首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since 2008, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (Psa) has resulted in severe economic losses worldwide. Four biovars of Psa can be distinguished based on their biochemical, pathogenicity and molecular characteristics. Using a range of biochemical, molecular and pathogenicity assays, strains collected in France since the beginning of the outbreak in 2010 were found to be genotypically and phenotypically diverse, and to belong to biovar 3 or biovar 4. This is the first time that strains of biovar 4 have been isolated outside New Zealand or Australia. A multilocus sequence analysis based on four housekeeping genes (gapA, gltA, gyrB and rpoD) was performed on 72 strains representative of the French outbreak. All the strains fell into two phylogenetic groups: one clonal corresponding to biovar 3, and the other corresponding to biovar 4. This second phylogenetic group was polymorphic and could be divided into four lineages. A clonal genealogy performed with a coalescent approach did not reveal any common ancestor for the 72 Psa strains. Strains of biovar 4 are substantially different from those of the other biovars: they are less aggressive and cause only leaf spots whereas Psa biovars 1, 2 and 3 also cause canker and shoot die‐back. Because of these pathogenic differences, which were supported by phenotypic, genetic and phylogenetic differences, it is proposed that Psa biovar 4 be renamed Pseudomonas syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the pathotype strain.  相似文献   

2.
Pseudomonas syringae pv. actinidiae (Psa) is a Gram‐negative bacterium that causes the bacterial canker of both green (Actinidia deliciosa) and yellow (Actinidia chinensis) fleshed kiwifruit. Since the emergence of an economically devastating Psa outbreak in Japan in the 1980s, the disease took a contagious turn causing severe economic loss to kiwifruit industries in Italy, South Korea, Spain, New Zealand and other countries. Research shows that the pathogenic strains isolated from different infected orchards vary in their virulence characteristics and have distinct genes coding for the production of different toxins. The global Psa outbreak has activated research around the world on developing efficient strategies to contain the pandemic and minimize loss to the kiwifruit industry. Chemical and biological control options, orchard management and breeding programmes are being employed in this global effort. Synergy between different disease control strategies has been recognized as important. Phytotoxicity, resistance development and regulatory measures in certain countries restrict the use of copper compounds and antibiotics, which are otherwise the mainstay chemicals against bacterial plant diseases. Therefore, because of the limitations of existing chemicals, it is important to develop novel chemical controls against Psa. Antimicrobial peptides, which are attractive alternatives to conventional antibiotics, have found promising applications in plant disease control and could contribute to expanding the chemical control tool box against Psa. This review summarizes all chemical compounds trialled so far against Psa and provides thoughts on the development of antimicrobial peptides as potential solutions for the future.  相似文献   

3.
Knowing the population structure of a pathogen is fundamental for developing reliable phytosanitary legislation, detection techniques, and control strategies based on the actual aggressiveness and distribution of the pathogen. Currently, four populations of Pseudomonas syringae pv. actinidiae (Psa) have been described: Psa 1, Psa 2, Psa 3 and Psa 4. However, diagnostic assays specific for Psa populations do not detect Psa 4, the less virulent (LV) strains isolated in New Zealand. Similarly, multilocus sequence typing (MLST) of housekeeping genes, or broad Psa strain genome comparisons, revealed that Psa 4‐LV strains clustered separately from other Psa populations. In order to examine whether the placement of Psa 4 in the pathovar actinidiae was appropriate, various tests were carried out. It was shown that the Psa 4‐LV strains induced leaf and shoot wilting in Prunus cerasus, extensive necrotic lesions in Capsicum annuum fruits, and no significant symptoms in Actinidia deliciosa. Moreover, repetitive‐sequence PCR fingerprinting, type III secretion system effector protein genes detection and colony morphology clearly indicated the distinctiveness of Psa 4‐LV strains from the other three Psa populations. Rep‐PCR molecular typing revealed a high similarity of the Psa 4‐LV strains with members of Pseudomonas avellanae species. The Psa 4‐LV strains, most probably, belong to a new, still unnamed pathovar. It was concluded that the Psa 4‐LV strains isolated in New Zealand do not belong to the pathovar actinidiae, and, consequently, three Psa populations pathogenic to Actinidia spp. should currently include Psa 1, Psa 2 and Psa 3.  相似文献   

