首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One hundred thirty crossbred steers (324 kg) were used in a 121-d comparative slaughter trial to evaluate the feeding value of fat in steam-flaked corn- (SFC) or wheat- (SFW) based diets. Treatments consisted of an 88% concentrate finishing diet containing 1) SFC, no fat; 2) SFC, 6% yellow grease (YG); 3) SFC, 6% cottonseed oil soapstock (COS); 4) SFW, no fat; 5) SFW, 6% YG; and 6) SFW, 6% COS. There were no interactions (P greater than .10) between grain type and performance response to supplemental fat. Fat supplementation increased (P less than .05) ADG by 7.3% and decreased (P less than .01) DMI/gain by 10.6%. Fat supplementation decreased (P less than .05) ruminal OM digestion by 5% and net flow of microbial N to the small intestine by 14.5% but did not affect (P greater than .10) total tract digestion of OM, ADF, or starch. Substituting SFW for SFC did not influence (P greater than .10) ADG but tended (P greater than .10) to increase DMI/gain and decreased (P less than .05) the NEm and NEg of the diet by 3.4 and 4.3%, respectively. Ruminal OM digestion was similar (P greater than .10) for SFC and SFW. Flow of microbial N to the small intestine was 12% greater (P less than .05) with SFW. Total tract digestibilities of OM and starch were similar (P greater than .10) for both grains. However, ADF digestion was lower (34%, P less than .01) with SFW. It is concluded that the feeding value of supplemental fat is similar for wheat- and corn-based finishing diets. The performance response to supplemental YG and COS was similar. The NEm and NEg values of YG were 6.35 and 4.93 Mcal/kg, respectively, whereas the corresponding values for COS were 5.69 and 4.60 Mcal/kg. Supplementation of growing-finishing diets with up to 6% (.45 kilograms/day) of fat did not directly influence body composition. The NE value of SFW was approximately 96% of the value of SFC.  相似文献   

2.
One finishing trial and one digestibility trial were used to evaluate wet corn gluten feed (WCGF) and alfalfa hay (AH) combinations in steam-flaked corn (SFC) finishing diets. In Exp. 1, 631 crossbred heifers (initial BW = 284 +/- 7.9 kg) were fed SFC-based diets containing combinations of WCGF (25, 35, or 45% of diet DM) and AH (2 or 6% of dietary DM) in a 2 x 3 factorial arrangement of treatments. No interactions existed between WCGF and AH for heifer performance. Increasing dietary WCGF linearly decreased gain efficiency (P < 0.01), dietary NEg concentration (P < 0.05), and 12th-rib fat thickness (P = 0.10). Cattle fed 35% WCGF had the lowest occurrence of abscessed livers, resulting in a quadratic response (P < 0.05) as dietary WCGF increased. In Exp. 2, 12 ruminally cannulated Jersey steers (585 kg) were fed SFC-based diets containing combinations of WCGF (25 or 45% of diet DM) and AH (0, 2, or 6% of diet DM) in an incomplete Latin square design with a 2 x 3 factorial arrangement of treatments. Starch intake was lower (P < 0.05), but NDF intake was greater (P < 0.05) as AH and WCGF increased in the diet. Ruminal pH was increased by AH (linear, P < 0.05) and tended (P < 0.07) to increase with WCGF. Feeding 2% AH led to the greatest ruminal NH3 but the lowest total VFA and propionate (quadratic, P < 0.05). Addition of AH to diets containing 25% WCGF increased acetate to a greater extent than addition to diets containing 45% WCGF (AH x WCGF interaction, P < 0.05). Feeding 45% WCGF tended to increase passage rate (P = 0.17) and decrease (P < 0.05) total tract OM digestibility but increase (P < 0.05) in situ degradation of DM from AH and WCGF. Interactions between AH and WCGF existed (P < 0.05) for ruminal fluid volume (quadratic effect of AH x WCGF level), in situ SFC degradation (linear effect of AH x WCGF level), and in situ rate of WCGF DM disappearance (quadratic effect of AH x WCGF level). We conclude that AH levels may be decreased when WCGF is added to SFC diets as 25% or more of the dietary DM.  相似文献   

