首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Twenty-four British Friesian cows were allocated between six grazing treatments (two levels of herbage mass x three levels of daily herbage allowance) in a balanced change-over design with four periods of 12 d each at monthly intervals. Herbage OM mass ranged from 3790 to 5770 kg ha-1 measured to ground level and daily herbage DM allowances were 30, 60 and 90 g per kg animal live weight. Herbage OM intake was lower at high than at low herbage mass (24·6 vs 26·3 g per kg LW), and was 26·9, 26·6 and 22·9 g per kg LW respectively at daily herbage DM allowances of 90, 60 and 30 g per kg LW. Milk yield was not affected by herbage mass but was depressed at the low herbage allowance.  相似文献   

2.
The effects of severity of grazing on the herbage intake and milk production of continuously stocked British Friesian cows calving in February–March were examined in three experiments conducted in the years 1976–78 (experiments 1–3 respectively) using a put-and-take technique. In experiment 1 four grazing severities were imposed by maintaining swards with different herbage masses (2500, 3000, 3500, 4000 kg OM ha-1); in experiments 2 and 3 there were two severities of grazing maintained by keeping swards canopies at constant heights of 5 and 7 cm (experiment 2) and 5 and 7·2 cm (experiment 3). Cows were reallocated to treatment every 8 weeks in experiments 1 and 2 and there were three periods, whereas they all grazed throughout a 23-week period on the same treatment in the final trial.
A decrease in the quantity of herbage on offer or in sward height reduced herbage intake and milk production in all experiments. Mean daily herbage OM intakes were 11·2, 12·2, 12·2 and 12·2 kg respectively in experiment 1, 12·2 and 13·2 kg respectively in experiment 2 and 12·2 and 152 kg respectively in experiment 3. Mean daily solids–corrected milk yields were 14·2, 15·2, 15·2 and 16·2 kg respectively in experiment 1, 14·2 and 16·2 kg respectively in experiment 2 and 12·2 and 17·2 kg respectively in experiment 3. It was apparent from the data obtained in the first two trials that grazing at a sward canopy height of 7 rather than 9 cm had little effect, but that at 5 cm there were significant depressions in both herbage intake and milk production. Milk yield was depressed to a greater extent when cows were kept on the same treatment for the whole season.  相似文献   

3.
The effect of feeding either traditional concentrates containing starch or high quality fibrous concentrates on the performance of grazing dairy cows was examined in a trial in which cows were given concentrates with either 350 g starch and sugars (kg dry matter (DM))-1 (high-starch) or 100 g starch and sugars (kg DM)-1 (high-fibre). The swards used consisted predominantly of perennial ryegrass and were usually aftermaths following cutting. Each area was grazed for 3 or 4 d at each grazing and a two-machine sward-cutting technique was used for estimating herbage intake.
The effect of concentrate composition on the herbage intake of grazing cows at a high daily herbage allowance of 28 kg OM above 4 cm cutting height was investigated in 1983 and 1984. With 54 kg OM d-1 of high-starch concentrates the mean herbage intake was 11·5 kg OM d-1 per cow while cows fed 5.3 kg d-1 of high-fibre concentrates consumed on average 12–6 kg OM d-1. The mean substitution rate of herbage by concentrates was reduced from 0·45 kg herbage OM (kg concentrate OM)-1 with the high-starch concentrate to 0·21 with the high-fibre concentrates.
The effect of the treatments on milk production was studied in 1984. The cows consumed 5·5 kg OM d-1 as concentrates and grazed at a lower herbage allowance of 19 kg OM above 4 cm cutting height. With high-fibre concentrates milk production and 4% fat-corrected milk production were 13 and 1·8 kg d-1, respectively, higher than with the high-starch treatment. The daily live weight gain with the high-starch concentrates was 0·17 kg per cow more than with the high-fibre concentrates.  相似文献   

4.
Decision support tools to help dairy farmers gain confidence in grazing management need to be able to predict performance of grazing animals with easy‐to‐obtain variables on farm. This paper, the second of a series of three, describes the GrazeIn model predicting herbage intake for grazing dairy cows. The model of voluntary intake described in the first paper is adapted to grazing situations taking account of sward characteristics and grazing management, which can potentially affect intake compared to indoor feeding. Rotational and continuously stocked grazing systems are considered separately. Specific effects of grazing management on intake were quantified from an extensive literature review, including the effect of daily herbage allowance and pre‐grazing herbage mass in rotational grazing systems, sward surface height in continuously stocked grazing systems, and daily time at pasture in both grazing systems. The model, based on iterative procedures, estimates many interactions between cows, supplements, sward characteristics and grazing management. The sensitivity of the prediction of herbage intake to sward and management characteristics, as well as the robustness of the simulations and an external validation of the GrazeIn model with an independent data set, is presented in a third paper.  相似文献   

