首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research was undertaken to determine the response of newly planted saffron to the application of different levels of nitrogen (0, 50 and 100 kg N · ha?1 · year?1), phosphorus (0, 25, and 50 kg P2O5 · ha?1 · year?1), and composted cow manure (0, 20, and 40 tons · ha?1 · year?1) in terms of fresh flower weight (FFW), saffron yield (SY) and leaf biomass. The experiments were conducted in Birjand, and Ghaen, Khorasan province, Iran, from 1991 to 1993. Significant differences were found between the two locations and among the years within each location for FFW and SY. Averaged over all treatments and years, mean values for FFW and SY were 644.3 and 9.1 kg · ha?1, respectively, at Birjand, and 296.0 and 3.7 kg · ha?1, respectively, at Ghaen. At Birjand, mean FFW in the three consecutive years was 229.0, 796.2, and 907.8 kg · ha?1 and mean SY was 3.4, 10.6, and 13.4 kg · ha?1. The corresponding means at Ghaen were 87.5, 225.9, and 574.7 kg · ha?1 for FFW and 1.3, 3.2, and 6.7 kg · ha?1 for SY. Simple correlation coefficients between FFW and SY were positive and highly significant. At both locations, FFW and SY increased significantly from year to year. The rate of increase, however, decreased with the age of the saffron field because of overcrowding of new corms. Different combinations of fertilizers had either a negative or nonsignificant effect on FFW and SY. The application of phosphorus fertilizer did not result in increased FFW and SY. The application of 40 tons · ha?1 of cow manure in the first year followed by no fertilizer in the second year and by 20 tons · ha?1 in the third year increased FFW and SY at Birjand. The use of 100 kg · ha?1 nitrogen only in the third year also increased FFW and SY at Birjand. At Ghaen, only the application of 50 kg · ha?1 nitrogen in the third year resulted in increased FFW and SY.  相似文献   

2.
氮肥用量及钾肥施用对稻麦周年产量及效益的影响   总被引:9,自引:0,他引:9  
为探明优化施氮量与高施氮量下不同钾肥施用处理对稻麦周年产量及效益的影响。本试验于2010年5月–2011年7月在江苏省如皋市农业科学研究所试验基地的田间稻麦轮作条件下,对常规粳稻品种镇稻11和春性中筋品种扬麦16设置了两个氮肥用量下不同钾肥用量及施用方法处理,测定稻麦周年的产量和组成因子,成熟期不同器官的氮、钾浓度和累积量,氮、钾利用效率及经济效益。试验结果表明,钾肥的施用显著提高了周年稻麦的产量,同时提高了稻麦的有效穗数、穗粒数和结实率,钾肥的利用效率和经济效益。稻麦周年钾肥(K2O)的偏生产力(PFP)、农学效率(AE)、回收利用率(RE)和经济效益均以周年钾肥(K2O)土壤施用150 kg hm-2 + 叶面喷施16.2 kg hm-2 (KS150 + KF16.2)处理最高。氮肥用量的结果表明,相对于优化施氮量,高施氮量有利于提高水稻的氮素营养而增产,但对稻麦周年产量的影响不显著,且优化施氮量的氮肥利用效率及经济效益均高于高施氮量。因此,综合考虑土壤环境因素、经济效益和肥料资源管理,本地区最佳氮肥(N)用量为水稻200 kg hm-2,小麦180 kg hm-2;最佳钾肥(K2O)用量及方法为水稻土壤施用90 kg hm-2 + 叶面喷施9.7 kg hm-2 (KS90 + KF9.7),小麦土壤施用60 kg hm-2 + 叶面喷施6.5 kg hm-2 (KS60 + KF6.5)。  相似文献   

