首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the transmissibility of transmissible mink encephalopathy (TME) agent to raccoons and to provide information about clinical course, lesions, and suitability of currently used diagnostic procedures for detection of transmissible spongiform encephalopathies (TSEs) in raccoons, 4 raccoon kits were inoculated intracerebrally with a brain suspension from mink experimentally infected with TME. One uninoculated raccoon kit served as a control. All 4 animals in the TME-inoculated group showed clinical signs of neurologic disorder and were euthanized between 21 and 23 weeks postinoculation (PI). Necropsy examinations revealed no gross lesions. Spongiform encephalopathy was observed by light microscopy, and the presence of protease-resistant prion protein (PrPres) was detected by immunohistochemistry and Western blot techniques. Scrapie-associated fibrils were observed by negative-stain electron microscopy in the brains of 3 of the 4 inoculated raccoons. These findings confirm that TME is experimentally transmissible to raccoons and that diagnostic techniques currently used for TSE in livestock detect prion protein in raccoon tissue. According to previously published data, the incubation period of sheep scrapie in raccoons is 2 years, whereas chronic wasting disease (CWD) had not shown transmission after 3 years of observation. Because incubation periods for the 3 US TSEs (scrapie, TME, and CWD) in raccoons appear to be markedly different, it may be possible to use raccoons for differentiating unknown TSE agents. Retrospective genotyping of raccoons using frozen spleens showed that the raccoon PrP gene is identical to the mink gene at codons 179 and 224. Further studies, such as the incubation periods of bovine spongiform encephalopathy and other isolates of scrapie, CWD, and TME in raccoons, are needed before the model can be further characterized for differentiation of TSE agents.  相似文献   

2.
The primary objective of this study was to determine whether or not Spiroplasma mirum would be capable of producing lesions of transmissible spongiform encephalopathy (TSE) when inoculated in raccoons (Procyon lotor) and, if that was possible, to compare the clinicopathological findings with those of transmissible mink encephalopathy (TME) in the same experimental model. For this purpose, 5 groups (n = 5) of raccoon kits were inoculated intracerebrally with either S. mirum and/or TME. Two other groups (n = 5) of raccoon kits served as sham-inoculated controls. All animals inoculated with TME, either alone or in combination, showed clinical signs of neurologic disorder and were euthanized within 6 mo post-inoculation (MPI). None of the carcasses revealed gross lesions. Spongiform encephalopathy was observed by light microscopy and the presence of abnormal disease-causing prion protein (PrP(d)) was detected by immunohistochemistry (IHC) and Western blot (WB) techniques in only the raccoons administered TME. Raccoons inoculated with Spiroplasma, but not administered TME agent, were euthanized at 30 MPI. They did not show clinical neurologic signs, their brains did not have lesions of spongiform encephalopathy, and their tissues were negative for S. mirum by polymerase chain reaction (PCR) and for PrP(d) by IHC and WB techniques. The results of this study indicate that Spiroplasma mirum does not induce TSE-like disease in raccoons.  相似文献   

3.
To compare clinicopathologic findings of transmissible mink encephalopathy (TME) with other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie and chronic wasting disease [CWD]), two groups of calves (n = 4 each) were intracerebrally inoculated with TME agents from two different sources (mink with TME and a steer with TME). Two uninoculated calves served as controls. Within 15.3 months postinoculation, all animals from both inoculated groups developed clinical signs of central nervous system (CNS) abnormality; their CNS tissues had microscopic spongiform encephalopathy (SE); and abnormal prion protein (PrP(res)) as detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify TME PrP(res) but also develop clinical CNS signs and extensive lesions of SE. The latter has not been shown with other TSE agents (scrapie and CWD) similarly inoculated into cattle. The findings also suggest that the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) would detect TME in cattle should it occur naturally. However, it would be a diagnostic challenge to differentiate TME in cattle from BSE by clinical signs, neuropathology, or the presence of PrP(res) by IHC and WB.  相似文献   

