首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clubroot, a disease of Brassicaceae species, is caused by the soilborne pathogen Plasmodiophora brassicae. High soil water content was previously described to favour the motility of zoospores and their penetration into root cells. In this study, the effect of irrigation regimes on clubroot development during the post‐invasive secondary phase of infection was investigated. Three irrigation regimes (low, standard, high) were tested on two Arabidopsis accessions, Col‐0 (susceptible) and Bur‐0, a partially resistant line. In Col‐0, clubroot symptoms and resting spore content were higher under the ‘low irrigation’ regime than the other two regimes, thus enhancing the phenotypic contrast between the two Arabidopsis accessions. Clubroot severity under high and low irrigation regimes was evaluated in near‐isogenic lines derived from a Col‐0 ×  Bur‐0 cross, to assess the effect of soil moisture on the expression of each of four quantitative trait loci (QTL) controlling partial resistance. The presence of the Bur‐0 allele at the QTL PbAt5.2 resulted in reduced severity only under low irrigation, whereas the Bur‐0 allele at QTL PbAt5.1 was associated with partial resistance only under high irrigation. QTL PbAt4 reduced the number of resting spores in infected roots, but was not associated with reduced clubroot symptoms. The results indicated that soil moisture could have consequences for the secondary phase of clubroot development, depending on plant genotype. Future genetic studies may benefit from using combinations of watering conditions during the secondary stage of infection, thus opening up the possibility of identifying genetic factors expressed under specific environmental conditions.  相似文献   

2.
Clubroot, caused by Plasmodiophora brassicae, is a worldwide disease affecting Brassica. Until now, the detection of genetic factors (QTLs) implicated in clubroot resistance has been based on estimates of disease index. However, as the amount of resting spores released in soil after club disintegration influences clubroot epidemics and resistance‐breaking dynamics, its genetic control may deserve specific attention. In a previous report, it was shown that nitrogen fertilization modulated quantitative partial resistance toward clubroot symptom development in rapeseed. The present work aimed to identify genetic factors involved in the control of resting spore production and to assess their regulation by nitrogen supply. A flow cytometer method was adapted for rapidly estimating resting spore content in a large series of samples. Linkage analysis was conducted to detect QTLs implicated in resting spore production in a Brassica napus doubled haploid progeny from the cross Darmor‐bzh × Yudal. DH lines inoculated with the P. brassicae isolate eH were grown under low‐ and high‐nitrogen supply. Under low‐nitrogen conditions, resting spore production was reduced compared to high‐nitrogen conditions, regardless of genotypes. Genetic architecture controlling resting spore production and clubroot symptom development was similar. Under high‐nitrogen conditions, resting spore production was controlled by one major QTL (C09a) and a few small‐effect QTLs. By contrast, two major QTLs (C02 and C09a) controlled resting spore production under low‐nitrogen conditions. This work highlighted a large see‐saw effect between the relative contribution of the C09a QTL (high effect under high‐nitrogen conditions) and the C02 QTL (high effect under low‐nitrogen conditions), with possible implications in resistance breeding.  相似文献   

3.
The early stages of infection of canola roots by the clubroot pathogen Plasmodiophora brassicae were investigated. Inoculation with 1 × 105 resting spores mL?1 resulted in primary (root hair) infection at 12 h after inoculation (hai). Secondary (cortical) infection began to be observed at 72 hai. When inoculated onto plants at a concentration of 1 × 104 mL?1, secondary zoospores produced primary infections similar to those obtained with resting spores at a concentration of 1 × 105 mL?1. Secondary zoospores caused secondary infections earlier than resting spores. When the plants were inoculated with 1 × 107 resting spores mL?1, 2 days after being challenged with 1 × 104 or 1 × 105 resting spores mL?1, secondary infections were observed on the very next day, which was earlier than the secondary infections resulting from inoculation with 1 × 107 resting spores mL?1 alone and more severe than those produced by inoculation with 1 × 104 or 1 × 105 resting spores mL?1 alone. Compared with the single inoculations, secondary infections on plants that had received both inoculations remained at higher levels throughout a 7‐day time course. These data indicate that primary zoospores can directly cause secondary infection when the host is under primary infection, helping to understand the relationship and relative importance of the two infection stages of P. brassicae.  相似文献   