4.
Since 2008, Pseudomonas syringae pv. actinidiae virulent strains (Psa‐V) have quickly spread across the main areas of kiwifruit (Actinidia deliciosa and A. chinensis) cultivation causing sudden and re‐emerging outbreaks of bacterial canker to both species. The disease caused by Psa‐V strains is considered worldwide as pandemic. Recently, P. syringae strains (ex Psa‐LV, now called PsD) phylogenetically related to Psa‐V have been isolated from kiwifruit, but cause only minor damage (i.e. leaf spot) to the host. The different biological significance of these bacterial populations affecting kiwifruit highlights the importance of having a diagnostic method able to detect Psa‐V, which is currently solely responsible for the severe damage to the kiwifruit industry. In order to improve the specific molecular detection of Psa‐V, a real‐time PCR assay has been developed based on EvaGreen chemistry, together with a novel qualitative PCR (PCR‐C). Both methods are based on specific primer sets for the hrpW gene of Psa. The real‐time PCR and PCR‐C were highly specific, detecting down to 50 and 200 fg, respectively, and were applied to a range of organs/tissues of kiwifruit with and without symptoms. These methods are important tools for both sanitary and certification programmes, and will help to avoid the spread of Psa‐V and to check possible inoculum sources. In addition to being used as routine tests, they will also enable the study of the biology of Psa‐V and the disease that it causes, whilst avoiding the detection of other populations of related P. syringae present in kiwifruit.  相似文献   

5.
The aim of this study was to develop a rapid, sensitive and reliable field‐based assay for detection of the quarantine pathogen Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the most destructive and economically important bacterial disease of kiwifruit. A comparative genomic approach was used on the publicly available Psa genomic data to select unique target regions for the development of two loop‐mediated isothermal amplification (LAMP) assays able to detect Psa and to discriminate strains belonging to the highly virulent and globally spreading Psa biovar 3. Both LAMP assays showed specificity in accordance with their target and were able to detect reliably 125 CFU per reaction in less than 30 min. The developed assays were able to detect the presence of Psa in naturally infected kiwifruit material with and without symptoms, thus increasing the potential of the LAMP assays for phytosanitary use.  相似文献   

6.
Bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae (Psa), is a disease that is spreading rapidly in several kiwifruit‐producing countries, causing significant economic losses. In 2011, it was detected for the first time in Spain, in the south of Galicia (northwest Spain). Kiwifruit orchards were therefore inspected and sampled in 2011 and 2012 to determine the pathogen distribution, and the isolates obtained were characterized by morphology, fatty acids profile, biochemical tests and molecular techniques. Isolates were obtained from Actinidia deliciosa ‘Hayward’ (from leaves, canes, flower buds, fruits and roots), from A. deliciosa ‘Summer’, from Actinidia chinensis ‘Jin Tao’ (from canes and leaves) and from A. chinensis pollinator ‘Belén’ (from canes). Results of the analysis of the cfl gene (phytotoxin production‐related), the tox–argK gene cluster and phylogenetic analysis of the cts gene demonstrated that all Psa isolates from northwest Spain correspond to the Psa3 population, which includes strains of haplotype 2. This is the first record of Psa3 and haplotype 2 in Spain.  相似文献   

7.
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a catastrophic disease that threatens the global kiwifruit industry. As yet, no cure has been developed. Planting resistant cultivars is considered as one of the most effective ways to control Psa. However, most existing cultivars lack Psa-resistance genes. Wild Actinidia resources contain rich genetic diversity and may have powerful disease-resistance genes under long-term natural selection, but lack of knowledge about the resistance to Psa for most Actinidia species results in some excellent wild resistant genotypes being underutilized. In this study, the response to Psa of 104 wild genotypes of 30 Actinidia species (including 37 taxa) was tested with an in vitro bioassay, and a considerable number of individuals from different species with tolerance or high resistance to Psa were identified. The results showed high consistency between years. This is the first large-scale evaluation of diverse Actinidia species with resistance to Psa through an in vitro bioassay. The resistant genotypes of A. chinensis identified could be used in future kiwifruit improvement programmes. The findings should help provide an understanding of the resistance to Psa.  相似文献   