4.
Scrapie is a naturally occurring transmissible encephalopathy of sheep and goats. Currently available methods for diagnosis are the presence of characteristic histopathologic changes and detection of an abnormal form of prion protein (PrPres) in the brains of affected animals. This study documents preclinical and subclinical scrapie in a flock of 16 sheep utilizing histopathology, immunohistochemistry (IHC), western blot, and electron microscopy (for scrapie-associated fibrils) for confirmation of the disease. Prior to necropsy, none of the sheep showed signs of clinical scrapie. Based on the results of histopathology and positive PrPres tests, 3 ewes were found to have subclinical scrapie. An additional ewe, which did not have histopathologic changes in the brain but was positive by IHC and western blot,was considered a preclinical case of scrapie. None of the sheep had amyloid in the brain stem.  相似文献   

5.
Fourteen, 3-month-old calves were intracerebrally inoculated with the agent of chronic wasting disease (CWD) from white-tailed deer (CWDwtd) to compare the clinical signs and neuropathologic findings with those of certain other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie, CWD of mule deer [CWDmd], bovine spongiform encephalopathy [BSE], and transmissible mink encephalopathy). Two uninoculated calves served as controls. Within 26 months postinoculation (MPI), 12 inoculated calves had lost considerable weight and eventually became recumbent. Of the 12 inoculated calves, 11 (92%) developed clinical signs. Although spongiform encephalopathy (SE) was not observed, abnormal prion protein (PrPd) was detected by immunohistochemistry (IHC) and Western blot (WB) in central nervous system tissues. The absence of SE with presence of PrPd has also been observed when other TSE agents (scrapie and CWDmd) were similarly inoculated into cattle. The IHC and WB findings suggest that the diagnostic techniques currently used to confirm BSE would detect CWDwtd in cattle, should it occur naturally. Also, the absence of SE and a distinctive IHC pattern of CWDwtd and CWDmd in cattle suggests that it should be possible to distinguish these conditions from other TSEs that have been experimentally transmitted to cattle.  相似文献   

6.
This communication documents age-associated pathologic changes and final observations on experimental transmission of chronic wasting disease (CWD) by the intracerebral route to raccoons (Procyon lotor). Four kits were inoculated intracerebrally with a brain suspension from mule deer with CWD. Two uninoculated kits served as controls. One CWD-inoculated raccoon was humanely killed at 38 months after inoculation, and 1 control animal died at 68 months after inoculation. Both animals had lesions that were unrelated to transmissible spongiform encephalopathy. Six years after inoculation, none of the 3 remaining CWD-inoculated raccoons had shown clinical signs of neurologic disorder, and the experiment was terminated. Spongiform encephalopathy was not observed by light microscopy, and the presence of abnormal prion protein (PrP(d)) was not detected by either immunohistochemistry or Western blot techniques. Age-related lesions observed in these raccoons included islet-cell pancreatic amyloidosis (5/6), cystic endometrial hyperplasia (3/4), cerebrovascular mineralization (5/6), neuroaxonal degeneration (3/6), transitional-cell adenoma of the urinary bladder (1/6), and myocardial inclusions (4/6). The latter 2 pathologic conditions were not previously reported in raccoons.  相似文献   

7.
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy (TSE) of deer and elk, is one of a group of fatal, neurologic diseases that affect several mammalian species, including human beings. Infection by the causative agent induces accumulations of an abnormal form of prion protein (PrPres) in nervous and lymphoid tissues. This report documents the presence of PrPres within ectopic lymphoid follicles in a kidney of a white-tailed deer that had been experimentally inoculated by the intracerebral route with CWD 10 months previously. The deer was nonclinical, but spongiform lesions characteristic of TSE were detected in tissues of the central nervous system (CNS) and PrPres was seen in CNS and in lymphoid tissues by immunohistochemistry. The demonstration of PrPres in lymphoid tissue in the kidney of this deer corroborates a recently published finding of PrPres in lymphoid follicles of organs other than CNS and lymphoid tissues in laboratory animals with TSE (scrapie).  相似文献   