3.
Consecutive receiving studies were used to evaluate the replacement of starch (dry rolled corn; DRC) with a nonforage fiber source (soybean hulls; SBH) on performance, mineral, and blood metabolite status of newly arrived feedlot steer calves. Steers in yr 1 (Y1; 9 pens/diet, 8 to 10 animals/pen) and yr 2 (Y2; 6 pens/diet, 9 to 10 animals/pen) were blocked by weaning management, and then stratified by BW and randomly assigned to pens. Pens were randomly assigned to an oat silage-based diet containing starch (HS) from DRC or digestible fiber (HF) from SBH. Diets were formulated for 12% CP (DM basis) and to meet or exceed NRC (1996) nutrient requirements for Ca, P, and vitamins A and E. Mineral status was assessed in Y1 only via liver biopsies and serum samples collected on d 3 and 28. Mineral concentrations on d 28 were compared using d 3 concentrations as a covariate. Glucose, NEFA, and plasma urea N status were assessed in Y2 only via blood collections on d 0, 3, 7, 14, 28, and 59. Morbidity (<10%) and mortality rates were not different (P > 0.10) between treatments across years. Daily BW gain was similar (P > 0.10) between treatments both during the receiving period and cumulatively across years. Overall, feed intake was greater (P = 0.007) for steers fed HF compared with steers fed HS in Y1, but was not different in Y2 (P = 0.13). Steers consuming the HS diet tended (P = 0.07) to have better BW gain efficiency in Y1 only. Across years, BW gain efficiency and ADG were similar between treatments (P > 0.10), although DMI was greater for steers fed HF (P = 0.003). Based on 2 yr of performance, the calculated ME content of SBH was estimated at 92.5% of the ME value of DRC (2.74 vs. 2.96 Mcal/kg, respectively). Mineral concentrations on d 28 were similar (P > 0.10) for most minerals assayed. There was a steeper (P = 0.005) decline in hepatic Cu concentrations early in the feeding period for steers fed HF, resulting in decreased (P = 0.001) d 28 hepatic concentrations. Hepatic Mn was greater (P = 0.003) in steers fed HF on d 28 as a result of greater (P = 0.006) Mn accumulation during the initial 28 d on feed. Blood metabolites in Y2 (using d 0 values as a covariate) were similar (P > 0.10) across treatments, except for reduced (P = 0.025) plasma urea N concentrations on d 7 and greater (P = 0.050) NEFA concentrations on d 28 for steers fed HS. These studies indicate that the use of SBH in receiving diets can support BW gain similar to the use of DRC.  相似文献   

4.
Two trials were conducted to characterize the differences in utilization of dry-rolled and steam-flaked corn in a growing-finishing diet for feedlot cattle supplemented with and without ionophores. Ionophore treatments were: 1) no ionophore, 2) 33 mg/kg monensin sodium plus 11 mg/kg tylosin and 3) 33 mg/kg lasalocid sodium. In trial 1, treatment effects on feedlot performance were evaluated in a 239-d growing-finishing trial involving 180 crossbred steers (approximately 25% Brahman with the remainder represented by Hereford, Angus, Shorthorn and Charolais breeds in various proportions) with an average initial weight of 153 kg. In trial 2, treatment effects on characteristics of digestion were evaluated using six steers of similar breeding and background to those used in trial 1, with cannulas in the rumen and proximal duodenum. There were no interactions between corn processing and ionophore supplementation (P greater than .20). Average daily gain was not affected by steam-flaking as opposed to dry-rolling, however, feed intake was decreased 5.4% and feed conversion was improved 6.8% (P less than .01). Steam-flaking increased the estimated net energy value of the diet 7.7% and 8.5% for maintenance and gain, respectively (P less than .01). Steam-flaking increased the digestibility of starch 6.6% (P less than .01). Steam-flaking increased ruminal molar concentrations of propionate and decreased acetate:propionate ratio and estimated methane production (P less than .10). Both monensin-tylosin and lasalocid resulted in reduced feed intake (12.3 and 6.5%, respectively, P less than .01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Two trials were conducted to examine the influence of flake density (FD) on the feeding value of steam-flaked corn. Treatments consisted of corn that had been steam-flaked to mean densities of .42, .36 and .30 kg/liter (28, 24 and 20 lb/bu). In Trial 1, treatment effects on characteristics of digestion were evaluated using three crossbred steers with cannulas in the rumen and proximal duodenum. In Trial 2, treatment effects on feedlot performance were evaluated in a 112-d finishing trial involving 72 crossbred steers with an average initial weight of 312 kg. Flake density was directly related to flake thickness (P less than .01) and inversely related (P less than .01) to in vitro enzymatic digestibility of starch. Decreasing the FD resulted in a linear decrease (P less than .01) in ruminal pH and linear increases (P less than .05) in postruminal and total tract digestibility of starch. Postruminal digestibility of N and total tract digestibility of OM, N and energy also increased linearly (P less than .05) with decreasing FD. Flake density did not influence (P greater than .10) feedlot performance or carcass merit. There was a tendency (P greater than .10) for depressed rate and efficiency of gain for steers fed the 30 kg/liter FD corn. Improvements in digestibility and N utilization of SF corn-based diets as a result of decreasing FD from .42 to .30 kg/liter did not enhance feedlot performance. This may be due to digestive dysfunction, perhaps related to processing effects on ruminal pH.  相似文献   