5.
The prediction of both food intake and milk production constitutes a major issue in ruminants. This article presents a model predicting voluntary dry matter intake and milk production by lactating cows fed indoors. This model, with an extension to predict herbage intake at grazing presented in a second article, is used in the Grazemore decision support system. The model is largely based on the INRA fill unit system, consisting of predicting separately the intake capacity of the cows and the fill value (ingestibility) of each feed. The intake capacity model considers potential milk production as a key component of voluntary feed intake. This potential milk production represents the energy requirement of the mammary gland, adjusted by protein supply when the protein availability is limiting. Actual milk production is predicted from the potential milk production and from the nutritional status of the cow. The law of response of milk production is a function of the difference between energy demand and actual energy intake, modulated by protein intake level. The simulation of experimental data from different feeding trials illustrates the performance of the model. This new model enables dynamic simulations of intake and milk production sensitive to feeding management during the whole lactation period.  相似文献   

6.
Models to predict herbage intake were constructed using 168 dairy cow records from three grazing experiments. Variables included fell into three categories: animal state, sward state and animal behaviour. Linear regression models of varying complexity were obtained by removing variables from the best fitting model to reflect progressive lack of information availability on farms. Thus, behavioural variables were removed first, followed by sward surface height and milk fat concentration. Models were subject to outlier analysis and collinearity tests. Equivalent models were constructed using ridge regression to minimize collinearity problems. They were tested using 20 Holstein–Friesian dairy cows continuously stocked on a perennial ryegrass sward. A `best practice' treatment [7 cm sward surface height (SSH), 6 kg day−1 concentrate (C)] was used together with treatments of SSH5/C6, SSH7/C8, SSH7/C0 and SSH9/C6. The best model accounted for 0.37 of the variance in the estimation data and contained the following variables: concentrate intake, milk yield, milk fat concentration, days in milk, sward surface height and chewing rate while ruminating. Model performance against test data was generally poor. This was mainly because of consistent underprediction of herbage intake, caused in part by the higher average herbage intakes in the test data compared with the estimation data.  相似文献   

7.
GrazeIn is a model for predicting herbage intake and milk production of grazing dairy cows. The objectives of this paper are to test its robustness according to a planned arrangement of grazing and feeding scenarios using a simulation procedure, and to investigate the precision of the predictions from an external validation procedure with independent data. Simulations show that the predicted effects of herbage allowance, herbage mass, herbage digestibility, concentrate supplementation, forage supplementation and daily time at pasture are consistent with current knowledge. The external validation of GrazeIn is investigated from a large dataset of twenty experiments representing 206 grazing herds, from five research centres within Western Europe. On average, mean actual and predicted values are 14·4 and 14·2 kg DM d?1 for herbage intake and 22·7 and 24·7 kg d?1 for milk production, respectively. The overall precision of the predictions, estimated by the mean prediction error, are 16% (i.e. 2·3 kg DM d?1) and 14% (i.e. 3·1 kg d?1) for herbage intake and milk production, respectively. It is concluded that the GrazeIn model is able to predict variations in herbage intake and milk production of grazing dairy cows in a realistic manner over a wide range of grazing management practices, rendering it suitable as a basis for decision support systems.  相似文献   

8.
Three contrasting defoliation regimes for dairy cows—four cuts annually, severe rotational grazing and lax rotational grazing integrated with cutting—were compared in terms of herbage production, selection and intake per cow. Lax and severe grazing were compared simultaneously and grazing intensity was characterized by means of changes in herbage mass and sward height during grazing.
Herbage growth and yield were similar under cutting, severe grazing and lax grazing/cutting (120 t organic matter (OM) ha−1). Herbage quality and leaf production were highest with severe grazing, which also had a less marked seasonal pattern of growth. The herbage intake per cow was 111 kg OM d−1 with severe grazing and proportionately (0-20) higher at lax grazing/ cutting. 050 of the herbage yield was harvested by cutting at lax grazing/cutting. Selectivity was described with high certainly by the nutrient content prior to defoliation and by the degree of defoliation. Models to quantify this are presented.
Grazing intensity could be described by the size and degree of utilization of the fouled area, and herbage intake was quantified by means of herbage height before and after grazing. Within the range of 80-240 mm sward height prior to grazing, height measurements led to realistic and more accurate estimates than those obtained by measuring organic matter disappearance.
Herbage utilization was depressed significantly by increasing maturity of herbage due to lower nutritive value, but in particular due to reduced green leaf content and increased reproductive development. If sward height did not exceed 250 mm at any time, good utilization by grazing could be obtained.  相似文献   