8.
Scrapie, a transmissible spongiform encephalopathy (TSE), is a naturally occurring fatal neurodegenerative disease of sheep and goats. This study documents survival periods, pathological findings, and the presence of abnormal prion protein (PrP(Sc)) in genetically susceptible sheep inoculated with scrapie agent. Suffolk lambs (AA/RR/QQ at codons 136, 154, and 171, respectively) aged 4 mo were injected by the intralingual (IL) or intracerebral (IC) route with an inoculum prepared from a pool of scrapie-affected US sheep brains. The animals were euthanized when advanced clinical signs of scrapie were observed. Spongiform lesions in the brain and PrPsc deposits in the central nervous system (CNS) and lymphoid tissues were detected by immunohistochemical and Western blot (WB) testing in all the sheep with clinical prion disease. The mean survival period was 18.3 mo for the sheep inoculated by the IL route and 17.6 mo for those inoculated by the IC route. Since the IC method is occasionally associated with anesthesia-induced complications, intracranial hematoma, and CNS infections, and the IL method is very efficient, it may be more humane to use the latter. However, before this method can be recommended for inoculation of TSE agents, research needs to show that other TSE agents can also transmit disease via the tongue.  相似文献   

9.
This is a final report of an experimental transmission of sheep scrapie agent by intracerebral inoculation to Rocky Mountain elk (Cervus elaphus nelsoni). It documents results obtained in experimental (n = 6) and control (n = 2) elk. During the first 2 years postinoculation (PI), 3 animals died or were euthanized because of infection or injuries other than spongiform encephalopathy (SE). In years 3 and 4 PI, 3 other inoculated elk died after brief terminal neurological episodes. Necropsy of these animals revealed moderate weight loss but no other gross lesions. Microscopically, characteristic lesions of SE were seen throughout the brain and spinal cord, and the tissue was positive for proteinase K-resistant prion protein (PrPres) by immunohistochemistry (IHC) and by Western blot. Scrapie-associated fibrils (SAF) were observed by negative-stain electron microscopy in the brain of elk with neurologic signs. PrPres and SAF were not detected in the 3 inoculated elk necropsied during the first 2 years or in the 2 control animals. Retrospective analysis of the gene-encoding cervid PrP revealed a polymorphism at codon 132. The elk with SE were either homozygous (MM) or heterozygous (LM). These findings confirm that intracerebral inoculation of sheep scrapie agent results in SE with accumulations of PrPres in the central nervous system of elk. Based on morphologic and IHC findings, the experimentally induced SE cannot be distinguished from chronic wasting disease of elk with currently available diagnostic techniques.  相似文献   

10.
Many studies have been undertaken in rodents to study the pathogenesis of transmissible spongiform encephalopathies (TSE). Only a few studies have focused on the pathogenesis of bovine spongiform encephalopathy (BSE) and scrapie in their natural hosts. In this review, we summarize the most recent insights into the pathogenesis of BSE and scrapie starting from the initial uptake of TSE agents and crossing of the gut epithelium. Following replication in the gut-associated lymphoid tissues (GALT), TSE agents spread to the enteric nervous system (ENS) of the gut. Infection is then carried through the efferent fibers of the post-ganglionic neurons of the parasympathetic and sympathetic nervous system to the pre-ganglionic neurons in the medulla oblongata of the brain and the thoracic segments of the spinal cord. The differences between the pathogenesis of BSE in cattle and scrapie in sheep are discussed as well as the possible existence of additional pathogenetic routes.  相似文献   