6.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

7.
The value of sunflower seed (SS) in finishing diets was assessed in two feeding trials. In Exp. 1, 60 yearling steers (479 +/- 45 kg) were fed five diets (n = 12). A basal diet (DM basis) of 84.5% steam-rolled barley, 9% barley silage, and 6.5% supplement was fed as is (control), with all the silage replaced (DM basis) with rolled SS, or with grain:silage mix replaced with 9% whole SS, 14% whole SS, or 14% rolled SS. Liver, diaphragm, and brisket samples were obtained from each carcass. In Exp. 2, 120 yearling steers (354 +/- 25 kg) were fed corn- or barley-based diets containing no SS, high-linoleic acid SS, or high-oleic acid SS (a 2 x 3 factorial arrangement, n = 20). Whole SS was included at 10.8% in the corn-based and 14% in the barley-based diets (DM basis). In Exp. 1, feeding whole SS linearly increased DMI (P = 0.02), ADG (P = 0.01), and G:F (P = 0.01). Regression of ME against level of whole SS indicated that SS contained 4.4 to 5.9 Mcal ME/kg. Substituting whole for rolled SS did not significantly alter DMI, ADG, or G:F (8.55 vs. 8.30 kg/d; 1.36 vs. 1.31 kg; and 0.157 vs. 0.158, respectively). Replacing the silage with rolled SS had no effect on DMI (P = 0.91) but marginally enhanced ADG (P = 0.10) and improved G:F (P = 0.01). Dressing percent increased linearly (P = 0.08) with level of SS in the diet. Feeding SS decreased (P < 0.05) levels of 16:0 and 18:3 in both diaphragm and subcutaneous fats, and increased (P = 0.05) the prevalence of 18:1, 18:2, cis-9,trans-11-CLA and trans-10,cis-12-CLA in subcutaneous fat. In Exp. 2, barley diets supplemented with high-linoleic SS decreased DMI (P = 0.02) and ADG (P = 0.007) by steers throughout the trial, whereas no decrease was noted with corn (interaction P = 0.06 for DMI and P = 0.01 for ADG). With barley, high-linoleic SS decreased final live weight (554 vs. 592 kg; P = 0.01), carcass weight (329 vs. 346 kg; P = 0.06), and dressing percent (58.5 vs. 59.4%; P = 0.04). Steers fed high-linoleic SS plus barley had less (P < 0.05) backfat than those fed other SS diets. No adverse effects of SS on liver abscess incidence or meat quality were detected. Although they provide protein and fiber useful in formulating finishing diets for cattle, and did improve performance in Exp. 1, no benefit from substituting SS for grain and roughage was detected in Exp. 2. Because of unexplained inconsistencies between the two experiments, additional research is warranted to confirm the feeding value of SS in diets for feedlot cattle.  相似文献   

