首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Since 2008, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (Psa) has resulted in severe economic losses worldwide. Four biovars of Psa can be distinguished based on their biochemical, pathogenicity and molecular characteristics. Using a range of biochemical, molecular and pathogenicity assays, strains collected in France since the beginning of the outbreak in 2010 were found to be genotypically and phenotypically diverse, and to belong to biovar 3 or biovar 4. This is the first time that strains of biovar 4 have been isolated outside New Zealand or Australia. A multilocus sequence analysis based on four housekeeping genes (gapA, gltA, gyrB and rpoD) was performed on 72 strains representative of the French outbreak. All the strains fell into two phylogenetic groups: one clonal corresponding to biovar 3, and the other corresponding to biovar 4. This second phylogenetic group was polymorphic and could be divided into four lineages. A clonal genealogy performed with a coalescent approach did not reveal any common ancestor for the 72 Psa strains. Strains of biovar 4 are substantially different from those of the other biovars: they are less aggressive and cause only leaf spots whereas Psa biovars 1, 2 and 3 also cause canker and shoot die‐back. Because of these pathogenic differences, which were supported by phenotypic, genetic and phylogenetic differences, it is proposed that Psa biovar 4 be renamed Pseudomonas syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the pathotype strain.  相似文献   

2.
Since 2008, Pseudomonas syringae pv. actinidiae virulent strains (Psa‐V) have quickly spread across the main areas of kiwifruit (Actinidia deliciosa and A. chinensis) cultivation causing sudden and re‐emerging outbreaks of bacterial canker to both species. The disease caused by Psa‐V strains is considered worldwide as pandemic. Recently, P. syringae strains (ex Psa‐LV, now called PsD) phylogenetically related to Psa‐V have been isolated from kiwifruit, but cause only minor damage (i.e. leaf spot) to the host. The different biological significance of these bacterial populations affecting kiwifruit highlights the importance of having a diagnostic method able to detect Psa‐V, which is currently solely responsible for the severe damage to the kiwifruit industry. In order to improve the specific molecular detection of Psa‐V, a real‐time PCR assay has been developed based on EvaGreen chemistry, together with a novel qualitative PCR (PCR‐C). Both methods are based on specific primer sets for the hrpW gene of Psa. The real‐time PCR and PCR‐C were highly specific, detecting down to 50 and 200 fg, respectively, and were applied to a range of organs/tissues of kiwifruit with and without symptoms. These methods are important tools for both sanitary and certification programmes, and will help to avoid the spread of Psa‐V and to check possible inoculum sources. In addition to being used as routine tests, they will also enable the study of the biology of Psa‐V and the disease that it causes, whilst avoiding the detection of other populations of related P. syringae present in kiwifruit.  相似文献   

3.
Pseudomonas syringae pv. actinidiae (Psa) is a Gram‐negative bacterium that causes the bacterial canker of both green (Actinidia deliciosa) and yellow (Actinidia chinensis) fleshed kiwifruit. Since the emergence of an economically devastating Psa outbreak in Japan in the 1980s, the disease took a contagious turn causing severe economic loss to kiwifruit industries in Italy, South Korea, Spain, New Zealand and other countries. Research shows that the pathogenic strains isolated from different infected orchards vary in their virulence characteristics and have distinct genes coding for the production of different toxins. The global Psa outbreak has activated research around the world on developing efficient strategies to contain the pandemic and minimize loss to the kiwifruit industry. Chemical and biological control options, orchard management and breeding programmes are being employed in this global effort. Synergy between different disease control strategies has been recognized as important. Phytotoxicity, resistance development and regulatory measures in certain countries restrict the use of copper compounds and antibiotics, which are otherwise the mainstay chemicals against bacterial plant diseases. Therefore, because of the limitations of existing chemicals, it is important to develop novel chemical controls against Psa. Antimicrobial peptides, which are attractive alternatives to conventional antibiotics, have found promising applications in plant disease control and could contribute to expanding the chemical control tool box against Psa. This review summarizes all chemical compounds trialled so far against Psa and provides thoughts on the development of antimicrobial peptides as potential solutions for the future.  相似文献   