11.
In 1997/1998, an abattoir survey was conducted to determine the likely exposure of the human population to transmissible spongiform encephalopathy (TSE) infection in sheep submitted for slaughter in Great Britain. The survey examined brain material from 2809 sheep processed through British abattoirs. Sampling was targeted by age: 45% of animals tested were ≥15 months old. All samples of adequate quality (98%) were tested for signs of scrapie infection using histopathology and scrapie-associated fibril (SAF) detection and 500 were tested using immunohistochemistry (IHC). No conclusive positive animals were found using either histology or IHC. Ten animals were positive by SAF. Standard statistical analyses suggest (with 95% confidence) that the prevalence of detectable (by histopathology) infection in the slaughter population was ≤0.11%. However, the incubation period of scrapie is long (usually around 2–3 years) and none of the tests used in the survey is capable of detecting scrapie infection in the early stages of infection. We present an age-structured stochastic model incorporating parameters for the incubation period of scrapie, prevalence of infection by age and test sensitivity. Using the model, we demonstrate that the negative results obtained for all samples using IHC and histopathology are consistent with a true prevalence of infection in the slaughter population of up to 11%. This suggests that up to 300 of the animals tested might have been infected but the infection was not sufficiently advanced in these animals to be detectable by IHC or histopathology. The survey was designed to detect a prevalence of 1% with a precision of ±0.5% and a confidence level of 95% in each age group assuming that diagnostic tests were 100% specific and sensitive from a known stage in the incubation period. The results of the model demonstrate that to estimate a true prevalence of scrapie infection of 1% with an accuracy of ±0.5% would have required a far larger sample size. An accurate estimate of the required sample size is complicated by uncertainty about test sensitivity and the underlying infection dynamics of scrapie. A pre-requisite for any future abattoir survey is validation of the diagnostic tests used in relation to both stage of incubation and genotype. Sampling in the <15-month age group was of no value in this survey because the diagnostic tests used were thought to be ineffective in most of the animals in this age group.  相似文献   

12.
Scrapie is a naturally occurring fatal neurodegenerative disease of sheep and goats. Susceptibility to the disease is partly dependent on the genetic makeup of the host. This study documents clinicopathological findings and the distribution of abnormal prion proteins (PrPres) by immunohistochemical and Western blot techniques, in tissues of genetically susceptible sheep inoculated with US sheep scrapie agents. Four-month-old Suffolk lambs (QQ or HQ at codon 171) were inoculated (5 intracerebrally and 19 orally) with an inoculum (#13-7) consisting of a pool of scrapie-affected sheep brains. Intracerebrally inoculated animals were euthanized when advanced clinical signs of scrapie were observed. Orally inoculated animals were euthanized at predetermined time points (4, 9, 12, 15, and 21 months postinoculation [PI]) and thereafter when the animals had terminal signs of disease. All intracerebrally inoculated animals exhibited clinical signs of scrapie and were euthanized between 13 and 24 months PI. Spongiform lesions in the brains and PrPres deposits in central nervous system and lymphoid tissues were present in these sheep. In orally inoculated sheep, clinical signs of scrapie were seen between 27 and 43 months PI in 5/9 animals. The earliest detectable PrPres was observed in brainstem and lymphoid tissues of a clinically normal, orally inoculated sheep at 15 months PI. Three of the 4 clinically normal sheep were positive at 15, 20, and 49 months PI by PrPres immunohistochemistry.  相似文献   

13.
Meadow voles (Microtus pennsylvanicus) are permissive to chronic wasting disease (CWD) infection, but their susceptibility to other transmissible spongiform encephalopathies (TSEs) is poorly characterized. In this initial study, we intracerebrally challenged 6 meadow voles with 2 isolates of sheep scrapie. Three meadow voles acquired a TSE after the scrapie challenge and an extended incubation period. The glycoform profile of proteinase K-resistant prion protein (PrPres) in scrapie-sick voles remained similar to the sheep inocula, but differed from that of voles clinically affected by CWD. Vacuolization patterns and disease-associated prion protein (PrPSc) deposition were generally similar in all scrapie-affected voles, except in the hippocampus, where PrPSc staining varied markedly among the animals. Our results demonstrate that meadow voles can acquire a TSE after intracerebral scrapie challenge and that this species could therefore prove useful for characterizing scrapie isolates.  相似文献   