8.
Three experiments were conducted to identify factors influencing steam-flaked corn (SFC) characteristics and feeding value. In Exp. 1, corn samples (n = 108) were tempered for 2 h using 6, 10, or 14% moisture containing 0 or 0.67 mL of surfactant/L. Samples were steamed for 20 or 40 min and flaked to 360, 335, or 310 g/L. Treatments were arranged in a 3 x 2 x 2 x 3 factorial. No interactions existed in Exp. 1. Increasing tempering moisture linearly (P < 0.001) increased corn moisture after tempering, steaming, and flaking; however, SFC moisture was not increased (quadratic; P < 0.001) greatly by applying more than 10% water during tempering. The surfactant, steam time, and flake density had no effect (P = 0.16 to 0.93) on corn moisture after tempering, steaming, or flaking, but adding a surfactant during tempering decreased (P = 0.05) moisture loss after flaking. Starch availability was unaffected (P = 0.31 to 0.84) by tempering moisture concentration, tempering with a surfactant, or steam time but was increased (linear; P < 0.01) by decreasing flake density. Flake durability was increased by increasing tempering moisture (linear; P < 0.001), tempering with a surfactant (P = 0.04), increasing steam time (P < 0.001), and decreasing flake density (linear; P = 0.02). In Exp. 2, 89 heifers (initial BW = 350 kg) were fed 75% SFC-based diets for 108 d to determine the effects of SFC particle size on performance and carcass traits. Treatments were SFC that was mixed for 0 (4,667 microm) or 15 min (3,330 microm) before addition of other ingredients. Heifers fed 3,330-microm SFC tended (P = 0.13) to eat less DM, but ADG and G:F did not differ (P = 0.58 to 0.65) between treatments. Carcass traits did not differ, except that heifers fed 3,330-microm SFC had less (P = 0.008) KPH. In Exp. 3, 96 heifers (initial BW = 389 kg) were fed for 82 d diets containing 73% SFC that was either 18 or 36% moisture. Heifers fed 36% moisture SFC ate less DM (P = 0.02) and gained slower (P = 0.05) than heifers fed 18% moisture SFC, but G:F did not differ (P = 0.93) with SFC moisture. Heifers fed 36% moisture SFC were fatter at the 12th rib (P = 0.009), but all other carcass traits did not differ. Methods that increase moisture of SFC improved durability, but extreme moisture levels negatively affected cattle performance. Flake particle size did not affect cattle performance. Flake density is the major factor affecting starch availability in SFC.  相似文献   

9.
Four Holstein steers (212 kg) with cannulas in the rumen and proximal duodenum were used in a 4 x 4 Latin square experiment to study the influence of degree of ruminal biohydrogenation (BH) on the feeding value of supplemental fat. Treatments consisted of an 88% concentrate finishing diet supplemented with 1) 2% yellow grease (control); 2) 4% formaldehyde-protected fat (Rumentek), 2% yellow grease (LBH); 3) 2% Rumentek, 4% yellow grease (MBH); or 4) 6% yellow grease (HBH). Ruminal BH of HBH, MBH, and LBH diets was 74, 68, and 54%, respectively. High-fat supplementation decreased (7%, P < .05) intestinal digestibility of 18:0 but increased intestinal digestibility of 18:1 (3%, P < .10), 18:2 (14%, P < .01), and 18:3 (23%, P < .05). Increases in intestinal digestibility of 18:0 (quadratic effect, P < .05), 18:1 (linear effect, P < .01), 18:2 (linear effect, P < .01), 18:3 (linear effect, P < .05), and total fatty acids (linear effect, P < .05) were inversely related to BH. For every 1% increase in the proportion of 18:1 fat entering the small intestine, the digestibility of 18:0 increased 1%. High-fat supplementation depressed ruminal digestion of OM (11%, P < .05), NDF (16%, P < .05), starch (6%, P < .05), and feed N (12%, P < .01). Formaldehyde-protein protection of fat diminished its depressing effects on ruminal digestion of NDF (quadratic effect, P < .10) and enhanced ruminal escape of feed N (linear effect, P < .10). Postruminal digestion of OM was greater (4.6%, P < .10) for high-fat diets. High-fat diets decreased (P < .05) total tract digestion of OM (1.9%), NDF (7.4%), and starch (.5%). Postruminal and total tract digestibility of OM, NDF, N, and starch was not affected (P > .10) by BH. In a 125-d finishing trial, 100 yearling steers (362 kg) were used to evaluate treatment effects on growth performance. High-fat diets did not affect (P > .10) ADG but increased (P < .10) feed efficiency (9%, P < .10), dietary NEm (7.6%, P < .05), and dressing percentage (9%, P < .05). The magnitude of the increase in dressing percentage was inversely related (linear effect, P < .10) to BH. We conclude that decreasing ruminal BH will increase postruminal digestibility of fat, and hence the NE value of dietary fat. The synergistic effect of increasing the proportion of 18:1 on intestinal digestion of fat enables higher levels of fat supplementation. Protecting fat from BH minimizes the detrimental effects of supplemental fat on fiber digestion.  相似文献   