4.
Frost occurs in all major areas of cultivation, presenting a threat for the production of kiwifruit crops worldwide. A series of experiments were performed on 1‐year‐old, potted plants or excised twigs of Actinidia chinensis and A. deliciosa to verify whether strict relationships exist between bacterial canker outbreaks from Pseudomonas syringae pv. actinidiae (Psa) attacks and the occurrence of autumn and winter frost events. The association between the occurrence of autumn frost and the sudden outbreak of bacterial canker in A. chinensis in central Italy has been confirmed. Both autumn and winter frosts promote Psa multiplication in the inoculated twigs of both species. The day after the frost, reddish exudates oozing from the inoculation sites were consistently observed in both species, and Psa was re‐isolated in some cases. During the thawing of both A. deliciosa and A. chinensis twigs, the 2‐cm upward and downward migration of Psa from the inoculation site was observed within 3 min, and the leaves were consistently colonized with the pathogen. A consistent brown discoloration, accompanied with a sour‐sap odour, was observed throughout the length of the excised twigs of both Actinidia species after Psa inoculation and winter frost. Psa inoculation induced a remarkably higher necrosis in excised twigs that were not frozen compared with P. s. pv. syringae inoculation. Antifreeze protection using irrigation sprinklers did not influence the short‐term period of Psa and P. s. pv. syringae multiplication in both A. deliciosa and A. chinensis twigs. Thus, the damage from frost, freeze thawing and the accumulation of Psa in Actinidia twigs promotes the migration of the pathogen within and between the orchards. Taken together, the results obtained in this study confirmed that A. deliciosa is more frost tolerant than A. chinensis, autumn frosts are more dangerous to these crops than winter frosts, and in the absence of Psa, young kiwifruit plants remain sensitive to frost.  相似文献   

5.
Pseudomonas syringae pv. actinidiae (Psa) was identified as the causal agent of severe epidemics of bacterial canker on Actinidia chinensis (yellow kiwifruit) in central Italy occurring during 2008–9. A total of 101 strains were obtained from infected leaves, twigs, branches and trunks of cvs Hort16A, Jin Tao and CK3. Outbreaks were also found on A. deliciosa cv. Hayward. A representative set of 21 strains were compared with other Psa strains isolated from previous outbreaks in Japan and Italy as well as with P. s. pv. syringae strains obtained from A. chinensis and with strains of genomospecies 8. Repetitive‐sequence PCR (rep‐PCR) typing using BOX and ERIC primer sets revealed that all Psa strains obtained during 2008–9 showed the same fingerprinting profile. This profile, however, was different from those of strains previously isolated in Japan and Italy. Multilocus sequence typing (MLST) of gapA, gltA, gyrB and rpoD revealed a higher genetic variability among the strains than rep‐PCR, with some of them showing the same sequence pattern although isolated from different areas, cultivars and years. None of the recently obtained strains possessed genes coding for phaseolotoxin or coronatine, and all had an effector protein, namely hopA1, differentiating them from the strains causing past outbreaks in Japan and Italy. All isolates were inhibited in vitro by copper‐based compounds, antibiotics, geraniol, citronellol and by a chitin‐based organic compound. The recent epidemics found in central Italy on yellow kiwifruit appear to have been caused by a different Psa population than those previously recorded in Japan, South Korea and Italy.  相似文献   

6.
The aim of this study was to develop a rapid, sensitive and reliable field‐based assay for detection of the quarantine pathogen Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the most destructive and economically important bacterial disease of kiwifruit. A comparative genomic approach was used on the publicly available Psa genomic data to select unique target regions for the development of two loop‐mediated isothermal amplification (LAMP) assays able to detect Psa and to discriminate strains belonging to the highly virulent and globally spreading Psa biovar 3. Both LAMP assays showed specificity in accordance with their target and were able to detect reliably 125 CFU per reaction in less than 30 min. The developed assays were able to detect the presence of Psa in naturally infected kiwifruit material with and without symptoms, thus increasing the potential of the LAMP assays for phytosanitary use.  相似文献   

7.
Bacterial canker disease of kiwifruit currently occurs in at least 15 countries, causing serious damage. The causative agent of the disease is Pseudomonas syringae pv. actinidiae (Psa), which is genetically diverse and is currently classified into five biovars, namely, biovars 1, 2, 3, 5 and 6. In Japan, four biovars except biovar 2 have been found so far. These biovars have been confirmed to have differences in the virulence and composition of pathogenicity-related genes, such as toxin biosynthesis and type III effector genes. Biovars 1 and 6 possess the tox island, a genomic island of approximately 38 kb, which contains phaseolotoxin biosynthesis genes (argK-tox cluster) and is confirmed to have been acquired from other bacteria through horizontal transfers. Also, on the megaplasmid possessed by biovar 6, there exist coronatine biosynthesis genes, and biovar 6 has the ability to produce two phytotoxins, phaseolotoxin and coronatine. In 2014, biovar 3, considered to be of foreign origin, was confirmed for the first time in Japan. Biovar 5, whose virulence is relatively weak, is distributed only in a limited area. In addition to the tox island and various plasmids, a large number of mobile genetic elements are confirmed to be present on the Psa genomes, which might have played a major role in helping Psa to acquire new features. In order to understand how Psa acquired the ability to infect kiwifruit systemically, it is important to make polyphasic comparisons with related pathovars, such as Psyringae pv. theae and pv. actinidifoliorum.  相似文献   