14.
Different types of transmissible spongiform encephalopathies (TSEs) affect sheep and goats. In addition to the classical form of scrapie, both species are susceptible to experimental infections with the bovine spongiform encephalopathy (BSE) agent, and in recent years atypical scrapie cases have been reported in sheep from different European countries. Atypical scrapie in sheep is characterized by distinct histopathologic lesions and molecular characteristics of the abnormal scrapie prion protein (PrP(sc)). Characteristics of atypical scrapie have not yet been described in detail in goats. A goat presenting features of atypical scrapie was identified in Switzerland. Although there was no difference between the molecular characteristics of PrP(sc) in this animal and those of atypical scrapie in sheep, differences in the distribution of histopathologic lesions and PrP(sc) deposition were observed. In particular the cerebellar cortex, a major site of PrP(sc) deposition in atypical scrapie in sheep, was found to be virtually unaffected in this goat. In contrast, severe lesions and PrP(sc) deposition were detected in more rostral brain structures, such as thalamus and midbrain. Two TSE screening tests and PrP(sc) immunohistochemistry were either negative or barely positive when applied to cerebellum and obex tissues, the target samples for TSE surveillance in sheep and goats. These findings suggest that such cases may have been missed in the past and could be overlooked in the future if sampling and testing procedures are not adapted. The epidemiological and veterinary public health implications of these atypical cases, however, are not yet known.  相似文献   

15.
Molecular profiling of the proteinase K resistant prion protein (PrP(res)) is a technique that has been applied to the characterisation of transmissible spongiform encephalopathy (TSE) strains. An interesting example of the application of this technique is the ability to differentiate, at the experimental level, between bovine spongiform encephalopathy (BSE) and scrapie infection in sheep, and to distinguish between classical and atypical BSE and scrapie cases. Twenty-six BSE cases and two scrapie cases from an active TSE surveillance program and diagnosed at the PRIOCAT, TSE Reference Laboratory (Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Catalunya, Spain) were examined by Western blotting. Molecular profiling was achieved by comparing the glycosylation profile, deglycosylated PrP molecular weight and 6H4/P4 monoclonal antibody binding ratio. The results obtained during the characterisation of these field cases indicated an absence of atypical BSE cases in Catalunya.  相似文献   

16.
Monitoring of transmissible spongiform encephalopathy (TSE) in Swiss sheep and goats is based on the examination of animals from different sources. In this study, frequencies and proportions of the different diagnoses were compared between routinely submitted sheep and goats, notified scrapie suspects as well as fallen stock. Meningitis/ encephalitis cases were significantly more frequent (OR = 2.2) in the scrapie suspect group when compared to the routine submissions. Metabolic-toxic encephalopathy was seen more frequently within the fallen stock. Rare neurological diagnoses were more frequent among scrapie suspects and routine submissions when compared to fallen stock. Listeriosis was diagnosed equally frequent among the scrapie suspects and routine submissions but less frequent in fallen stock. Scrapie prevalence among the fallen stock and the routine submissions was 0 (zero), with 95% certainty that prevalence is < 1%. The examined animals are representative for most of the Swiss regions with considerable sheep and goat production. Continuation of the detailed neuropathological examination of small ruminants from these three groups, substituted by actively testing a sufficiently large sample of fallen stock and possibly also healthy-slaughtered adult sheep and goats for transmissible spongiform encephalopathies would ensure a good surveillance within the small ruminant population.  相似文献   

17.
To deal with the incompleteness of observations and disentangle the complexities of transmission much use has been made of mathematical modelling when investigating the epidemiology of sheep transmissible spongiform encephalopathies (TSE) and, in particular, scrapie. Importantly, these modelling approaches allow the incidence of clinical disease to be related to the underlying prevalence of infection, thereby overcoming one of the major difficulties when studying these diseases. Models have been used to investigate the epidemiology of scrapie within individual flocks and at a regional level; to assess the efficacy of different control strategies, especially selective breeding programmes based on prion protein (PrP) genotype; to interpret the results of scrapie surveillance; and to inform the design of surveillance programmes. Furthermore, mathematical modelling has played an important role when assessing the risk to human health posed by the possible presence of bovine spongiform encephalopathy in sheep. Here, we review the various approaches that have been taken when developing and analysing mathematical models for the epidemiology and control of sheep TSE and assess their impact on our understanding of these diseases. We also identify areas that require further work, discuss future challenges and identify data gaps.  相似文献   