3.
Recovery of fertilizer nitrogen (N) applied to winter wheat crops at tillering in spring is lower than that of N applied at later growth stages because of higher losses and immobilization of N. Two strategies to reduce early N losses and N immobilization and to increase N availability for winter wheat, which should result in an improved N use efficiency (= higher N uptake and/or increased yield per unit fertilizer N), were evaluated. First, 16 winter wheat trials (eight sites in each of 1996 and 1997) were conducted to investigate the effects of reduced and increased N application rates at tillering and stem elongation, respectively, on yield and N uptake of grain. In treatment 90‐70‐60 (90 kg N ha?1 at tillering, 70 kg N ha?1 at stem elongation and 60 kg N ha?1 at ear emergence), the average values for grain yield and grain N removal were up to 3.1 and 5.0 % higher than in treatment 120‐40‐60, reflecting conventional fertilizer practice. Higher grain N removal for the treatment with reduced N rates at tillering, 90‐70‐60, was attributed to lower N immobilization (and N losses), which increased fertilizer N availability. Secondly, as microorganisms prefer NH4+ to NO3? for N immobilization, higher net N immobilization would be expected after application of the ammonium‐N form. In a pot experiment, net N immobilization was higher and dry matter yields and crop N contents at harvest were lower with ammonium (ammonium sulphate + nitrification inhibitor Dicyandiamide) than with nitrate (calcium nitrate) nutrition. Five field trials were then conducted to compare calcium nitrate (CN) and calcium ammonium nitrate (CAN) nutrition at tillering, followed by two CAN applications for both treatments. At harvest, crop N and grain yield were higher in the CN than in the CAN treatment at each N supply level. In conclusion, fertilizer N use efficiency in winter wheat can be improved if N availability to the crops is increased as a result of reduced N immobilization (and N losses) early in the growth period. N application systems could be modified towards strategies with lower N applications at tillering compensated by higher N dressing applications later. An additional advantage is expected to result from use of nitrate‐N fertilizers at tillering.  相似文献   

4.
Little is known about the effect of combined phosphorus and nitrogen (P‐N) fertilization on the N requirement of sunflower (Helianthus annus L.). This study was carried out to evaluate the effects of varying levels of P and N, as well as the interaction P × N, on the N uptake, yield and N apparent utilization efficiency under field conditions. Split‐plot design experiments were conducted in the mid‐western Pampas in Argentina. Four levels of N (0, 46, 92 and 138 kg N ha?1) and three levels of P (0, 12 and 40 kg P ha?1) were applied to two Typic Hapludolls over two growing seasons (1997–98 and 1998–99). N uptake and soil N‐NO3 contents were determined at the V7, R5 and R9 growth stages. The sunflower yield ranged from 2.5 to 5.0 Mg ha?1. The total N requirement was around 45 kg N Mg?1 grain, and this result suggests that it is not necessary to use different N requirements (parameter b) for fertilized crops when a yield response is expected. To achieve a 100 % yield maximum a N supply (soil plus fertilizer) of 181 kg N ha?1 at P40 was needed. However, at P0, the highest yield was about 80 % of the maximum yield with a N supply (soil plus fertilizer) of 164 kg N ha?1. P application increased the apparent use efficiency of the supplied N.  相似文献   

5.
Seasonal changes in leaf area index (LAI) and leaf area duration (LAD, i.e. LAI integrated over cumulated degree days) have a marked effect on crop productivity. Three case experiments were conducted at Suitia (60°11′N) and Viikki (60°13′N) Experimental Farms, University of Helsinki, Finland, to evaluate the possibilities of accelerating pre-an thesis expansion of leaf area and modifying pre- and post-anthesis LAD in spring cereals through crop management. Effects of time of incorporation of a green manure crop residue into the soil [conventional tillage (autumn ploughing and seed bed preparation in the spring), conservation tillage (sole spring tillage) with and without a green manure crop, common vetch (Vicia saliva I.)]and N fertilizer rate (0, 50, 100kg N ha?1) on LAI and pre- and post-anthesis LAD in wheat (Triticum aestivum L.) were studied in exp I; green manuring (common vetch) and N fertilizer rate (0,40, 70,110,150kg N ha?1) in barley (Hordeum vulgare L.), oat (Avena sativa L.), and wheat in exp II; and foliar application of chlormequat chloride (CCC) and ethephon in oat lines (dwarf, naked, modern, landrace) differing in canopy structure in exp III. Time of incorporation of the green manure crop residues into the soil (exp I), green manuring (exp II), N fertilizer rate (exps I and II), and selection for crop growth type (exp III), but not CCC and ethephon, modified LAI and LAD in spring cereals by affecting the rate of pre-anthesis expansion and post-anthesis reduction in leaf area rather than by markedly prolonging the growth period. High rates of N fertilizer accelerated expansion of leaf area, especially prior to stem elongation, and resulted in high pre-anthesis LAD due to enhanced tiller growth (exps I and II) and more tillers per main shoot (exp I). Green manuring increased leaf expansion from the tillering stage most when combined with high N rate, and especially in barley (exp II), but no such effects were found in exp I. Use of a high N fertilizer rate (exps I and II) and green manuring (exp II) also resulted in high post-anthesis LAD. Such modifications enabled higher rates of grain- and head-filling, and in exp I contributed to increased head weight and grain yield. Selection for inherent differences in growth type provided an additional possibility for manipulation of canopy structure and yield formation.  相似文献   

