首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
帅义  帅健  狄彦 《油气储运》2017,(1):44-48
为了准确评定凹陷管道的承压能力,开展了含凹陷管道全尺寸爆破试验。试验得出凹陷管道的变形、凹陷区域应变及裂口特征等信息,从而分析凹陷管道失效行为与机理。结果表明:管道存在的凹陷,在提压后凹陷区域相比远场发生了较大应变,加剧了凹陷周围的应力集中。通过全尺寸爆破试验,确定了管道的屈服压力为10.1 MPa,爆破压力为10.5 MPa,结合相关标准与设计规范,确定试验用管段的许可承载压力为3.88 MPa,为保障管道的安全运行与工程决策提供了技术参考。  相似文献   

2.
滑坡多发区管道应变监测应变计安装方法   总被引:1,自引:1,他引:0  
对滑坡地质灾害多发区埋地管道进行应力应变监测,是确保管道安全运行的有效手段。应变计可用于管道应力应变监测,主要包括电阻式应变片、振弦式应变计和光栅光纤式应变计,它们各自拥有不同的特点和适用条件。根据监测目的和要求,基于应用力学理论,分析管道的测点布置以及应变计在每个测点的安装位置和方向:对于只需要确定滑坡对管道是否存在影响的情况,可以在测点安装1支应变计;若只考虑管道弯曲变形,可以在90°夹角方向安装2支应变计;为了完整说明沿管道横截面的纵向应变,至少需要安装3支应变计;安装4支应变计可以得到4个独立的应变数据,从而更精确地了解管道的应变和变形情况。以国内某输气管道为例,基于其结构构造、工作条件、受力方式及现场工况,结合ANSYS有限元分析,确定了适用应变计的监测方案,并给出了监测结果。  相似文献   

3.
兰成渝输油管道东峪沟沉管治理工程中采用了应力应变监测技术.以沉管区管道的应变监测作为基本出发点,分析了边界点、弯管区、过渡段、最大挠度区管道单元的轴向、环向、45°方向应力及最大主应力变化趋势,并结合弹性破坏理论,对沉管区管道安全状况做出了评价,提出了基于应变测试技术的管道沉降过程力学监测理论.  相似文献   

4.
为了确保埋地输油管道在爆破施工过程中的安全,结合邻近埋地输油管道的烟台港西港区疏港大道土石方爆破工程,利用ANSYS/LS-DYNA流固耦合方法模拟爆破振动对管道的影响。基于数值模拟,分别统计管道不同断面、断面正上方地表的最大振动速度,通过最小二乘法对所得数据进行分析研究。结果表明:基于流固耦合方法模拟得到的振速与现场实测结果基本一致,利用该模拟方法研究爆破振动对埋地输油管道的影响是可行的;在爆破振动情况下,管道周围细沙对管道具有保护作用,在模拟研究中考虑细沙是必要的;确定了管道断面最大振动速度与断面正上方地表最大振速的函数关系式,并由此得到现场监测时管道正上方地表安全允许的最大振速为1.982 cm/s。研究结果可为邻近埋地输油管道的土石方爆破工程地表安全允许振动速度的确定提供参考。  相似文献   

5.
谢萍  杨明  尚臣  杨坤  陈宏远  李鹤 《油气储运》2019,(2):179-184
为了分析天然气管道爆破对同沟敷设管道性能的影响,利用管道断裂控制试验场开展了X90全尺寸气体爆破试验,分析管道爆破对同沟敷设管道变形行为、管材性能的影响。研究表明:天然气管道爆破会引起同沟敷设管道发生明显的弯曲、压扁变形,且变形管段中间部位的椭圆度较大;在热辐射作用下,钢管的性能发生了明显变化,裂纹的扩展抗力降低,且随着壁厚增大,显微硬度呈先升高再降低的趋势,受热层厚度约为700μm;热辐射能显著影响钢管的微观组织,受热部位表面组织晶粒发生一定的粗化,失去了原有生长取向,而深层组织的变化较小。  相似文献   