9.
Milk fatty acids (FA) were compared in mid‐lactation dairy cows in four feeding systems combining grazing management and supplementation. The four treatments were factorial combinations of compressed herbage grazed to 3·7 or 4·6 cm post‐grazing height, with or without concentrate feeding (3·6 kg cow?1 d?1). Milk yield and composition were measured for four groups of eight Friesian × Jersey dairy cows over 3 weeks in mid‐lactation for cows that had grazed treatments for 64 d from early spring. Milk yield was higher in cows fed concentrate plus herbage (23·9 kg d?1 cow?1) than cows fed herbage only (20·3 kg d?1 cow?1). Milk fat percentage was higher in cows fed herbage only (5·5%) than that fed herbage plus concentrate (5·1%). Milk protein percentage was higher in cows fed herbage plus concentrate (4·0%) than that fed herbage only (3·7%). The concentrations of conjugated linoleic acids c9, t11, C18:0, C18:1 t11 and C18:2 t9, c12 FA were lower where concentrate was fed. The concentrations of C18:1 t10, C18:1 t5, t8 and C18:2 c9, c12 FA were higher where concentrate was fed. The concentrations of C18:1 c6, C18:1 c9, C18:1 t9 and C18:3 c6,9,15 were unaffected by concentrate feeding. Post‐grazing herbage height had no significant effect on milk yield or concentration of milk FA. Provided dairy cows are harvesting leafy material of similar nutrient and FA concentration, post‐grazing herbage height does not appear to alter milk FA and the supply of high energy concentrates is more influential on milk FA profiles.  相似文献   

10.
Four perennial ryegrass (Lolium perenne L.) cultivars were compared for differences in herbage production, nutritive value and herbage intake of dry matter (DM) during the summers of 2002 and 2003. Two paddocks were sown with pure stands of four cultivars in a randomized block design with three replicates. Each plot was subdivided into fourteen subplots (22 m × 6 m) which were grazed by one cow during 24 h. Twelve lactating dairy cows were assigned to one cultivar for a period of 2 weeks in a 4 × 4 Latin square experimental design; the experiment lasted 8 weeks in each year. Sward structure (sward surface height, DM yield, green leaf mass, bulk density and tiller density) and morphological characteristics were measured. The ash, neutral‐detergent fibre, acid‐detergent lignin, crude protein and water‐soluble carbohydrate concentrations, and in vitro digestibility of the herbage were measured. The sward was also examined for infestation by crown rust (Puccinia coronata f. sp. lolii). Herbage intake of dairy cows was estimated using the n‐alkane technique. Cultivar differences for all sward structural characteristics were found except for bulk density and tiller density in 2003. Cultivars differed for proportions of pseudostem, stem (in 2003 only) and dead material. The chemical composition of the herbage was different among cultivars, with the water‐soluble carbohydrate concentration showing large variation (>0·35). Cultivars differed in susceptibility to crown rust. Herbage intake differed among cultivars in 2002 (>2 kg DM) but not in 2003. Herbage intake was positively associated with sward height, DM yield and green leaf mass. Canopy morphology did not affect herbage intake. Crown rust affected herbage intake negatively. It was concluded that options for breeders to select for higher intake were limited. High‐yielding cultivars and cultivars highly resistant to crown rust were positively related with a high herbage intake.  相似文献   

11.
Twenty-four Hereford × Friesian cows and their South Devon cross calves were allocated to three herbage allowances allotted daily for three periods of 8 weeks in a Latin square design. The daily allowances were 17, 34 and 51 g dry matter per kg cow plus calf live weight. Milk production was depressed by 0·2 and 1·2 kg d-1 at the medium and low allowances. The corresponding falls in liveweight gain were for cows 0·26 and 0·25, and for calves 0·27 and 0·24 kg d-1. Residual sward height after grazing gave a better indication of the animals' reaction to sward conditions and the management imposed than actual herbage allowance. The quantity per unit area and the composition of material present were important factors influencing intake. Calves were unable to compete with their dams to maintain herbage intake at the lower allowances and therefore are likely to benefit from additional feeding or creep grazing when residual sward height falls below 6cm for periods in excess of 1–2 weeks.  相似文献   