6.
The effects of row spacing (17.5 or 35.0 cm), support plant species (barley or triticale) and the proportion of crops in mixtures (no support plant or support plant 20, 40 or 60 %, respectively) on the seed yield and yield characteristics of Hungarian vetch (Vicia pannonica Crantz) were investigated. Increasing the row spacing increased the seed yield of V. pannonica from 881.0 to 1248.0 kg ha?1. On average, in a pure stand the seed yield of V. pannonica was 1141.0 kg ha?1. In mixtures with barley and triticale, the seed yield of V. pannonica averaged 986.0 and 1143.0 kg ha?1, respectively. In single mixed stands the seed yield of V. pannonica varied between 551.0 kg ha?1 (60 % support plant barley) and 1603.0 kg ha?1 (20 % support plant triticale). The yield advantage of V. pannonica in this triticale mixture was 40 % compared to the V. pannonica pure stand. With respect to the total yield in the mixture with 20 % triticale (1902.0 kg ha?1) the yield advantage over the V. pannonica pure stand was as high as 65.1 %. In the mixed stands the number of seeds per pod and the thousand‐seed weight of V. pannonica were higher than in V. pannonica pure stands.  相似文献   

7.
Effects of tillage on the appropriate fertilizer N applications needed to achieve maximal grain yield are poorly denned. The study objective was determination of relative corn grain yield response to N application rate for four tillage practices: no-tillage (NT), ridge tillage (RT), fall chisel plowing (CP) and fall moldboard plowing (MP). Maize (Zea mays L.) grain yield and N accumulation were monitored over a 6 year period with the same tillage treatment and the same fertilizer N rate applied each year to each plot. Two hybrids, differing in relative maturity rating, were planted each year. Fertilizer N rates ranged from 10 to 190 kg ha?1 and consisted of 10 kg ha?1 of liquid starter N applied at planting with varying amounts of fall applied anhydrous ammonia. With only starter fertilizer, grain yields increased with tillage intensity in the order NT ≤ RT ≤ CP ≤ MP. With ≥ 55 kg total applied Nha?1, 6 year average grain yields were unaffected by tillage. Total N removed in grain annually with only starter fertilizer ranged from 25–85 kg ha?1 Maximal amounts of N removed, about 145 kg N ha?1, occurred with 100–145 kg applied N ha?1 for all tillage treatments under the more favorable climatic conditions. Several interactions affecting grain yield appear climatically sensitive with exception of tillage by fertilizer N interactions. Because of variability in climate, planting dates varied by almost 4 weeks. Relative yield loss due to planting delay were Fertilizer N (mean change ??124 –?275 kg ha?1 day?1) > Starter N only and MP (mean ?? 259 kg ha?1 day?1) > other tillages in general. Yield loss due to delayed planting ranged from 0.0–275 kg ha?1 day?1. Grain yield gains due to early spring soil temperatures were 16.0–21.8 kg ha?1 index-degree?1 with MP tillage and averaged 2.7– 16.7 kg ha?1 index-degree?1 more than those of other tillage-hybrid combinations.  相似文献   