8.
Bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), is a disease that is spreading rapidly in several kiwifruit‐producing countries, causing significant economic losses. In 2011, it was detected for the first time in Spain, in the south of Galicia (northwest Spain). Kiwifruit orchards were therefore inspected and sampled in 2011 and 2012 to determine the pathogen distribution, and the isolates obtained were characterized by morphology, fatty acids profile, biochemical tests and molecular techniques. Isolates were obtained from Actinidia deliciosa ‘Hayward’ (from leaves, canes, flower buds, fruits and roots), from A. deliciosa ‘Summer’, from Actinidia chinensis ‘Jin Tao’ (from canes and leaves) and from A. chinensis pollinator ‘Belén’ (from canes). Results of the analysis of the cfl gene (phytotoxin production‐related), the tox–argK gene cluster and phylogenetic analysis of the cts gene demonstrated that all Psa isolates from northwest Spain correspond to the Psa3 population, which includes strains of haplotype 2. This is the first record of Psa3 and haplotype 2 in Spain.  相似文献   

9.
Copper-containing bactericides have been used to control bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae. However, the efficacy of copper has been reduced by the occurrence of copper-resistant strains. Analysis of the DNA sequence of a cluster region containing the copper-resistance genes from P. syringae pv. actinidiae suggested the presence of three possible different systems for copper resistance: copper-trapping, copper-efflux and copper-transport systems. Transposon insertional inactivation analysis indicated that the copper-trapping system was essential for copper resistance.  相似文献   

10.
Pseudomonas syringae pv. actinidiae (Psa) is a causal agent of kiwifruit bacterial canker worldwide, which has affected kiwifruit vines in China since 1996 and has subsequently spread to the main cultivation areas. Based on occurrence of Psa and pseudo-absences randomly generated in China, the consensus-based modelling technique was used to estimate the spatial spread of Psa epidemics within China. Environmental variables that related to Psa development were identified, and their contributions to Psa development were evaluated. Three modelling algorithms, namely generalized boosting models (GBM), random forests (RF) and classification tree analysis (CTA) within the BIOMOD2 framework, were employed to construct the model. The ensemble models weighted by the true skill statistic (TSS) value were used to predict the current habitat suitability of Psa, and were projected using the four general circulation models (GCMs) to assess range shifts under two types of representative concentration pathways (RCP 4.5 and RCP 8.5) by 2050. The results indicated that precipitation in March and mean temperature of warmest quarter were the most important limiting factors for distribution of Psa. The predictive accuracy of the ensemble model showed acceptable predictive powers (TSS = 0.852). Under future climate conditions, substantial net loss of suitability for Psa was estimated to be 3.03–12.5% under RCP 4.5 (except one GCM), and 2.46–9.89% under RCP 8.5. Shrinkage of suitable habitats was detected mainly in the areas currently infected by Psa. Special attention should be given to recent infectious regions in south and southwest China, considering the locally expanding kiwifruit commercial plantations.  相似文献   

11.
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a catastrophic disease that threatens the global kiwifruit industry. As yet, no cure has been developed. Planting resistant cultivars is considered as one of the most effective ways to control Psa. However, most existing cultivars lack Psa-resistance genes. Wild Actinidia resources contain rich genetic diversity and may have powerful disease-resistance genes under long-term natural selection, but lack of knowledge about the resistance to Psa for most Actinidia species results in some excellent wild resistant genotypes being underutilized. In this study, the response to Psa of 104 wild genotypes of 30 Actinidia species (including 37 taxa) was tested with an in vitro bioassay, and a considerable number of individuals from different species with tolerance or high resistance to Psa were identified. The results showed high consistency between years. This is the first large-scale evaluation of diverse Actinidia species with resistance to Psa through an in vitro bioassay. The resistant genotypes of A. chinensis identified could be used in future kiwifruit improvement programmes. The findings should help provide an understanding of the resistance to Psa.  相似文献   