12.
An experiment was undertaken to examine the effect of supplement type on herbage intake, total dry matter (DM) intake, animal performance and nitrogen utilization with grazing dairy cows. Twenty‐four spring‐calving dairy cows were allocated to one of six treatments in a partially balanced changeover design with five periods of four weeks. The six treatments were no supplement (NONE), or supplementation with either grass silage (GS), whole‐crop wheat silage (WS), maize silage (MS), rapidly degradable concentrate (RC) or slowly degradable concentrate (SC). Cows were rotationally grazed with a mean herbage allowance of 20·5 kg DM per cow per day, measured above 4 cm. Forage supplements were offered for approximately 2 h immediately after each morning milking, with cows on NONE, RC and SC treatments returning to the grazing paddock immediately after milking. Cows on treatment MS had a significantly higher supplement DM intake than the other treatments but a significantly lower grass DM intake than the other treatments, resulting in no significant difference in total DM intake when compared with cows on treatments WS, RC and SC. Concentrate type had no significant effect on herbage intake, milk yield, milk composition or yield of milk components. The yield of milk fat and milk protein was significantly higher on treatments MS, RC and SC compared with treatments NONE, GS and WS. The results indicate that despite a relatively high substitution rate, maize silage can be a useful supplement for the grazing dairy cow.  相似文献   

13.
High (H; 27 350 m?1:) or low (L. 13 300 m-1) tiller density perennial ryegrass swards were created in the mid- and late grazing season by imposing different sward heights in the spring. Summer-calving cows then grazed these swards from 6 June to 2 September 1992 and were offered 5 kg fresh weight hd?1 d?1 of either a barley (S) or a molassed sugar beet pulp (F) based supplement. The factorial combination of sward and supplement types resulted in four experimental swards being grazed by thirteen Holstein/Friesian cows each. Supplement F contained more crude fibre (110 vs. 58 g kg?1) and less metabolizable energy [12–5 vs. 13–2 MJ kg?1 dry matter (DM)] than supplement S. Herbage on the H sward contained more metabolizable energy (11–9 vs. 104 MJ kg?1 DM) and crude protein (232 vs. 205 g kg?1 DM), had fewer rejected areas f 16–5 vs. 26–9%) and a higher live-dead tiller ratio (4–6 vs. 2–1) than that on the L sward. Sward, but not supplement type, significantly affected the intake of grazed herbage (P<0–001). On average, the herbage intakes of cows grazing II swards were higher than for L swards (14–5 vs. 11 6kg DM d?1) and those of cows on the S and F supplements were 12–6 and 13–5 kg DM d?1 respectively. Averaged over the grazing period, sward and supplement had no significant effects on milk yield, milk composition or yield of constituents. When expressed on an average weekly basis, cows grazing an L sward and offered the F supplement on occasions had significantly lower milk yields and higher milk fat contents (P<005) than those grazing an H sward and offered the S supplement. There were no significant effects on cow live weight or condition score change. The results suggested that grazing swards with a high density of live tillers increased herbage intakes and on occasions milk yield, relative to low density swards. However, small increases in energy intake from sward and supplement effects were used primarily to ameliorate liveweight loss.  相似文献   

14.
Silages were made from pure crops of perennial ryegrass, red clover and white clover over 2 years. In all but one case the silage was stored as bales. A silage additive specially adapted for bales (Kofasil UltraTM) was used for all silages and they were all of good hygienic quality. The additive contained sodium nitrite, hexamethylene, tetraamine sodium bensoate and sodium propionate. The silages were offered ad libitum, either pure or mixed [grass/clover 0·50/0·50 on a dry‐matter (DM) basis] with a fixed amount (8 kg) of concentrate. Two experiments, one in each year, were performed with high‐yielding multiparous dairy cows in mid‐lactation, and both rumen‐cannulated and intact cows were used. The experiments were carried out using an incomplete changeover design with fifteen cows and five treatments each year. The cows consumed large quantities of these silages (12·7–16·3 kg DM per cow per day). The highest intakes were obtained when the red clover and the 0·50 red clover:0·50 perennial ryegrass silage diets were offered. However, there was a difference between years. In year 1, 0·50 red clover:0·50 perennial ryegrass and 0·50 white clover:0·50 perennial ryegrass silage diets showed the highest intakes while pure perennial ryegrass and white clover silage diets gave lower intakes. In year 2 the highest intake of silage was obtained when the diet containing silage from red clover from a second cut was offered, while the silage from red clover from a first cut gave the lowest intake. The voluntary intakes of silages from white clover and perennial ryegrass were intermediate. No cases of bloat or other digestive disturbances were observed. Milk yield was significantly lower for the perennial ryegrass silage diet compared with all other diets in year 1. In year 2 milk yield was highest for the white clover silage diets and lowest for the red clover silage diets from both cuts. In year 1 there were relatively small differences in milk composition while in year 2 milk fat content was significantly lower with white clover silage diet and milk protein content was significantly higher with the perennial ryegrass diet. The overall conclusion from these experiments was that cows were able to consume large quantities of pure legume silage without serious disturbance to their metabolism. Differences in measurements of rumen metabolism were found between diets and especially between years. Milk production differences appears to be coupled to both differences in rumen physical characteristics, such as passage rate and particle size as well as differences in volatile fatty acid production in the rumen.  相似文献   