8.
低氮密植栽培对超级稻产量和氮素利用率的影响   总被引:8,自引:0,他引:8  
为了研究低氮密植栽培对水稻分蘖发生及成穗率、干物质积累及其转化、氮素利用率和产量的影响,2012—2013年以超级稻Y两优1号为材料,在湖南长沙和海南澄迈进行了施氮量(75、150、225 kg N hm–2)与栽插密度(68、40、27、19穴m–2),每穴苗数(单、双、三本穴–1)与栽插密度(40、27、19、14穴m–2)的大田栽培试验。结果表明,在基本苗数相同或相近的条件下,减苗增密在齐穗期和成熟期的干物质量及产量分别比增苗减密高10.5%、5.2%和2.9%,有效穗数对产量的贡献最大,达到显著水平;在低氮密植条件下,有效分蘖期缩短6 d左右,分蘖成穗率、表观转化率、氮肥偏生产力和氮素籽粒生产效率分别提高10.9%、21.0%、150.6%和19.6%。在施氮量为75 kg N hm–2的密植(40~68穴m–2)条件下,齐穗期和成熟期的干物质量及长沙点产量分别比中、高氮(150~225 kg N hm–2)常规密度(19~27穴m–2)低3.2%、7.5%和1.2%,但差异不显著,而澄迈点产量在2012年和2013年分别比之低5.2%和高9.1%,且差异均达显著水平。在施氮量为150 kg N hm–2的密植条件下,成熟期干物质量比高氮常规密度低1.7%,但齐穗期干物质量和产量比高氮常规密度高10.3%和3.3%。因此,超级稻采用低氮密植栽培,在100~150 kg N hm–2和40穴m–2条件下提早了够苗期,增加了有效穗数,提高了分蘖成穗率和结实率,加之齐穗期适宜的干物质积累和较高的表观转化率,有利于高产的形成和氮肥利用率的提高。  相似文献   

9.
In this study, the effects of nitrogen (N) rate (60, 120, 180 and 240 kg N ha?1 applied in three equal dressings at seeding and after the first and second cuttings) and stubble height (7, 14 and 21 cm) on the dry matter (DM) yield, crude protein (CP) content, and CP yield of a sorghum–sudangrass hybrid [Sorghum bicolor (L.) Moench × Sorghum sudanense (Piper) Stapf., cv. Pioneer 988] in the three‐cut system was investigated. The N rate had no significant effect in the first and third cuttings, but in the second cutting DM yields increased significantly with increase in N rate. The highest yield of 9.1 t ha?1 was obtained with 80 kg N ha?1 for the average of 2 years at the second cutting, but no significant difference was found among the 40, 60 and 80 kg N ha?1 rates. CP content and yield were not significantly affected by N rate at the first and third cuttings, but CP content and yield were significantly affected by application of N at the second cutting. Stubble height had a significant effect on CP content at the third cutting. However, it had no significant effect on CP content at the first and second cuttings. Stubble height had a significant effect on the CP yield at the first cutting, but no significant effect on CP yield at the second and third cuttings.  相似文献   

10.
Field studies were conducted during the winter seasons of 1995–96 and 1996–97 at the Agricultural Farm of Aligarh Muslim University, Aligarh, India on mustard ( Brassica juncea L. Czern & Coss., var. Alankar) under non-irrigated conditions, to evaluate the effect of foliar spray of 200 p.p.m. ethrel (2-chloroethyl phosphonic acid) at flowering growth stage along with basal 0, 40, 80 or 120 kg N ha−1 on net photosynthetic rate (PN), stomatal conductance (CS), stomatal resistance (RS), leaf K content, relative water content (RWC), leaf area index (LAI) and total dry matter (TDM) production monitored at 20 days after spray application, and plant N content, seed N content, nitrogen harvest index (NHI), nitrogen yield merit (NYM), pods plant−1, 1000 seed weight, seed yield, biological yield, harvest index (HI), seed yield merit (SYM) and merit of genotype (MOG) at harvest. Results indicated that, at 0 or 40 kg N ha−1, ethrel did not produce any significance effect, but at basal 80 kg N ha−1, ethrel affected the parameters favourably with the exception of 1000 seed weight, HI, seed N and NHI. Ethrel-sprayed plants utilized N from the soil more effectively and showed increased NYM. Yield attributes, seed yield and merit of genotype (in terms of NYM and SYM) were also enhanced. Ethrel spray enhanced seed yield under water stress conditions mainly by increasing K uptake and retaining higher RWC, thereby decreasing RS and increasing LAI, PN and TDM production.  相似文献   