12.
Knowing the population structure of a pathogen is fundamental for developing reliable phytosanitary legislation, detection techniques, and control strategies based on the actual aggressiveness and distribution of the pathogen. Currently, four populations of Pseudomonas syringae pv. actinidiae (Psa) have been described: Psa 1, Psa 2, Psa 3 and Psa 4. However, diagnostic assays specific for Psa populations do not detect Psa 4, the less virulent (LV) strains isolated in New Zealand. Similarly, multilocus sequence typing (MLST) of housekeeping genes, or broad Psa strain genome comparisons, revealed that Psa 4‐LV strains clustered separately from other Psa populations. In order to examine whether the placement of Psa 4 in the pathovar actinidiae was appropriate, various tests were carried out. It was shown that the Psa 4‐LV strains induced leaf and shoot wilting in Prunus cerasus, extensive necrotic lesions in Capsicum annuum fruits, and no significant symptoms in Actinidia deliciosa. Moreover, repetitive‐sequence PCR fingerprinting, type III secretion system effector protein genes detection and colony morphology clearly indicated the distinctiveness of Psa 4‐LV strains from the other three Psa populations. Rep‐PCR molecular typing revealed a high similarity of the Psa 4‐LV strains with members of Pseudomonas avellanae species. The Psa 4‐LV strains, most probably, belong to a new, still unnamed pathovar. It was concluded that the Psa 4‐LV strains isolated in New Zealand do not belong to the pathovar actinidiae, and, consequently, three Psa populations pathogenic to Actinidia spp. should currently include Psa 1, Psa 2 and Psa 3.  相似文献   

13.
Bacterial canker is a major disease of Prunus avium (cherry), Prunus domestica (plum) and other stone fruits. It is caused by pathovars within the Pseudomonas syringae species complex including P. syringae pv. morsprunorum (Psm) race 1 (R1), Psm race 2 (R2) and P. syringae pv. syringae (Pss). Psm R1 and Psm R2 were originally designated as the same pathovar; however, phylogenetic analysis revealed them to be distantly related, falling into phylogroups 3 and 1, respectively. This study characterized the pathogenicity of 18 newly genome‐sequenced P. syringae strains on cherry and plum, in the field and laboratory. The field experiment confirmed that the cherry cultivar Merton Glory exhibited a broad resistance to all clades. Psm R1 contained strains with differential specificity on cherry and plum. The ability of tractable laboratory‐based assays to reproduce assessments on whole trees was examined. Good correlations were achieved with assays using cut shoots or leaves, although only the cut shoot assay was able to reliably discriminate cultivar differences seen in the field. Measuring bacterial multiplication in detached leaves differentiated pathogens from nonpathogens and was therefore suitable for routine testing. In cherry leaves, symptom appearance discriminated Psm races from nonpathogens, which triggered a hypersensitive reaction. Pathogenic strains of Pss rapidly induced disease lesions in all tissues and exhibited a more necrotrophic lifestyle than hemibiotrophic Psm. This in‐depth study of pathogenic interactions, identification of host resistance and optimization of laboratory assays provides a framework for future genetic dissection of host–pathogen interactions in the canker disease.  相似文献   

14.
Several published polymerase chain reaction (PCR) primers to identify Pseudomonas syringae pv. actinidiae, the causal organism of bacterial canker of kiwifruit, were found not to be specific. Two new sets of PCR primers, PsaF1/R2 and PsaF3/R4, were designed to be complementary to a portion of the 16S–23S rDNA intertranscribed spacer (ITS) regions. These primers amplified a DNA fragment from strains of P. syringae pv. actinidiae, but not from 56 strains of bacteria from six genera and 17 species, except for a strain of the tea pathogen, P. syringae pv. theae. When tested against DNA extracted from a further 20 strains from Japan, Korea, Italy and the USA deposited in culture collections as P. syringae pv. actinidiae, all except six cultures produced the expected product of 280 bp with PsaF1/R2 and 175 bp with PsaF3/R4. Results of multilocus sequence analysis using five housekeeping genes (gyrB, acnB, rpoD, pgi and cts) showed that none of these six strains was phylogenetically similar to P. syringae pv. actinidiae. In contrast to the P. syringae pv. actinidiae type strain, these strains were positive in the determinative tests for ice nucleation and syringomycin production. It is suggested that these six strains were incorrectly identified as P. syringae pv. actinidiae. It was not possible to distinguish P. syringae pv. actinidiae from the phylogenetically similar P. syringae pv. theae using the ITS, gyrB, acnB, rpoD, pgi or cts gene regions to design PCR primers. Because P. syringae pv. theae is unlikely to be found on kiwifruit, primers PsaF1/R2 and PsaF3/R4 are recommended for screening bacteria isolated from kiwifruit tissue.  相似文献   