4.
The mechanism of the biofungicide Prestop® (Clonostachys rosea) was investigated for control of clubroot (Plasmodiophora brassicae) on canola. The key product components were partitioned and assessed for their effect on pathogen resting spores, root hair infection (RHI) and disease development using light microscopy, quantitative PCR and different application treatments during infection. The whole product of Prestop was consistently more effective than the C. rosea conidial suspension or product filtrate alone in reducing RHI and clubroot development. This biofungicide showed little effect on germination or viability of resting spores. Two‐application treatments at seeding and 7–14 days after seeding achieved greater clubroot control than a single application of the biofungicide at either seeding or post‐seeding stage. This may indicate the need to maintain a high biofungicide dose in the soil during primary and secondary infection. This biocontrol fungus colonized the rhizosphere and interior of canola roots extensively, and possibly induced plant resistance based on up‐regulation of the genes that are involved in jasmonic acid (BnOPR2), ethylene (BnACO) and phenylpropanoid (BnOPCL, BnCCR) biosynthetic pathways. It is concluded that the biofungicide Prestop suppressed clubroot on canola at least via root colonization and induced systemic resistance (ISR), and the latter may be through the modulation of phenylpropanoid and jasmonic acid/ethylene metabolic pathways elicited by the fungus.  相似文献   

5.
To mitigate the impact and dissemination of clubroot in western Canada, canola (Brassica napus) producers have relied on clubroot resistance traits. However, in 2013 and 2014, new strains of the clubroot pathogen, Plasmodiophora brassicae, emerged that are virulent on most clubroot‐resistant (CR) canola genotypes. Novel strains of the pathogen were inoculated onto two susceptible canola cultivars, one resistant line and six CR cultivars. Although all cultivars/lines showed a susceptible response to inoculation with the new strains of P. brassicae, the severity of disease reaction, root hair infection rates and the amount of P. brassicae DNA present in each canola genotype varied depending on the strain. In addition, the effect of inoculum density on disease severity and gall formation was recorded for one of these new strains on a universally susceptible Chinese cabbage cultivar and one susceptible and 10 resistant canola genotypes. Although root galls were observed at an inoculum density of 103 spores per mL of soil, clear differentiation of susceptible and resistant reactions among canola cultivars/lines was not observed until the inoculum density reached 105 spores mL?1. At a spore density of 106 spores mL?1 and above, all cultivars/lines developed susceptible reactions, although there was some differentiation in the degree of reaction. This study shows the potential to develop a unique disease profile for emergent clubroot pathotypes and shows a useful range of spore densities at which to study new P. brassicae strains.  相似文献   

6.
The present study was performed to investigate whether Plasmodiophora brassicae can be disseminated by livestock manure. A quantitative PCR (qPCR) assay was developed and used to detect and quantify P. brassicae in manure samples from naturally and artificially infested chickens and pigs. In naturally infested manure, quantifiable levels of infestation were observed in 7 out of the 28 samples, ranging from 103 to 107 resting spores per g of manure. The vast majority of the resting spores (76–91%) were viable, as determined by a dual fluorescence viability assay. Clubroot symptoms developed on plants inoculated with P. brassicae resting spores isolated from all seven qPCR‐positive samples. Artificially infested manure samples were produced by feeding chickens and pigs on P. brassicae‐contaminated feed. The levels of infestation were 103 resting spores per g of manure for both chicken and pig manure sampled 24 and 48 h after feeding, respectively. Spore viability was >80% for both samples, and the disease severity indices were both >40 as indicated by bioassay. This showed that resting spores can survive the digestive tracts of chickens and pigs, and retain strong pathogenicity. The findings indicate that manure dissemination is possible for P. brassicae. Farmers should avoid feeding livestock on P. brassicae‐contaminated feed or applying infested manure as fertilizer on land intended for crucifer crops.  相似文献   

7.
Plasmodiophora brassicae causes clubroot of crucifers. A quantitative PCR (qPCR)‐based protocol was developed to measure P. brassicae DNA in the roots of susceptible, intermediately susceptible, intermediately resistant and resistant Brassica hosts, and the non‐host wheat, at 5, 10, 15, 20 and 42 days post‐inoculation (dpi). The final reaction of each plant genotype was recorded as an index of disease at 42 dpi. Plasmodiophora brassicae DNA showed an increase in susceptible and moderately resistant hosts from 5 to 42 dpi, in contrast to a decrease in a highly resistant host and the non‐host wheat over the same period. Index of disease was significantly positively correlated with the amount of P. brassicae DNA in the roots at 5, 15, 20 and 42 dpi in one experiment, and at 10, 15, 20 and 42 dpi in a repeated experiment. Significant positive correlations also existed between the amounts of P. brassicae DNA in the roots at 42 dpi and those at 5, 10, 15 and 20 dpi in one experiment, and those at 10, 15 and 20 dpi in a repeated experiment. The results generated by the qPCR assay were validated by microscopic examination of roots inoculated with P. brassicae. The qPCR‐based protocol developed in this study allows for the accurate quantification of P. brassicae DNA in host root tissues as early as 5 dpi, and may serve as a useful tool to evaluate pathogen proliferation and development in the roots.  相似文献   