11.
A field study was conducted to investigate the influence of variable rates of application of N and P fertilizers in splits at various times on the growth and the seed and oil yields of canola (Brassica napus L.) during 1995–97. Rates of fertilizer application were 0 and 0 (F0), 60 and 0 (F1), 0 and 30 (F2), 60 and 30 (F3), 90 and 60 (F4) and 120 and 90 (F5) kg N ha?1 and kg P2O5 ha?1. All the P was applied at sowing while N was applied in splits, i.e. all at sowing, half at sowing and half with first irrigation, or half at sowing and half at flowering. The responses of growth, seed yield and components of yield were consistent in both years. Increasing the rate of fertilizer application from F4 (90/60 kg N/P2O5 ha?1) to F5 (120/90 kg N/P2O5 ha?1) increased the leaf area index (LAI) relative to the control and to lower rates of fertilizer application. For both crops, application of 90/60 kg N/P2O5 ha?1 significantly enhanced total dry matter (TDM) and seed yield. Seed yield increased mainly due to a greater number of pods per plant and seeds per seed‐pod. The time of fertilizer application did not significantly affect seed yield or components of yield in either season. Oil yield generally followed seed yield, increasing with increasing rate of fertilizer application up to 90/60 kg N/P2O5 ha?1. The maximum oil contents were obtained from the control. The results show that seed and oil yields of canola were maximized at the F4 (90/60 kg N/P2O5 ha?1) rate of application under the agro‐ecological conditions of Faisalabad, Pakistan.  相似文献   

12.
The effects of Nitrogen (N) and Plant Growth Promoting Rhizobacteria (PGPR) on growth and development of sunflower (Helianthus annuus L. var. Hysun-33) grown in the greenhouse under a natural environment were studied. The N-use efficiency of a sunflower crop grown under three N rates (N1 = 0 kg ha?1, N2 = 120 kg ha?1, and N3 = 240 kg ha?1) and three PGPR levels (R1 = 0 kg ha?1, R2 = 30 kg ha?1, and R3 = 60 kg ha?1) were investigated. The maximum amount of N resulted in higher total dry matter production per plant and the effect was prominent from 34 days after sowing (DAS). Seed yields differed significantly among different sunflower crops especially at limiting N supply, with significant shifts according to the N level. N uptake was an important parameter for yield at all N rates. The 240 kg N ha?1 treatments provided the maximum yield, while the oil contents in these treatments of higher yield showed a lower oil content (%). Harvest index was also significantly correlated to yield across N rates; however, its importance depended much on environmental conditions as well. It can be inferred from the study that sunflower crop is well-supplied with respect to growth, development, yield and yield components, to enhance N efficiency and depends very much on the N supply. All the parameters gave maximum results with the increment of N while PGPR regimes had no prominent impact on the sunflower crop, the target environment, and the target yield level grown under a specified controlled glasshouse environment.  相似文献   