10.
Six crossbred steers (344 kg) with "T" cannulas in the rumen and proximal duodenum (6 cm from the pyloric sphincter) were used in a crossover experiment to evaluate the feeding value of wood sugar concentrate (WSC) in a finishing diet for feedlot steers. Composition of WSC was as follows: DM, 49.5%; ash, 19.2%; N, .1%; hydrolyzable sugars, 38.9% and lignosulfonate, 28.8%. Dietary treatments consisted of a finishing diet based on steam-flaked corn supplemented or not supplemented with 10.5% WSC (DM basis). Adding WSC to the diet increased (P less than .10) passage of OM to the small intestine. However, passage of N constituents (non-ammonia N, microbial N and feed N) was not affected (P greater than .10). Postruminal digestion of OM and N was depressed (P less than .05) 11.5% and 6.7%, respectively, with WSC supplementation. Total tract digestibilities of OM and GE were depressed (P less than .01) 4.1 and 4.2%, respectively. Adjusting for constituent passage of the basal diet, estimated digestible OM and DE values for WSC used in this trial were 42.7% and 2.02 Mcal/kg. WSC (DM basis) had 76% and 64%, respectively, of the energy value of hemicellulose extract (masonex) and cane sugar molasses. Because a high level (10% of diet DM) of WSC depressed postruminal N digestion, WSC levels of feedlot diets that are marginal in protein should not exceed 5% of diet DM.  相似文献   

11.
A feedlot growth-performance trial involving 64 yearling steers and a metabolism trial involving four steers with cannulas in the rumen, proximal duodenum, and distal ileum were conducted to evaluate the comparative feeding value of steam-flaked corn (SFC, density = .30 kg/liter) and sorghum (SFS, density = .36 kg/liter) in finishing diets supplemented with or without .75% sodium bicarbonate (BICARB). No interactions between BICARB and grain type proved to be significant. Supplemental BICARB increased ADG 5.9% (P less than .10) and DMI 4.6% (P less than .05) but did not influence (P greater than .10) the NE value of the diet. Supplemental BICARB increased ruminal pH (P less than .01) and total tract fiber digestion (P less than .05). Differences in ruminal and total tract OM, starch, and N digestion were small (P greater than .10). Replacing SFC with SFS decreased (P less than .05) ADG 6.1% and increased (P less than .01) DMI/gain 9.7%. Corresponding diet NEm and NEg were decreased (P less than .01) 7.0 and 9.3%, respectively. Ruminal digestion of OM and starch tended to be lower (11.8 and 7.2%, respectively, P less than .10) for SFS. Ruminal degradation of feed N was 31% lower (P less than .05) for the SFS diets. Total tract digestibility of OM, N, DE, and ME were 3.3, 10.8, 4.4, and 5.5% lower (P less than .05), respectively, for the SFS vs SFC diets. In conclusion, 1) SFS had 92% the NEm of SFC; 2) differences in total tract starch digestibility were small and cannot explain the higher feeding value of SFC; 3) the low ruminal degradation of sorghum N (roughly 20%) should be considered in diet formulation to avoid a deficit in ruminally available N; and 4) .75% BICARB supplementation increased DMI and ADG of cattle fed highly processed grain-based diets.  相似文献   

12.
Six crossbred steers (274 kg) with "T" cannulas in the rumen, proximal duodenum (6 cm from the pyloric sphincter) and distal ileum (20 cm from the ileal-cecal valve) were used in a crossover experiment to evaluate the feeding value of coconut alcohol bottoms-bottoms (CABB) in a finishing diet for feedlot steers. Dietary treatments consisted of a steam-rolled barley-based finishing diet supplemented with or without 6% CABB. The CABB was blended first with the steam-rolled barley portion of the diet prior to adding the other dietary ingredients. Ruminal digestion of ADF and N was not affected (P greater than .10) by CABB supplementation. Added CABB decreased total tract digestibility of OM, ADF, lipid and DE by 5.65 (P less than .01), 29.4 (P less than .05), 57.4 (P less than .01) and 5.65%, respectively. Adjusting for constituent passage of the basal diet, estimated total tract digestibility of OM, DE and lipid of the supplemental CABB was 1.1, -.23 and 16.4%, respectively. CABB essentially has no feeding value in finishing diets for cattle.  相似文献   