8.
To investigate the susceptibility of hairy root lines of Brassica species to Plasmodiophora brassicae, hairy roots were induced in a number of Brassica species with Agrobacterium rhizogenes. Turnip hairy root was highly susceptible to P. brassicae; infection rates were high and large galls formed. In contrast, the rates of root hair infection and gall formation on intact Brassica plants did not differ significantly from the control. To induce resting spore formation, turnip hairy roots were incubated at 15°, 20°, or 25°C after 3 weeks of incubation at 25°C. The number and fresh mass of the galls per hairy root were higher and formation of resting spores was greatest after a 7-week incubation at 20°C. To subculture P. brassicae using turnip hairy root, turnip hairy roots were reinoculated with resting spores and gall with resting spores then formed on the hairy roots. In this way, P. brassicae using hairy roots could be subcultured in vitro two or three times on three single-spore isolates of P. brassicae. This is the first report of in vitro subculture of P. brassicae using hairy root.  相似文献   

9.
Plasmodiophora brassicae, causal agent of clubroot of crucifers, poses a serious threat to Canadian canola production. The effects of fallow (F) periods and bait crops (clubroot‐susceptible canola (B) and perennial ryegrass (R)) on clubroot severity and P. brassicae resting spore populations were evaluated in five sequences: R–B, B–R, R–F, B–F and F–F. Both host and non‐host bait crops reduced clubroot severity in a subsequent crop of a susceptible canola cultivar compared with fallow. Resting spore and P. brassicae DNA concentrations decreased in all treatments, but were lowest for the R–B and B–R bait crop sequences. In addition, two studies were conducted in mini‐plots under field conditions to assess the effect of rotation of susceptible or resistant canola cultivars on clubroot severity and P. brassicae resting spore populations. One study included three crops of susceptible canola compared with a 2‐year break of oat–pea, barley–pea, wheat–wheat or fallow–fallow. The other study assessed three crops of resistant canola, two crops of resistant canola with a 1‐year break, one crop of resistant canola and a 2‐year break, and a 3‐year break with barley followed by a susceptible canola. The rotations that included non‐host crops of barley, pea or oat reduced clubroot severity and resting spore concentrations, and increased yield, compared with continuous cropping of either resistant or susceptible canola. Growing of a susceptible canola cultivar contributed 23–250‐fold greater gall mass compared with resistant cultivars.  相似文献   

10.
A study was conducted to assess the effect of temperature on infection and development of Plasmodiophora brassicae in root hairs of Shanghai pak choi (Brassica rapa subsp. chinensis) and on initiation of clubroot symptoms. Ten‐day‐old seedlings were grown in liquid‐sand culture, inoculated with resting spores and maintained in growth cabinets at 10, 15, 20, 25 and 30°C. Seedlings were harvested at 2‐day intervals, starting 2 days after inoculation (DAI) and continuing until swelling of the tap root was observed (maximum 28 days). Roots were assessed for root hair infection (RHI), stage of development of infection (primary plasmodia, zoosporangia, release of zoospores, secondary plasmodia), symptom development, and for clubroot severity at 24 DAI. Temperature affected every stage of clubroot development; RHI was highest and visual symptoms initiated earliest at 25°C, intermediate at 20 and 30°C, and lowest and latest at 15 and 10°C. Root hair infection was observed at every temperature, but clubroot symptoms developed only above 15°C. A substantial delay in the development of the pathogen was observed at 10 and 15°C. No symptoms were observed at 28 DAI in plants grown at 10°C. Swelling of the tap root was visible at 28 DAI in plants at 15°C, 14 DAI at 20 and 30°C, and 10 DAI at 25°C. These results support and explain the observation in companion studies that cool temperatures result in slower development of clubroot symptoms in brassica crops.  相似文献   

11.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted to assess the effect of growing resistant and susceptible canola genotypes on P. brassicae soil resting spore populations under greenhouse, mini‐plot and field conditions. One crop of susceptible canola contributed 1·4 × 108 spores mL?1 soil in mini‐plot experiments, and 1 × 1010 spores g?1 gall under field conditions. Repeated cropping of susceptible canola resulted in greater gall mass compared to resistant canola lines. It also resulted in reduced plant height, increased clubroot severity in susceptible canola, and increased numbers of resting spores in the soil mix.  相似文献   