13.
Experiments were carried out to study the effects of N fertilizer rates and timing of application on the yield and grain quality of a rainfed emmer crop (Triticum dicoccum Shübler) under Mediterranean conditions. The following parameters were analyzed: hulled and net grain yield, hulled index, spikes m?2, spikelets per spike, kernels m?2, thousand-kernel weight, biomass, plant height, lodging, grain protein and ash content. In the first experiment, different N rates (30, 60 and 90 kg N ha?1 plus a control not fertilized) were split at three phenological stages (seeding 20%, tillering 40% and stem elongation 40%). In the second experiment, three N doses (30, 60 and 90 kg N ha?1) were applied to three crop stages (seeding, tillering and stem elongation). In the third experiment, the rate of 90 kg N ha?1 was distributed in different amounts (90-0-0, 0-90-0, 0-0-90, 45-45-0, 45-0-45, 0-45-45, 30-30-30) at the three mentioned crop stages. Increasing N rates resulted in higher hulled and net grain yield, as well as protein content. Fertilization (from 60 to 90 kg N ha?1) applied to tillering maximized hulled and net grain yield. Fertilization (90 kg N ha?1) applied to stem elongation gave the highest grain protein content (%) while splitting application (30 kg N ha?1 each) at three phenological stages maximized protein yield per hectare. Application of half or one-third of 90 kg N ha?1 to stem elongation improved grain protein content in comparison with applications at sowing, or at both sowing and tillering. The main factor determining higher yields with increasing N rates in this emmer crop was the number of kernels m?2. None of the yield components accounted for differences in grain yield when timing and splitting application were varied.  相似文献   

14.
The faba bean is among the major grain legumes cultivated in Ethiopia and is used extensively as a break crop in the highlands. Although a blanket application of DAP (diammonium phosphate) at the rate of 100 kg · ha?1 has been practised in faba bean production in the country, this was not based on research results. In addition, little information is available on the response of the crop to N and P fertilizers under diverse environmental conditions. Hence, field experiments were carried out at three locations in 1991, seven locations during 1992 and 1993 and at one location in both 1993 and 1995 to determine faba bean response to N and P fertilization. Five levels of N (0, 9, 18, 27 and 36 kg N · ha?1 as urea) in factorial combinations with four levels of P (0, 23, 46 and 69 kg P2O5 · ha?1 as TSP [triple super phosphate]) were studied in a randomized complete block design with four replications in the first year. In the remaining years four levels of N (0, 18, 27 and 36 kg N · ha?1 as urea) in factorial combinations with four levels of P (0, 23, 46 and 92 kg P2O5 · ha?1 as TSP) were used in a randomized complete block design with three and four replications at one and seven locations, respectively. Results indicated that a positive linear response of faba bean seed yield was noted at all locations (except Debre Zeit and Burkitu) to P fertilization, while a significant quadratic response was also found at Holetta. In addition, plant height, above ground biomass and number of pods per plant were positively influenced by P application while the effect of N on these was mostly nonsignificant. Faba bean seed yield response to N was noted at only two out of eight locations; in most cases, nonsignificant and inconsistent seed yield responses to N fertilization were obtained. There was nonsignificant N × P rate interaction. In conclusion, we do not recommend supplemental N application to faba bean at six out of eight locations but we recommend the application of P fertilizer to faba bean at almost all locations (with the exception of Debre Zeit) and for other soils deficient in available P. Further work is recommended on the determination of critical levels for soil-available P, below which P fertilization should be practised for optimum faba bean seed yield.  相似文献   

15.
Field experiments were conducted at Indian Agricultural Research Institute, New Delhi, during 2001–2002 and 2002–2003, to study the effect of inorganic, organic and Azotobacter combined sources of N on cotton (Gossypium hirsutum L.) and their residual effect on succeeding wheat (Triticum aestivum L.) crop. The results indicated considerable increase in yield attributes and mean seed cotton yield (2.33 Mg ha?1) with the combined application of 30 kg N and farmyard manure (FYM) at 12 Mg ha?1 along with Azotobacter (M4). The treatment in cotton that included FYM, especially when fertilizer N was also applied could either improve or maintain the soil fertility status in terms of available N, P and K. Distinct increase in yield attributes and grain yield of wheat was observed with the residual effect of integrated application of 30 kg N ha?1 + FYM at 12 Mg ha?1 + Azotobacter. Direct application of 120 kg N ha?1 resulted 67.4 and 17.7 % increase in mean grain yield of wheat over no N and 60 kg N ha?1, respectively. Integrated application of organic and inorganic fertilizer is therefore, recommended for higher productivity and sustainability of the cotton–wheat system.  相似文献   