13.
4 heifers (268 to 400 kg live weight) were fed with four rations containing corn silage and corn flour in ratios of 82:18 (I), 65:35 (II), 45:55 (III) and 25:75 (IV). Urea was added to achieve an N balance. The rations were aimed at a daily weight gain of 700-800 g. The digestibility of the rations, their metabolizable energy, heat production and retained energy were determined. The digestibility of the organic matter was, in the sequence of I-IV = 73.2, 74.3, 75.4 and 75.8%. In the same sequence the energy intake per animal and day in MJ was = 95.9, 92.8, 91.3 and 89,7; the digestibility of the energy was 71.5, 72.2, 73.8 and 74.8%. In urine 3.1, 2.5, 2.7 and 2.9% and in methane 7.6, 7.8, 7.6 and 7.2% of the energy intake were excreted. Metabolizable energy was 60.8, 62.0, 63.5 and 64.7%, heat production 48.7, 48,7, 48.2 and 49.8% of the energy intake. 12.2, 13.2, 14.4 and 14.9% of the energy intake were retained. 51.6, 48.8, 42.4 and 40.1% of the retained energy was protein energy. The energetic feed value of both ration components has been calculated and stated according to various mathematical methods.  相似文献   

14.
A feeding trial evaluated the hypothesis that wet corn gluten feed would improve growth performance of cattle fed steam-flaked corn-based finishing diets and supply required degradable intake protein (DIP). The trial used 360 steer calves (initial BW = 288 +/- 11 kg) housed in 36 pens for 166 d in an incomplete 4 x 3 factorial arrangement of treatments. Pens of steers were assigned to treatments according to a completely randomized design (four replicates per treatment combination). Treatments were wet corn gluten feed (0, 20, 30, or 40% of dietary DM) and CP (13.0, 13.7, or 14.4% of dietary DM) via supplemental urea as DIP. The 0% wet corn gluten feed treatment included only the 13.7% CP diet, and the 40% wet corn gluten feed treatment included only the 13.7 and 14.4% CP diets. Final dietary DIP concentration was 9.0% for 0% wet corn gluten feed; 8.7, 9.5, and 10.2% for 20% wet corn gluten feed; 9.0, 9.7, and 10.3% DIP for 30% wet corn gluten feed; and 10.0 and 10.6% for 40% wet corn gluten feed. Hot carcass weight, ADG, DMI, and G:F responded quadratically (P < or = 0.05) to wet corn gluten feed. The 20, 30, and 40% wet corn gluten feed treatments increased ADG by 7, 6, and 3% and increased DMI by 4, 5, and 5%, respectively, relative to the 0% wet corn gluten feed treatment. Feed efficiency was 102, 101, and 98% of the 0% wet corn gluten feed treatment for 20, 30, and 40% wet corn gluten feed, respectively. Hot carcass weight, ADG, and G:F increased linearly (P < or = 0.05) in response to increased DIP. Nonlinear analysis for DIP over the combined 20 and 30% wet corn gluten feed treatments indicated a DIP requirement of 9.6% of DM for ADG and 9.2% of DM for G:F, corresponding to 14.6 and 14.3% CP for 20% wet corn gluten feed and 14.8 and 14.5% CP for 30% wet corn gluten feed, respectively. Fat thickness, marbling, LM area, and USDA yield grade were not affected (P = 0.12 to 0.99) by wet corn gluten feed or CP. These results show that the inclusion rate of wet corn gluten feed for maximizing ADG and G:F in steam-flaked corn-based finishing diets is approximately 20% of DM. The DIP requirement determined in this trial averaged 9.4% of DM.  相似文献   