15.
A comparative study of grazing behaviour, herbage intake and milk production of three strains of Holstein‐Friesian dairy cow was conducted using three grass‐based feeding systems over two years. The three strains of Holstein‐Friesian cows were: high production North American (HP), high durability North American (HD) and New Zealand (NZ). The three grass‐based feeding systems were: high grass allowance (MP), high concentrate (HC) and high stocking rate (HS). In each year seventy‐two pluriparous cows, divided equally between strains of Holstein‐Friesian and feeding systems were used. Strain of Holstein‐Friesian cow and feeding system had significant effects on grazing behaviour, dry matter (DM) intake and milk production. The NZ strain had the longest grazing time while the HD strain had the shortest. The grazing time of cows in the HC system was shorter than those in both the HS and MP systems. There was a significant strain of Holstein‐Friesian cow by feeding system interaction for DM intake of grass herbage and milk production. The NZ strain had the highest substitution rate with the HP strain having the lowest. Hence, response in milk production to concentrate was much greater with the HP than the NZ strain. Reduction in milk yield as a consequence of a higher stocking rate (MP vs. HS system) was, however, greater for the HP and HD strains compared with the NZ strain. The results suggest that differences in grazing behaviour are important in influencing DM intake and milk production.  相似文献   

16.
Friesian heifers grazing Cenchrus ciliaris cv. Biloela were supplemented with 0, 3 or 6 kg concentrates daily during weeks 10–34 (±1·7) of lactation during either the rainy or the dry season. The overall responses to concentrate were identical between seasons at 0·27 kg extra milk and solids corrected milk per kg. Supplementation increased total feed intake and modified the grazing behaviour of cows. For each kg concentrate organic matter eaten, herbage organic matter intake was reduced by 0·64 and 0·42 kg in the rainy and dry seasons respectively and the time spent grazing by 11 min. Higher intakes in the dry season were the result of an increased rate of biting and were reflected in liveweight change but not milk yield.  相似文献   

17.
Two experiments were carried out in Guadeloupe to estimate the organic matter intake (OMI) and digestibility (OMD) of a Dichanthium spp. sward, grazed by tethered Creole heifers [mean live weight (LW) 202 ± 2·0 kg], at three daily herbage allowances. Experiment 1 examined herbage allowances of 16, 25 and 31 kg of dry matter (DM) d–1 on a fertilized sward at 21 days of regrowth whereas, in experiment 2, lower allowances of 11, 15 and 19 kg DM d–1 were examined on the same sward, which was unfertilized and grazed at 14 days of regrowth. In each experiment, the herbage was grazed with three groups of two heifers in a 3 × 3 Latin square design. Sward characteristics were described before grazing. OMI was calculated from total faecal output, and OMD was predicted from the crude protein (CP) content of the faeces. The amount of herbage defoliated by the heifers was also estimated on tillers selected at random.
Organic matter intakes were on average 26 g and 19 g OM kg–1 LW, and OMD values were 0·740 and 0·665 for Experiments 1 and 2, respectively, and were not affected by allowance. In Experiment 1, the herbage quality was high [0·50 of leaf and 116 g CP kg–1 organic matter (OM)] for a tropical forage, whereas in Experiment 2, the quality of the herbage (0·27 of leaf and 73 g CP kg–1 OM) was lower. These differences were reflected in differences in intake and digestibility in the two experiments.
The experimental tropical Dichanthium spp. swards can have intake characteristics similar to those of a temperate sward.  相似文献   