16.
Field trials were replicated at four sites in the moist savanna ecological zone of West Africa to study the effect of maturity class and phosphorus (P) rate on grain yield and total protein yield (TPY) of some new soya bean varieties. Grain yield and TPY averaged 1.43 Mg ha?1 and 587 kg ha?1, respectively. Without P application grain yield and TPY were not significantly different among the varieties. In addition, at zero P treatment, grain yield and TPY were not significantly different among three sites where available P was 6.2 mg kg?1 or less. P application depressed grain yield and TPY at a site where the available soil P was high (16.2 mg kg?1). With P application grain yield and TPY were in the range of 1.2–2.28 Mg ha?1 and 505–948 kg ha?1, respectively, for the varieties compared with 0.99–1.12 Mg ha?1 and 454–462 kg ha?1 when P was not applied. The response of grain yield to 30 kg P ha?1 was substantial at Gidan Waya (113 %), Kasuwan Magani (63 %) and Fashola (60 %), three sites where available soil P was low. The application of 30 kg P ha?1 increased grain yield by 21 % in early, 26 % in medium and 58–70 % in the late varieties. Significant variety by P rate interaction effects were observed on grain yield and TPY but not on grain protein concentration (GPC). TPY showed greater response to P in the late varieties than in the early or medium. While seed size correlated significantly and positively with GPC, P application had no significant effect on GPC.  相似文献   

17.
Whole-plant responses to elevated CO2 throughout the life cycle are needed to understand future impacts of elevated atmospheric CO2. In this study, Triticum aestivum L. leaf carbon exchange rates (CER) and carbohydrates, growth, and development were examined at the tillering, booting, and grain-filling stages in growth chambers with CO2 concentrations of 350 (ambient) or 700 (high) μmol mol?1. Single-leaf CER values measured on plants grown at high CO2 were 50% greater than those measured on plants grown at ambient CO2 for all growth stages, with no photosynthetic acclimation observed at high CO2. Leaves grown in high CO2 had more starch and simple sugars at tillering and booting, and more starch at grain-filling, than those grown in ambient CO2. CER and carbohydrate levels were positively correlated with leaf appearance rates and tillering (especially third-, fourth- and fifth-order tillers). Elevated CO2 slightly delayed tiller appearance, but accelerated tiller development after appearance. Although high CO2 increased leaf appearance rates, final leaf number/culm was not effected because growth stages were reached slightly sooner. Greater plant biomass was related to greater tillering. Doubling CO2 significantly increased both shoot and root dry weight, but decreased the shoot to root ratio. High CO2 plants had more spikes plant?1 and spikelets spike?1, but a similar number of fertile spikelets spike?1. Elevated CO2 resulted in greater shoot, root and spike production and quicker canopy development by increasing leaf and tiller appearance rates and phenology.  相似文献   

18.
Irrigation frequency is one of the most important factors in drip irrigation scheduling that affects the soil water regime, the water and fertilization use efficiency and the crop yield, although the same quantity of water is applied. Therefore, field experiments were conducted for 2 years in the summer season of 2005 and 2006 on sandy soils to investigate the effects of irrigation frequency and their interaction with nitrogen fertilization on water distribution, grain yield, yield components and water use efficiency (WUE) of two white grain maize hybrids (Zea mays L.). The experiment was conducted by using a randomized complete block split‐split plot design, with four irrigation frequencies (once every 2, 3, 4 and 5 days), two nitrogen levels (190 and 380 kg N ha?1), and two maize hybrids (three‐way cross 310 and single cross 10) as the main‐plot, split‐plot, and split‐split plot treatments respectively. The results indicate that drip irrigation frequency did affect soil water content and retained soil water, depending on soil depth. Grain yield with the application of 190 kg N ha?1 was not statistically different from that at 380 kg N ha?1 at the irrigation frequency once every 5 days. However, the application of 190 kg N ha?1 resulted in a significant yield reduction of 25 %, 18 % and 9 % in 2005 and 20 %, 13 % and 6 % in 2006 compared with 380 kg N ha?1 at the irrigation frequencies once every 2, 3 and 4 days respectively. The response function between yield components and irrigation frequency treatments was quadratic in both growing seasons except for 100‐grain weight, where the function was linear. WUE increased with increasing irrigation frequency and nitrogen levels, and reached the maximum values at once every 2 and 3 days and at 380 kg N ha?1. In order to improve the WUE and grain yield for drip‐irrigated maize in sandy soils, it is recommended that irrigation frequency should be once every 2 or 3 days at the investigated nitrogen levels of 380 kg N ha?1 regardless of maize varieties. However, further optimization with a reduced nitrogen application rate should be aimed at and will have to be investigated.  相似文献   