15.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   

16.
Two finishing experiments were conducted to determine the effects of concentration (Exp. 1) and composition of wet corn gluten feed (Exp. 2) in steam-flaked corn-based diets on feedlot steer performance. In Exp. 1, 192 English x Continental crossbred steer calves (299 +/- 0.6 kg) were used in a completely randomized design with six dietary treatments (four pens per treatment). Treatments were six concentrations of wet corn gluten feed (Sweet Bran, Cargill Inc., Blair, NE; 0, 10, 20, 25, 30, and 35%) replacing steam-flaked corn (DM basis). All diets contained 10% corn silage, 5% supplement, and 3.5% tallow (DM basis). Gain efficiency and ADG were similar (P > 0.25) among treatments. Dry matter intake was lower (P < 0.10) with 0% wet corn gluten feed than with concentrations of 20, 25, and 35% WCGF. Dry matter intake did not differ among treatments containing wet corn gluten feed. In Exp. 2, 160 English x Continental crossbred steer calves (315 +/- 0.6 kg) were used in a completely randomized design with five dietary treatments (four pens/treatment). Treatments were assigned based on four ratios of steep to corn bran/germ meal mix in wet corn gluten feed plus a negative control (CON). Wet corn gluten feed was fed at 25% of the dietary DM and was made by mixing steep and corn bran/germ meal into the diet. The four concentrations of steep in wet corn gluten feed that comprised the ratios were 37.5, 41.7, 45.8, and 50% (DM basis), with the remaining proportion being the bran/germ meal mix. Bran/germ meal mix was comprised of 60% dry corn bran, 24% germ meal, and 16% fine-cracked corn (DM basis). All diets contained 10% corn silage, 5% supplement, and 3.5% tallow (DM basis). Daily gain did not differ (P = 0.18) among treatments. Gain efficiency did not differ between CON and 50% steep; however, G:F was decreased (P < 0.05) for concentrations of 37.5, 41.7, and 45.8% steep compared with CON. A linear improvement (P < 0.05) was observed for G:F as concentration of steep increased as a proportion of wet corn gluten feed. These data suggest that wet corn gluten feed can be used at concentrations up to 35% of the dietary DM without adversely affecting performance, and that steep has more energy than bran/germ meal in steam-flaked corn-based diets.  相似文献   

17.
Hindgut is a major colonization site for Escherichia coli O157 in cattle. In this study, diets were formulated to effect changes in hindgut fermentation to test our hypothesis that changes in the hindgut ecosystem could have an impact on fecal shedding of E. coli O157. Feedlot heifers (n = 347) were prescreened for the prevalence of E. coli O157 by fecal and rectoanal mucosal swab cultures. A subset of 40 heifers identified as being positive for fecal shedding of E. coli O157 was selected, housed in individual pens, and randomly allocated to 4 dietary treatments. Treatments were arranged as a 2 x 2 factorial, with factor 1 consisting of grain type (sorghum or wheat) and factor 2 being method of grain processing (steam-flaking or dry-rolling). Four transition diets, each fed for 4 d, were used to adapt the animals to final diets that contained 93% concentrate and 7% roughage. The grain fraction consisted of dry-rolled sorghum, steam-flaked sorghum, a mixture of dry-rolled wheat and steam-flaked corn, or a mixture of steam-flaked wheat and steam-flaked corn. Wheat diets contained 52% wheat and 31% steam-flaked corn (DM basis). Fecal and rectoanal mucosal swab samples were obtained 3 times a week to isolate (enrichment, immunomagenetic separation, and plating on selective medium) and identify (sorbitol negative, indole production, and agglutination test) E. coli O157. The data were analyzed as repeated measures of binomial response (positive or negative) on each sampling day. Method of processing (dry-rolled vs. steam-flaked), sampling day, and the grain type x day interaction were significant (P < 0.05), but not the method of processing x grain type interaction. The average prevalence of E. coli O157 from d 9 was greater (P < 0.001) in cattle fed steam-flaked grains (65%) compared with those fed dry-rolled grains (30%). Average prevalence in cattle fed sorghum (51%) or wheat (43%) were similar (P > 0.10) on most sampling days. Results from this study indicate that feeding dry-rolled grains compared with steam-flaked grains reduced fecal shedding of E. coli O157. Possibly, dry-rolling allowed more substrate to reach the hindgut where it was fermented, thus making the hindgut inhospitable to the survival of E. coli O157. Dietary intervention to influence hindgut fermentation offers a simple and practical mitigation strategy to reduce the prevalence of E. coli O157 in feedlot cattle.  相似文献   

18.
Performance and digestibility experiments were conducted to determine the influence of moisture and flake density (FD) on the feeding value of steam-flaked corn (SFC). Dietary treatments consisted of finishing diets that contained 78% (DM basis) SFC that was tempered using 0, 6, or 12% moisture and processed to either 360 (SF28) or 310 (SF24) g/L. A 3 x 2 factorial arrangement of treatments was used. In Exp. 1, 78 steers were individually fed the respective treatments for 106 d. Moisture added during tempering tended (linear; P < 0.10) to increase starch availability but linearly decreased (P < 0.01) particle size. Decreasing flake density increased (P < 0.001) starch availability and also decreased (P < 0.001) particle size. Starch availability (P < 0.001), moisture (P < 0.001), and particle size (P = 0.05) were all greater for SFC that was collected the day of processing compared with SFC that had been processed the previous day. Steers fed diets containing SF24 consumed less DM as the moisture level increased, whereas steers fed diets containing SF28 had increased DMI as moisture level increased (moisture x FD interaction; P < 0.01). Nonetheless, ADG, G:F, and most carcass characteristics did not differ among treatments. In Exp. 2, 6 multicannulated Jersey steers were used in a 6 x 6 Latin square using the same treatments as in Exp. 1. Increasing moisture intake linearly decreased (P < 0.05) starch intakes. Organic matter and N intakes followed similar trends but were not different. Decreasing FD tended to increase (P < 0.10) microbial N flow to the duodenum and increased microbial efficiency (P < 0.05). Ruminal starch digestibility was 90.5%, and total tract starch digestibility was 99.5% without adding moisture or processing beyond SF28. Moisture additions to corn before steam flaking resulted in few differences in performance or digestibility, despite increases in starch availability that occurred as moisture increased. Processing corn more extensively than SF28 may be unnecessary and cost-prohibitive.  相似文献   