6.
长输油气管道在一般地段埋地敷设,当经过季节性斜坡冻土区时,由于冻融引起的坡体蠕滑作用导致管道产生附加应力。通过安装管道轴向应变传感器可监测坡体蠕滑作用导致的管道轴向应力变化,但开展管道强度评价时,需要明确管道应变监测初始应力,由于应力检测技术多在实验室环境下使用,工程上并不成熟,目前行业内一般通过有限元建模计算方法获取管道应变监测初始应力。以涩宁兰一线某穿越斜坡季节性冻土地貌埋地管道为例,介绍了位于季节性冻土区的管道当前面临的主要风险、土体位移分布形式与位移的确定,以及季节性冻土区斜坡体位移作用下管道的受力和变形情况。采用向量式有限元方法,利用空间梁单元和非线性土弹簧模型对灾害点管道进行了数值模拟,并得到管道现状应力分布,为确定管道本体应变监测截面位置、估计管道现状应力分布及管道安全评价提供依据。  相似文献   

7.
为了准确评定凹陷管道的承压能力,开展了含凹陷管道全尺寸爆破试验。试验得出凹陷管道的变形、凹陷区域应变及裂口特征等信息,从而分析凹陷管道失效行为与机理。结果表明:管道存在的凹陷,在提压后凹陷区域相比远场发生了较大应变,加剧了凹陷周围的应力集中。通过全尺寸爆破试验,确定了管道的屈服压力为10.1 MPa,爆破压力为10.5 MPa,结合相关标准与设计规范,确定试验用管段的许可承载压力为3.88 MPa,为保障管道的安全运行与工程决策提供了技术参考。  相似文献   

8.
振弦式应变传感器已广泛应用于油气管道本体应力应变监测领域,但受管道运行工况、安装工艺等的影响,不同类型振弦式传感器的使用性能存在明显差异。为掌握该类传感器在油气管道应变监测中的实际使用寿命,对比监测数据误差,以点焊型和弧焊型振弦式应变传感器为研究对象,对穿越曲阜煤矿采空区的天然气管道应力状态进行连续监测,通过12年监测数据的对比分析表明:弧焊型传感器的存活率随时间线性下降,而监测数据误差呈线性增长趋势,传感器累计测量误差较大,这是由于弧焊型传感器采用防腐层安装,不能直接获取管道真实应力,且易受外界因素影响脱落所致。与弧焊型传感器相比,点焊型传感器测量数据能够真实反映管道应力应变状态,且使用寿命更长,满足持续监测对传感器最低存活率的要求。(图6,表3,参23)  相似文献   

9.
冻胀融沉引起的土壤位移会对埋地管道的结构安全造成重大威胁。基于非线性有限元程序ABAQUS,采用INP编程语言建立融沉位移作用下管道应力应变响应的参数化数值求解模型,并试验验证了模型的准确性。通过影响因素分析,探究了管道的应变分布特性。结果表明:对于穿越多冰冻土区的X65管道,在融沉区宽度较小的情况下,管道内最大轴向应变位于融沉区中心,管道拉应变大于压应变,整体受拉;当融沉宽度大于60 m时,管道随地表一同融沉,管道最大应变体现为弯曲应变,最大应变位于融沉区边缘,融沉区宽度增加不会对管道应变产生明显影响。因此,在冻土融沉区地灾监测中应重点识别融沉区范围,对于小范围融沉,需要对融沉区中心和边缘应变状态加以监控;对于60 m以上融沉区,则需要对融沉区边缘加以监控。(图9,参23)  相似文献   

10.
系统地阐述了在役管道的安全评定方法。根据管道不同形式的腐蚀缺陷,提出了爆破失效模拟的非线性有限元方法,建立了能反映缺陷深度、内压、缺陷处最大应力、管材性能参数等四者关系的管道安全评定线图。考虑到影响管道安全诸多因素的复杂性和不确定性,提出了基于可靠性的评定理论与方法,即依据管道的腐蚀检测数据计算每千米管道的失效概率,可以全面反映管道沿线的安全状况,提出的腐蚀管道安全评定方法可大力提升管道安全运营管理的水平。  相似文献   