18.
Scrapie is a fatal, neurodegenerative disease of sheep and goats. It is also the earliest known member in the family of diseases classified as transmissible spongiform encephalopathies (TSE) or prion diseases, which includes Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE), and chronic wasting disease in cervids. The recent revelation of naturally occurring BSE in a goat has brought the issue of TSE in goats to the attention of the public. In contrast to scrapie, BSE presents a proven risk to humans. The risk of goat BSE, however, is difficult to evaluate, as our knowledge of TSE in goats is limited. Natural caprine scrapie has been discovered throughout Europe, with reported cases generally being greatest in countries with the highest goat populations. As with sheep scrapie, susceptibility and incubation period duration of goat scrapie are most likely controlled by the prion protein (PrP) gene (PRNP). Like the PRNP of sheep, the caprine PRNP shows significantly greater variability than that of cattle and humans. Although PRNP variability in goats differs from that observed in sheep, the two species share several identical alleles. Moreover, while the ARR allele associated with enhancing resistance in sheep is not present in the goat PRNP, there is evidence for the existence of other PrP variants related to resistance. This review presents the current knowledge of the epidemiology of caprine scrapie within the major European goat populations, and compiles the current data on genetic variability of PRNP.  相似文献   

19.
Following the implementation of a large scale transmissible spongiform encephalopathies (TSE) surveillance programme of small ruminants, evidence for a natural transmission of bovine spongiform encephalopathy (BSE) to a French goat has been found. During the years 2002-2004, a massive TSE rapid testing programme on >250,000 small ruminants was carried out in Germany. In this national survey, 186 scrapie-affected sheep were found which originated from 78 flocks. The majority of these cases were of the classical TSE type (115 sheep belonging to 14 outbreaks). However, 71 cases coming from 64 flocks were of the novel atypical scrapie type. According to the regulation EU 999/2001, all TSE cases in small ruminants have to be examined by strain typing methods to explore any possibility of the existence of BSE cases in the field sheep population. Here we report on a biochemical typing strategy (termed FLI-test), which includes the determination of molecular masses, antibody binding affinities and glycosylation pattern of the TSE induced abnormal prion protein. Based on this typing approach none of the analysed German classical TSE outbreaks (total number of analysed sheep: 36) displayed biochemical features indicative for a BSE infection. However, in two cases distinct but BSE-unrelated PrP(Sc) types were found, which alludes to the existence of different scrapie strains in the German sheep population.  相似文献   

20.
In a study to learn more about the pathogenicity of transmissible mink encephalopathy virus for the natural hosts of scrapie, 20 Cheviot sheep and 19 dairy goats were inoculated intracerebrally with the Idaho strain of the virus. Five sheep and nine goats became affected with a progressive neurological disease. The incubation period in the sheep varied from 45 to 80 months (mean, 65 months) and in the goats from 31 to 40 months (mean, 35 months). Except for degeneration of the cerebral cortex (neocortex), the disease was indistinguishable clinically and neurohistologically from scrapie. During two more passages of the virus in goats, the incubation period was shortened to 12 to 15 months, the morbidity rate rose to 100% (6/6 dairy goats and 3/3 African pygmy goats), and the cortical lesion became constant and more pronounced. By the intracerebral inoculation of pastel mink, transmissible mink encephalopathy virus was detected in the brains of several affected sheep and goats but not in extraneural sites (lymphoid tissues and intestine), except for a trace amount in the proximal colon of one goat. Even after two passages in goats, the virus remained nonpathogenic for the laboratory mouse. Despite the essential likeness of the experimental disease and scrapie, the common identity of their causal viruses remains to be determined. Even so, the results of this study are still compatible with the view that transmissible mink encephalopathy virus almost certainly is scrapie virus whose biological properties became altered by chance passage in mink, a carnivore and an aberrant host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号