent with findings of studies on self-naturalising alien species. By applying this interdisciplinary approach, valuable insights in the functioning of designed plant communities could be gained. Horticultural meadows can be one important tool in designing the highly dynamic urban landscape. In choosing suitable sites, resource availability should be strongly considered.  相似文献   

18.
Landscape changes in the Central Valley of California, USA, have been dramatic over the past 100 years. Irrigated agriculture has replaced natural communities of California prairie, riparian forest, tule marsh, valley oak savannah, and San Joaquin saltbrush. This paper addresses the implication of vegetation change on evapotranspiration as a consequence of these changes. It was found that an increase in irrigated agriculture and a 60% reduction in the aerial extent of native vegetation has not produced significant changes in the moisture transfer to the atmosphere. The apparent reason for this result is that irrigated agriculture has substituted one actively transpiring surface for another and, therefore, has not significantly altered the transpiration flux of the landscape.  相似文献   

19.
The diversity of future landscapes might depend on our ability to predict their potential species richness. The predictability of patterns of vascular plant species richness in a Finnish agricultural river landscape was studied using generalized linear modeling, floristic records from fifty-three0.25-km grid squares in the “core” study area, and environmental variables derived from Landsat TM images and a digital elevation model. We built multiple regression models for the total number of plant species and the number of rarities, and validated the accuracy of the derived models with a test set of 52 grid squares. We tentatively extrapolated the models from the core study area to the whole study area of 601 km2 and produced species richness probability maps using GIS techniques. The results suggest that the local ‘hotspots’ of total flora (grid squares with > 200species) are mainly found in river valleys, where habitat diversity is high and a semi-open agricultural-forest mosaic occurs. The ‘hotspots’ of rare species (grid squares with > 4 rare species) are also found in river valleys, in sites where extensive semi-natural grasslands and herb-rich deciduous forests occur on steep slopes. We conclude that environmental variables derived from satellite images and topographic data can be used as approximate surrogates of plant species diversity in agricultural landscapes. Modeling of biological diversity based on satellite images and GIS can provide useful information needed in land use planning. However, due to the potential pitfalls in processing satellite imagery and model-building procedures, the results of predictive models should be carefully interpreted. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A central theme in landscape ecology is that of understanding the consequences of landscape heterogeneity for ecological processes. The effects of landscape heterogeneity on parasite communities are poorly understood, although it has been shown that anthropogenic impacts may contribute to outbreaks of both parasites and pathogens. We tested for effects of landcover type, composition, configuration, and urbanisation on avian diversity and avian malaria prevalence in 26 communities of wetland-associated passerines in the Western Cape of South Africa. We predicted that avian malaria prevalence would be influenced by the pattern of farmland and urban areas in the surrounding landscapes and the sizes of the wetlands in which birds were sampled. We quantified landscape pattern using a six-class simplification of the National Landcover data set at 35 × 35 m resolution and five extents of between 1 and 20 km from each wetland. The bird community was sampled using point counts and we collected blood samples from birds at each site. We screened these for malaria using PCR and molecular techniques. Passerine species richness and infection prevalence varied significantly between different landcover types. Host richness and parasite prevalence were highest in viticultural and cropping sites respectively and lowest in urban sites. Wetlands located in indigenous vegetation had intermediate numbers of bird species and intermediate parasite prevalence. Landscape composition and habitat type surrounding wetlands emerged as useful correlates of infection prevalence. Anthropogenic landscape modification appears to have both direct and indirect effects on avian communities and their associated parasite assemblages, with attendant consequences for avian health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号