11.
桁架作为油气管道跨越某些障碍物时的支撑体之一,若发生破坏会威胁油气管道的安全运行,对已发生破坏的桁架设施进行安全评价十分必要。普光气田P201~P301桩某冲沟跨越因实际施工时变更设计方案、场地沉降的原因,桁架西端工字梁腹杆发生变形、管箍发生损坏。以该跨越桁架为研究对象,建立跨越结构在沉降状态下的有限元模型,运用AUTOPIPE软件对桁架变形与受力情况进行分析。结果表明:桁架的3根长弦杆是安全的;最西端横梁的轴向内力、垂直方向剪力、水平方向弯矩均远远大于东端横梁的受力与弯矩,其所受的最大相当应力超过许用应力,处于不安全状态;除最西端横梁外其他横梁均是安全的。针对西侧横梁的不安全性,建议去除桁架西侧盖梁顶与工字钢中间的支撑构件,以减少受力,并需定期对该桁架设施进行检测。  相似文献   

12.
采用爆破技术实行管沟开挖,是长输油气管道通过石方段施工的主要方法之一,爆破对周边环境的影响主要源于爆炸产生的振动波和声波。因此,爆破施工前对爆破点周围环境因素进行识别和评价,结合岩性分布合理选择爆破方法,对影响爆破振动和声波的安全距离、炸药量以及药孔深度、间距、排距等参数进行科学分析,运用萨道夫斯基经验公式,结合实际情况,计算爆破振动速度、声波分贝、声压级等,有助于预防和减少爆破振动波和声波对周围建(构)筑物及环境的影响。同时,掌握距爆破点50m范围内建(构)筑物及环境情况,采取有效的安全保护措施,对实施安全爆破和减少环境影响十分重要。(图1,表3,参6)  相似文献   

13.
大落差地区的天然气管道清管时,受地形起伏和管道积液量的影响,清管器的运行速度容易发生剧烈波动;清管器与管道在弯头处碰撞,形成冲击载荷,威胁管道运行安全。以中缅天然气管道龙陵输气站至保山输气站大落差管段为例,基于管道仿真技术,分析清管器最大运行速度与管道压力、输量、积液量之间的关系,指出积液量是影响清管器最大运行速度的主导因素;确定管道应力不超过管材许用应力条件下的清管器最大允许运行速度,以及与之相对应的最大允许积液量;将积液量与管道输量、两端压差关联,提出由管道输量和压差所表征的管道安全清管工艺条件,为判断大落差天然气管道安全清管条件提供了可靠、实用的方法。  相似文献   

14.
沧临管道泄漏实时监测定位系统综合吸收了多种先进的检测技术和信号处理方法,采用检测泄漏点瞬态负压波的方式实现管道的泄漏检测和定位.通过介绍沧临管道泄漏实时监测系统的工作原理、系统组成、软件设计和应用实例,表明该系统对各监测数据的实时采集、传输和处理的速度较快,具有较强的数据网络监控功能和较高的管道泄漏检测灵敏度和定位精度,可以有效地保障输油管道的安全运行.  相似文献   

15.
席莎文宝萍 《油气储运》2019,(12):1350-1358
中卫—贵阳联络线K1224斜坡上的输气管道为典型的横向折线形埋地管道,受坡脚公路开挖和降雨影响,该段斜坡滑动导致管道变形。基于数值模拟和现场监测,通过管土分离的非完全耦合途径分析了不同工况下滑坡变形破坏特征和由此导致的管道力学响应。结果发现:坡脚公路开挖叠加降雨后滑坡活动加剧,管道沿坡体滑动方向水平位移尤其明显,在转折端附近出现位移突增现象;管道转折端附近应力明显大于直管段,受微地形控制的不均匀滑坡位移及其力矩作用造成管道南侧转折端附近应力集中程度最大;管道南侧转折端附近应力已接近管道材料极限应力,是该段管道最危险的部位。  相似文献   