12.
The clubroot pathogen Plasmodiophora brassicae is an obligate biotrophic protist that lives in close relationship with its host cell. The roots of the host plants are colonized and the plant growth is altered upon infection. While shoots can be stunted and show wilt symptoms after longer infection periods, the root system is converted to a tumorous root tissue, called ‘clubroot’, by alterations of the plant growth promoting hormones auxin, cytokinin and brassinosteroid. Because the life cycle occurs largely within the host cells, this leads to dramatic changes in host root morphology and anatomy. Thus, the identification of the respective protist structures in the host tissue by microscopy is challenging. Different staining methods as well as fluorescence and electron microscopy of thin sections can reveal specific life stages of P. brassicae and can yield additional information on the changes in the host tissues concerning, for example, cell wall properties. In addition, promoter–reporter fusions, immunostaining methods and in situ hybridization techniques can be used to gain additional information on the changes in the host roots.  相似文献   

13.
A resistant type of small, spheroid clubroot galls (SSGs) containing resting spores formed on the root surface of clubroot-resistant (CR) cultivars of Chinese cabbage (Brassica rapa L. subsp. pekinensis) inoculated with an avirulent population of Plasmodiophora  brassicae. Populations isolated from the SSGs severely affected a common (susceptible) cultivar but did not have the typical pathogenicity on CR cultivars, indicating similarity in pathogenicity between SSG and original spore populaions. Populations pathogenic on CR cultivars were not detected from SSGs. Therefore, the ability of the avirulent population among the SSGs to form resting spores may need to be considered to achieve clubroot control in common cultivars of crucifers.  相似文献   

14.
The soilborne pathogen Plasmodiophora brassicae, causal agent of clubroot of canola (Brassica napus), is difficult to manage due to the longevity of its resting spores, ability to produce large amounts of inoculum, and the lack of effective fungicides. The cropping of clubroot resistant (CR) canola cultivars is one of the few effective strategies for clubroot management. This study evaluated the impact of the cultivation of CR canola on P. brassicae resting spore concentrations in commercial cropping systems in Alberta, Canada. Soil was sampled pre-seeding and post-harvest at multiple georeferenced locations within 17 P. brassicae-infested fields over periods of up to 4 years in length. Resting spore concentrations were measured by quantitative PCR analysis, with a subset of samples also evaluated in greenhouse bioassays with a susceptible host. The cultivation of CR canola in soil with quantifiable levels of P. brassicae DNA resulted in increased inoculum loads. There was a notable lag in the release of inoculum after harvest, and quantifiable P. brassicae inoculum peaked in the year following cultivation of CR canola. Rotations that included a ≥2-year break from P. brassicae hosts resulted in significant declines in soil resting spore concentrations. A strong positive relationship was found between the bioassays and qPCR-based estimates of soil infestation. Results suggest that CR canola should not be used to reduce soil inoculum loads, and crop rotations in P. brassicae infested fields should include breaks of at least 2 years away from B. napus, otherwise the risk of selecting for virulent pathotypes may increase.  相似文献   

15.
Using quantitative PCR, DNA of Plasmodiophora brassicae, the causal agent of clubroot, was detected and quantified on canola, pea and wheat seeds, as well as on potato tubers, all harvested from clubroot‐infested fields in Alberta, Canada. Quantifiable levels of infestation were found on seven of the 46 samples analysed, and ranged from <1·0 × 103 to 3·4 × 104 resting spores per 10 g seeds; the vast majority (80–100%) of resting spores on these samples were viable, as determined by Evan’s blue vital staining. However, the levels of infestation found were generally lower than that required to cause consistent clubroot symptoms in greenhouse plant bioassays. While the occurrence of P. brassicae resting spores on seeds and tubers harvested from clubroot‐infested fields suggests that seedborne dissemination of this pathogen is possible, practices such as commercial seed cleaning may be sufficient to effectively mitigate this risk.  相似文献   

16.
Plant-induced germination of Plasmodiophora brassicae resting spores was studied in a laboratory experiment. Spore reaction was analysed in nutrient solution with exudates from growing roots of different plant species – one host plant (Brassica rapa var. pekinensis) and four non-host plants (Lolium perenne, Allium porrum, Secale cereale and Trifolium pratense) – and in controls with distilled water and nutrient solution. It was found that root exudates from L. perenne stimulated spore germination more than exudates from the other plants, including those from the host plant. The effect could not be explained by differences in the nutritional composition of the solutions due to differential uptake of the plant species, or by differences in root activity, measured as exudation of soluble sugars. This is the first time such a separation of factors has been done in analysing the influence of plants on P. brassicae germination. Although stimulation of P. brassicae resting spore germination is not restricted to the presence of host plants, it seems to vary depending on the plant species.  相似文献   