19.
Holstein steers (n = 96; 375 kg) were used in a 144-d growth-performance trial to evaluate influence of level (42, 28.5, and 15%) of FFA content on feeding value of yellow grease. Two sources of yellow grease were compared: conventional yellow grease (CYG), containing 15% FFA, and griddle grease (GG), containing 42% FFA. Dietary treatments consisted of an 88% concentrate finishing diet supplemented with either 1) 0% fat, 2) 5% GG, 3) 2.5% GG and 2.5% CYG, or 4) 5% CYG. Fat supplementation increased ADG (11%; P<.05), feed efficiency (9%; P<.05), diet NE (6.4%; P<.05), carcass weight (4%; P<.10), dressing percentage (1%; P<.10), and kidney, pelvic, and heart fat (20%, P<.05). Increasing the FFA in supplemental fat increased (linear effect, P<.10) DM intake, ADG, and feed efficiency and decreased (linear effect, P<.10) retail yield. These improvements in performance were primarily due to increased DM intake. The NEm and NEg values of supplemental fats were not affected by FFA content, averaging 4.98 and 3.85 Mcal/kg, respectively. Treatment effects on characteristics of ruminal and total tract digestion were evaluated using four Holstein steers (180 kg) with cannulas in the rumen and proximal duodenum. Supplemental fat did not influence (P>.10) ruminal or total tract digestion of OM, ADF, starch or N. Postruminal fatty acid digestion was less (P<.10) for fat-supplemented diets than for unsupplemented diets (73.0 vs. 78.6%). The decrease in postruminal fatty acid digestibility with fat supplementation was mainly due to a decreased (16.7%; P<.05) digestibility of C18:0. Postruminal digestibility of the supplemental fat was 68%. There were no treatment effects (P>.10) on ruminal pH. Ruminal biohydrogenation of fatty acids was directly proportional to estimates of methane production. We conclude that the feeding value of conventional yellow grease and griddle grease is similar and that differences in the FFA content of yellow grease will not negatively affect diet acceptability and growth performance of feedlot cattle.  相似文献   

20.
In three experiments consisting of three finishing trials each, five corn storage and(or) feeding treatments were evaluated: 1) dry whole (DWC); 2) whole high-moisture (WHMC); 3) mixture (MHMC) of ground (GHMC) or rolled (RHMC) high-moisture corn with WHMC; 4) GHMC stored in a bunker silo; and 5) RHMC, corn stored whole but fed in rolled form. In Exp. 1, gains and feed intakes of steers fed whole corn (DWC vs WHMC) were similar. Steers fed GHMC and RHMC had lower (P less than .05) gains and intakes than steers fed whole corn. However, feed to gain ratios were 9% better (P less than .10) for steers fed RHMC than for steers fed GHMC. In Exp. 1 and 2, gains of steers fed MHMC were intermediate to gains of steers fed whole (DWC and WHMC) or processed corn (GHMC and RHMC). Feed to gain ratios of steers fed whole or processed corn were similar to feed to gain ratios of steers fed MHMC. In Exp. 3, steers fed 28.6% moisture GHMC had lower (P less than .05) intakes and feed to gain ratios than steers fed 22.5% moisture GHMC. Intakes and feed to gain ratios decreased 1.2 and 1.4%, respectively, for each 1% increase in corn moisture. Data are interpreted to mean that the relative effect of corn moisture content on cattle performance depends on form of corn fed; positive associative effects of MHMC are negligible, but RHMC has a greater feed value than GHMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号