16.
为了研究隧道穿越区长输管道发生位移变形时的安全状态,对山东某输气管道隧道穿越区进行了安全监测。介绍了管体穿越隧道时产生位移形变的可能原因和判断方法,隧道自动监测系统的构成和原理,监测系统安装的推荐最优化布置方案,以及数据分析的方法和经验。总结了隧道内管体监测系统选用及安装的一些经验。研究表明:隧道内穿越管道初始投入使用时将产生较大的自适应变形,曲率较大处应尽量避免集中约束。管道产生较大位移及形变时,可采用该监测方法进行安全分析,最终得到穿越区管体的安全状态。  相似文献   

17.
戴联双  张海珊  孟国忠  张丽丽  崔莹莹  李敬 《油气储运》2012,31(11):801-803,887
为了实现在役油气管道周边爆破作业风险的定量计算,需通过对在役油气管道周边存在的爆破作业活动产生的振动、冲击波,以及其他可能给管道和运营人员带来危害的风险进行分析。应用爆破振动和冲击波超压计算,结合相关标准要求,确定爆破振动和冲击波超压的安全允许距离。同时,在确定爆破振动安全合理判据时,应注意管道承受的来自爆破振动力的大小和状态除受爆破条件影响外,还受地质条件、管材特性、管道敷设方式以及振动传播路径等因素的影响。基于这些综合因素,提出相应的控制措施,为管道运营企业决策如何应对管道周边爆破作业活动时提供依据。  相似文献   

18.
管道应力应变监测试验规程研究   总被引:1,自引:1,他引:0  
管道埋设在土体中或每隔一段间距支承在支座上,且充满或部分充满液体时,应力分析因边界条件的不确定而使结果不可靠。以管道单元的状态特性(几何性质、材料性质、载荷属性、应力分析属性等)作为基本出发点,分析了危险区管道单元的轴向、环向及45°方向应力分布状况及最大主应力,并结合弹性破坏理论,对试验区管道安全状况进行了有效的评价,给出了作为试验依据和参考的基于应变测试技术的管道力学监测试验理论。  相似文献   

19.
采空区有可能造成地表沉降变形、碎裂甚至塌陷等次生地质灾害,易造成埋地管道的大范围变形甚至悬空。基于理想弹塑性模型,以某X70管道为例,考虑管道与土体的非线性、管道的几何非线性、土壤的物理非线性等因素,利用有限元软件ABAQUS建立采空区悬空天然气管道的有限元仿真计算模型。在内压、轴向力、外部载荷等共同作用下,分析X70悬空管道在不同悬空长度、不同内压、不同埋深条件下的应力应变变化,并采用双失效判别准则对其进行安全评估。结果表明:在充分考虑应力应变的变化趋势和变化速率基础上,通过双失效判据确定不同悬空长度管道所处的风险等级,可为采空区管道的完整性管理提供依据;内压对管道失效影响较大,当存在采空区塌陷时,需要临时降低管道内压以提高管道安全性能。  相似文献   

20.
针对含腐蚀缺陷管道因地面占压带来的安全问题,基于ABAQUS软件建立了地基-管道-堆载三维有限元模型,探讨了含腐蚀缺陷占压管道的应力和变形情况,研究了管道埋深、管道内压、堆载荷载以及腐蚀缺陷位置对埋地管道力学性能的影响。结果表明:增加管道埋深可以有效缓解管道应力分布,但同时会增大开挖工程量;当管道内压达到一定程度时,腐蚀缺陷作用下管道最大应力主要由管道内压控制,地面堆载荷载对其影响不大;管土切向摩擦因数对埋地管道力学性能影响较为显著,管道应力随着管土切向摩擦因数增加而近似线性增大;当腐蚀缺陷相对于管道截面的角度位置为5:15方向时,含腐蚀缺陷占压管道的应力最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号