17.
The severity of clubroot (Plasmodiophora brassicae) on Chinese cabbage was reduced by growing plants such as oats, spinach and leafy daikon prior to Chinese cabbage in pot experiments. Resting spore densities of P. brassicae in the soil were 29–62%, depending on the pervious crop, as compared to unplanted control plot after ploughing under the previously cultivated plants. Root hairs of the preceding plants were infected with P. brassicae, but clubbed roots were not formed on these plants. The results indicate that these plants functioned as decoy plants reducing the resting-spore density in soil and thereby suppressing disease severity. Received 21 February 2000/ Accepted in revised form 5 September 2000  相似文献   

18.
Recently, flavonoids were shown to modulate the outcome of clubroot development in Arabidopsis thaliana after infection with the obligate biotrophic pathogen Plasmodiophora brassicae. Therefore, the development of clubroot disease was investigated in Arabidopsis after treatment with prohexadione‐calcium (ProCa), an inhibitor of ascorbic acid/2‐oxoglutaric acid‐dependent dioxygenases such as flavanone‐3‐hydroxylase. The treatment resulted in a reduction of the flavonols quercetin and kaempferol in clubroots, whereas the precursor naringenin highly accumulated. The root system of ProCa‐treated plants was better developed although galls were still visible. Thus, ProCa treatment resulted in reduced gall size. Flavonoids are thought to inhibit polar auxin transport by modulating auxin efflux carriers. It was investigated whether the auxin response might change as a consequence of the accumulation of naringenin in ProCa‐treated plants. In the areas of gall development an auxin response was indicated by the auxin‐responsive promoter DR5 coupled to the reporter β‐glucuronidase (GUS), whereas very little staining was found in healthy root parts. No differences in GUS activity were found between P. brassicae‐infected and ProCa‐treated plants, and plants only infected with P. brassicae, indicating that the effect of ProCa treatment on clubroot reduction is not via changes in auxin responses. As ProCa is also an inhibitor of late steps in gibberellin biosynthesis, a specific gibberellin biosynthesis inhibitor, chlormequatchloride (CCC), was tested on club development. However, CCC did not reduce disease symptoms, indicating that the observed reduced gall development was not because of gibberellin biosynthesis inhibition by ProCa.  相似文献   

19.
Clubroot (Plasmodiophora brassicae) is an important disease of canola (Brassica napus) and other brassica crops. Accurate estimation of inoculum load in soil is important for evaluating producer risk in planting a susceptible crop, but also for evaluation of management practices such as crop rotation. This study compared five molecular techniques for estimating P. brassicae resting spores in soil: quantitative polymerase chain reaction (qPCR), competitive positive internal control PCR (CPIC-PCR), propidium monoazide PCR (PMA-PCR), droplet digital PCR (ddPCR) and loop-mediated isothermal DNA amplification (LAMP). For ddPCR and LAMP, calibrations were developed using spiked soil samples. The comparison was carried out using soil samples collected from a long-term rotation study at Normandin, Québec, with replicated plots representing 0-, 1-, 2-, 3-, 5- and 6-year breaks following susceptible canola infested with clubroot. CPIC-PCR and ddPCR provided repeatable estimates of resting spore numbers in soil compared with estimates from qPCR or LAMP alone. CPIC-PCR provided the most robust measurement of spore concentration, especially in the 2 years following a crop of susceptible canola, because it corrected for effects of PCR inhibitors. PMA-PCR demonstrated that a large proportion of the DNA of P. brassicae detected in soil after the susceptible canola crop was derived from spores that were immature or otherwise not viable. Each assay provided a similar pattern of spore concentration in soil, which supported the conclusion of a previous study at this site that resting spore numbers declined rapidly in the first 2 years after a susceptible crop, but much more slowly subsequently.  相似文献   

20.
The impact on clubroot severity of growing susceptible canola or mixtures of resistant and susceptible canola genotypes was examined. Bioassays revealed greater clubroot severity and incidence, and reduced plant height, where 100% of a susceptible cultivar had been grown. A higher proportion of susceptible plants within a resistant canola crop increased root hair and secondary infections. Regression analysis of root hair infection and the amount of Plasmodiophora brassicae DNA (as determined by quantitative PCR) revealed strong linear relationships between the two parameters. The linear relationships between root hair infection and P. brassicae DNA were stronger for the resistant cultivar than for the susceptible cultivar when regression analysis was conducted by cultivar over the sampling dates. In conclusion, the cropping of a resistant cultivar reduced clubroot severity, while the presence of susceptible volunteer canola increased inoculum potential. Quantitative PCR was a reliable tool for the quantification of root hair infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号