15.
Pseudomonas syringae pv. actinidiae, the causal bacterium of kiwifruit canker, induces the formation of chlorotic halo lesions on infected leaves and inhibits the growth of Escherichia coli. The inhibition ofE. coli growth was shown to be reversed by L -arginine or L -citrulline, but not by L -glutamine, suggesting that the pathogen produces a toxin similar to phaseolotoxin, which inhibits ornithine carbamoyltransferase. The toxin was purified from culture broth of P. syringae pv. actinidiae strain Kw11, and was shown by nuclear magnetic resonance to be identical to phaseolotoxin. Assays based on inhibition of E. coli growth and on amplification of a phaseolotoxin fatty acid desaturase gene (ptx) fragment revealed that, among the plant pathogenic bacteria examined, the production of phaseolotoxin is restricted to strains of P. syringae pv. phaseolicola and pv.actinidiae . A non-toxigenic mutant of strain Kw11 generated by disruption of the ptx gene induced the formation of necrotic lesions on kiwifruit leaves; however, the lesions were not surrounded by a chlorotic halo as were those induced by the parent strain. The growth rate of the non-toxigenic mutant in leaf tissue was similar to that of the parent strain. These results suggest that phaseolotoxin production contributes to the formation of chlorotic halo lesions in kiwifruit canker but is not required for multiplication of the pathogenic bacterium during infection.  相似文献   

16.
猕猴桃溃疡病菌的分子检测技术研究   总被引:3,自引:0,他引:3  
 猕猴桃溃疡病是猕猴桃生产上的主要病害,为建立该病的快速诊断技术,本实验通过RAPD分析获得一条1 300 bp左右的致病菌的特异片段,对该片段进行克隆测序,在测序的基础上设计并合成一对特异引物F7/R7,优化特异引物扩增条件,并验证引物的特异性和灵敏性。利用该特异引物对包括猕猴桃溃疡病菌在内的14个菌株基因组DNA进行PCR扩增表明,只有猕猴桃溃疡病菌能扩增出1条约为950 bp的特异条带,其他菌株及对照均未扩增出特异条带。对采自果园的染病枝干组织和接种致病菌的枝干组织的检测表明,该特异引物能特异性地检测到猕猴桃溃疡病菌的存在,其在组织中的检测灵敏度为100 fg/μL。因此,利用设计合成的特异引物F7/R7,参考优化的体系和程序,结合简单的试剂盒法提取猕猴桃溃疡病菌或植物组织DNA,可以在短时间内完成对该病原菌的分子检测。  相似文献   

17.
Bacterial strains isolated from cankers of wild cherry trees (Prunus avium) in France were characterized using numerical taxonomy of biochemical tests, DNA–DNA hybridization, repeat sequence primed-PCR (rep-PCR) based on REP, ERIC and BOX sequences, heteroduplex mobility assay (HMA) of internal transcribed spacer (ITS) as well as pathogenicity on wild cherry trees and other species of Prunus. They were compared to reference strains of Pseudomonas syringae pathovars isolated from wild and sweet cherry and various host plants. Wild cherry strains were closely related to P. syringae (sensu lato) in LOPAT group Ia (+ - - - +). Wild cherry strains were pathogenic to wild cherry trees and produced symptoms similar to those observed in orchards. They were pathogenic also, but at a lesser extent, to sweet cherry trees (cv. Napoléon). The wild cherry strains were collected from five different areas in France and appeared to constitute a very homogeneous group. They showed an homogenous profile of a biochemical and physiological characteristics. They were closely related by DNA–DNA hybridization and belonged to genomospecies 3 `tomato'. Rep-PCR showed that wild cherry strains constitute a tight group distinct from P. s. pv. morsprunorum races 1 and 2 and from other P. syringae pathovars. HMA profiles indicated that the ITS of all wild cherry strains were identical but different from P. s. pv. persicae strains since the two heteroduplex bands with reduced mobility were generated by hybridization with the P. s. pv. persicae pathotype strain CFBP 1573. The 8 genomospecies of Gardan et al. (1999) have not been converted into formal species as they cannot be differentiated by biochemical tests. Therefore, the pathovar system within P. syringae was currently used. P. syringae pv. avii is proposed for this bacterium causing a wild cherry bacterial canker and strain CFBP 3846 (NCPPB 4290, ICMP 14479) is designated as the pathotype.  相似文献   