18.
An experiment was carried out during 1984 to examine the effects of three alternative grazing strategies for January/February calved British Friesian dairy eows on sward and animal production. Cows were rotationally grazed across 1 d paddocks without concentrate supplementation from 30 April to 1 October. A flexible grazing (EG) treatment involved manipulating residual herbage height, as assessed by a rising-plate sward stick, with cows initially grazing to 80 mm, reducing to 60 mm when milk yield declined below 20 kg d?1 and finally to 50 mm when milk yield declined below 15 kgd?1. Control (C) cows grazed to a constant residual herbage height of 60 mm throughout the season (a 60-inm rising-plate sward stick height is equivalent to a sward surface height of approximately 80 mm). On a further treatment a leader/follower (LF) approach was used, with cows paired for calving date and parity and within pairs allocated to either a high-(leader) or a low-yielding (follower) group, according to milk yield at turnout, with the leader group grazing 1 d ahead of the follower group. Overall stocking rates on C and LE treatments were identical but herbage allowances differed as a result of treatment effects. Animal performance data for the FG, C and LE treatments, respectively, were: milk yield (kg d?1) 14·5, 14·7 and 16·0 (s.e. 0·59); milk fat yield (g d?1) 577, 571 and 637 (s.e. 29); milk protein yield (g d?1) 528, 527 and 576 (s.e. 19); and liveweight gain (kg d?1) 0·09, 0·20 and 0·14 (s.e. 0·04). Overall, there was no benefit in animal production following lax grazing in spring even with high-yielding cows, and this approach resulted in the accumulation of stem and senescent material in the sward in mid-season. However, preferential treatment of high-yielding cows by grazing as a leader group in a leader-follower system resulted in higher milk production, particularly in late season, with an overall improvement in milk yield for the LF treatment of 9% relative to treatment C.  相似文献   

19.
The objective of this experiment was to use diurnal and temporal changes in herbage composition to create two pasture diets with contrasting ratios of water‐soluble carbohydrate (WSC) and crude protein (CP) and compare milk production and nitrogen‐use efficiency (NUE) of dairy cows. A grazing experiment using thirty‐six mid‐lactation Friesian x Jersey cows was conducted in late spring in Canterbury, New Zealand. Cows were offered mixed perennial ryegrass and white clover pastures either in the morning after a short 19‐day regrowth interval (SR AM) or in the afternoon after a long 35‐day regrowth interval (LR PM). Pasture treatments resulted in lower pasture mass and greater herbage CP concentration (187 vs. 171 g kg?1 DM) in the SR AM compared with the LR PM but did not affect WSC (169 g kg?1 DM) or the ratio of WSC/CP (1·0 g g?1). Cows had similar apparent DM (17·5 kg DM cow?1 d?1) and N (501 g N cow?1 d?1) intake for both treatments. Compared with SR AM cows, LR PM cows had lower milk (18·5 vs. 21·2 kg cow?1 d?1), milk protein (0·69 vs. 0·81 kg cow?1 d?1) and milk solids (1·72 and 1·89 kg cow?1 d?1) yield. Urinary N concentration was increased in SR AM, but estimated N excretion and NUE for milk were similar for both treatments. Further studies are required to determine the effect of feeding times on diurnal variation in urine volume and N concentration under grazing to predict urination events with highest leaching risk.  相似文献   

20.
Groups of mature, non-lactating, cows grazed two Molinia -dominant grassland communities in central and southern Scotland during six consecutive summers. Two treatments, designed to use either 33% or 66% of the estimated annual Molinia leaf production by grazing to different leaf lengths, were imposed at each site. Grazing was restricted to the period of Molinia growth each season. During the first 4 years, diet composition, diet digestibility and herbage organic matter intake were determined during either one or two measurement periods each year. There were differences between sites in the floristic content of the sward and these differences were reflected in the diet selected by the cattle. Cows grazing the taller (33% utilization) plots had higher percentages of Molinia , grass stem, sheath and inflorescences and lower percentages of broad-leaved grasses, sedges, rushes and dead herbage in the diet than those grazing the shorter (66% utilization) plots. Differences between the floristic composition of the sward and the diet were explicable by (a) the height at which cattle grazed in relation to the distribution of components within the sward or (b) the selective grazing of small areas dominated by a particular species. The organic matter digestibility of diets differed between sites but there was no significant difference in digestibility or organic matter intake between the treatments. On average less than 50 d grazing was provided by the experimental sites each year. During this period the liveweight gains of cows grazing the two treatments did not differ significantly. The implications of these results for the management of Molinia -dominant communities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号