19.
水稻甬优12超高产群体分蘖特性及其与群体生产力的关系   总被引:3,自引:2,他引:1  
以籼粳交超级稻甬优12为试材,四叶一心期带蘖小苗移栽,通过栽培措施的调控,形成超高产( >13.0 t hm-2)和高产( >12.0 t hm-2)群体,以高产群体作为对照,对分蘖挂牌追踪,比较研究超高产群体分蘖发生成穗特点。结果表明,超高产群体分蘖产量及对总产量的贡献率分别为11.53 t hm-2和87.77%,高产群体分别为10.59 t hm-2和87.40%。超高产和高产群体的分蘖利用都以一次和二次分蘖为主,一次和二次分蘖的产量均以超高产高于高产群体,超高产群体一次分蘖产量的贡献率略低于高产群体,二次分蘖产量的贡献率高于高产群体。超高产群体一次分蘖发生在第1至第9叶位,第4至第7叶位是分蘖发生与成穗的优势叶位,二次分蘖以1/3、2/3、3/3、2/4、1/5蘖位优势较强。对于高产群体而言,一次分蘖以第4至第7叶位分蘖优势较强,二次分蘖以1/3、2/3、3/3优势较强,三次分蘖发生叶位数明显高于超高产群体,但成穗率较低。超高产群体成穗分蘖的穗长、单穗重、总粒数、着[1]粒密度的平均值高于高产群体,结实率却略低于高产群体。  相似文献   

20.
Nitrogen availability and drought influence wheat (Triticum aestivum L.) grain yields in the semiarid and subhumid Pampas region of Argentina. The application of fertilizers containing osmoprotectants, such as glycinebetaine, to crop canopies might reduce crop losses caused by environmental stresses. The objectives of this study were (a) to determine the effects on wheat grain yields of the foliar application of a commercial fertilizer with glycinebetaine, and (b) to establish, under farmers’ field conditions, the relation between soil properties and the productivity of wheat crops treated with the same product. Two experiments were conducted in the north‐western part of the Buenos Aires province of Argentina on Typic Hapludolls and Entic Hapludolls. In the first, the treatments were N fertilization (0, 23 and 46 kg ha?1) and the foliar application to the wheat crop, in the vegetative stages, of a foliar fertilizer containing N, P, Zn and glycinebetaine (0 and 2.5 l ha?1). The second experiment was carried out on 10 farmers’ fields, for each of which the treatment was the foliar application to the wheat crop, in the vegetative stages, of the same foliar fertilizer (0 and 2.5 l ha?1). In both experiments, the grain yield, the individual grain weight, the number of grains per spike and the spike and plant density at the physiological maturity of the crops were determined. Soil organic matter (SOM) and available P were determined in each of the 10 fields of the second experiment. Wheat grain yields were increased by N fertilization and glycinebetaine treatment. The number of grains per spike was higher in the treatments with glycinebetaine application. In the farmers’ fields, the grain yields of the treatments with the application of the product with glycinebetaine were, on average, 18 % higher than those of the non‐treated plots, with greater responses at sites with low SOM levels. We conclude that, in subhumid regions with a dry period between the tillering and flowering stages of wheat, the foliar application of foliar fertilizers containing glycinebetaine at the vegetative stages of crop development enhances grain yields by increasing the number of grains per spike. This response is independent of the SOM level or the N fertilization rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号