18.
由丁香假单胞菌猕猴桃致病变种Pseudomonas syringae pv. actinidiae (Psa)侵染引起的猕猴桃细菌性溃疡病(kiwifruit bacterial canker)是全球猕猴桃生产上最具毁灭性的细菌病害。为探明福建、安徽、四川和陕西4省Psa菌株的生物型和遗传多样性,用5对PCR特异性引物PsaJ-F/-R、PsaK-F/-R、Tac-F/-R、Con002-F/-R和avrRps4-F1/-R2检测Psa菌株的生物型;用4对PCR引物27F/1492R、PsaF1/PsaR2、gapA-Fps/Rps和rpoD+364s/-1222ps分别扩增16S rRNA、ITS、gapA和rpoD基因,进行多基因联合分析Psa菌株的遗传多样性。结果表明,特异性引物Tac-F/-R从47株Psa菌株中均能扩增出一条545 bp的特异条带,其他4对引物未扩增出任何条带,说明供试Psa菌株的生物型均为biovar 3。多基因联合分析表明,4省Psa存在丰富的遗传多样性,4个群体共检测出27个单倍型,单倍型多样性为0.955。安徽、福建、四川和陕西群体的单倍型数差异较大,分别为1、8、12个和12个。4个群体的多态性位点数、核苷酸多样性和平均核苷酸差异数差异极显著(P<0.01),其中福建群体的多态性最丰富,而安徽群体的多态性最低。AMOVA分析表明,3.6%的遗传变异来源于种群间,而96.4%的遗传变异来源于种群内,说明种群内变异是遗传变异的主要来源。遗传分化分析表明,安徽省Psa群体与其他3个群体间的遗传分化极高(Fst>0.175),福建、四川和陕西群体间的遗传分化水平较低(Fst<0.017)。研究结果有利于了解福建省Psa的来源,为阻断Psa的传播和猕猴桃细菌性溃疡病的长期可持续控制提供了理论参考。  相似文献   

19.
Pseudomonas syringae pv. aesculi (Psa) is an emerging bacterial pathogen responsible for a recent epidemic of bleeding canker of European horse chestnut (Aesculus hippocastanum) in northwest Europe. Very little is known about the infection biology of this pathogen, which can cause lethal cankers in the branches and stem of its host. In this study, branches and whole trees of European horse chestnut naturally infected with Psa were subjected to detailed morphological and histological examination to identify the primary infection sites, the time of infection, and the patterns of subsequent lesion expansion within the host. Lesions developed during the host dormant season on the 2003–2009 extension growth increments and were centred mainly on lenticels, leaf scars and nodes. The oldest lesion developed in the 2004/2005 dormant season and the number of new lesions increased in each subsequent year. The lesions developed in the cortex and phloem and extended into the cambium to cause cankers, but there was no evidence of necrosis in the xylem. All lesions on the branches were discrete and apparently contained by a necrophylactic periderm, although there was evidence that Psa could survive within such periderms and subsequently breach them. Examination of two whole 30‐year‐old trees revealed extensive, continuous cankers in the phloem and cambium which had formed within a single growing season. Thus, the success of Psa as a tree pathogen and the causal agent of a large‐scale epidemic may in part reflect an ability to infect the aerial woody parts of its host directly.  相似文献   

20.
The susceptibility of thirty-three pear cultivars and two pear rootstocks to four virulent strains of Pseudomonas syringae pv. syringae was evaluated by inoculating detached immature fruits and young leaves. The four strains were similarly virulent and did not show cultivar specificity although they were isolated from different pear cultivars and exhibited different biochemical profiles. The most frequently planted pear cultivars, Conference, Abate Fetel, General Leclerc, Williams, D. Comice, El Dorado, Alexandrine, B. Anjou, Passe Crassane and the rootstock OHxF 333 were susceptible to P. syringae pv. syringae. Maximal severity values were obtained on 'Preguystar' leaves (about 90%). The rootstock Winter Nelis was less susceptible. Results with immature fruit and detached leaf assays agreed with field observations on cultivar susceptibility to bacterial blast. However, the detached leaf test gave a more accurate prediction and has the advantages that symptoms develop quickly (48 h), and leaves are available for a longer period of time than fruits. This method is proposed as a rapid and reproducible screening system of cultivar susceptibility to bacterial blast of pear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号