8.
由丁香假单胞菌猕猴桃致病变种Pseudomonas syringae pv. actinidiae (Psa)侵染引起的猕猴桃细菌性溃疡病(kiwifruit bacterial canker)是全球猕猴桃生产上最具毁灭性的细菌病害。为探明福建、安徽、四川和陕西4省Psa菌株的生物型和遗传多样性,用5对PCR特异性引物PsaJ-F/-R、PsaK-F/-R、Tac-F/-R、Con002-F/-R和avrRps4-F1/-R2检测Psa菌株的生物型;用4对PCR引物27F/1492R、PsaF1/PsaR2、gapA-Fps/Rps和rpoD+364s/-1222ps分别扩增16S rRNA、ITS、gapA和rpoD基因,进行多基因联合分析Psa菌株的遗传多样性。结果表明,特异性引物Tac-F/-R从47株Psa菌株中均能扩增出一条545 bp的特异条带,其他4对引物未扩增出任何条带,说明供试Psa菌株的生物型均为biovar 3。多基因联合分析表明,4省Psa存在丰富的遗传多样性,4个群体共检测出27个单倍型,单倍型多样性为0.955。安徽、福建、四川和陕西群体的单倍型数差异较大,分别为1、8、12个和12个。4个群体的多态性位点数、核苷酸多样性和平均核苷酸差异数差异极显著(P<0.01),其中福建群体的多态性最丰富,而安徽群体的多态性最低。AMOVA分析表明,3.6%的遗传变异来源于种群间,而96.4%的遗传变异来源于种群内,说明种群内变异是遗传变异的主要来源。遗传分化分析表明,安徽省Psa群体与其他3个群体间的遗传分化极高(Fst>0.175),福建、四川和陕西群体间的遗传分化水平较低(Fst<0.017)。研究结果有利于了解福建省Psa的来源,为阻断Psa的传播和猕猴桃细菌性溃疡病的长期可持续控制提供了理论参考。  相似文献   

9.
Journal of General Plant Pathology - Loop-mediated isothermal amplification (LAMP) was designed to rapidly detect biovars 1 and 3 of Pseudomonas syringae pv. actinidiae (Psa), a serious, global...  相似文献   

10.
The susceptibility of thirty-three pear cultivars and two pear rootstocks to four virulent strains of Pseudomonas syringae pv. syringae was evaluated by inoculating detached immature fruits and young leaves. The four strains were similarly virulent and did not show cultivar specificity although they were isolated from different pear cultivars and exhibited different biochemical profiles. The most frequently planted pear cultivars, Conference, Abate Fetel, General Leclerc, Williams, D. Comice, El Dorado, Alexandrine, B. Anjou, Passe Crassane and the rootstock OHxF 333 were susceptible to P. syringae pv. syringae. Maximal severity values were obtained on 'Preguystar' leaves (about 90%). The rootstock Winter Nelis was less susceptible. Results with immature fruit and detached leaf assays agreed with field observations on cultivar susceptibility to bacterial blast. However, the detached leaf test gave a more accurate prediction and has the advantages that symptoms develop quickly (48 h), and leaves are available for a longer period of time than fruits. This method is proposed as a rapid and reproducible screening system of cultivar susceptibility to bacterial blast of pear.  相似文献   

11.
Frost occurs in all major areas of cultivation, presenting a threat for the production of kiwifruit crops worldwide. A series of experiments were performed on 1‐year‐old, potted plants or excised twigs of Actinidia chinensis and A. deliciosa to verify whether strict relationships exist between bacterial canker outbreaks from Pseudomonas syringae pv. actinidiae (Psa) attacks and the occurrence of autumn and winter frost events. The association between the occurrence of autumn frost and the sudden outbreak of bacterial canker in A. chinensis in central Italy has been confirmed. Both autumn and winter frosts promote Psa multiplication in the inoculated twigs of both species. The day after the frost, reddish exudates oozing from the inoculation sites were consistently observed in both species, and Psa was re‐isolated in some cases. During the thawing of both A. deliciosa and A. chinensis twigs, the 2‐cm upward and downward migration of Psa from the inoculation site was observed within 3 min, and the leaves were consistently colonized with the pathogen. A consistent brown discoloration, accompanied with a sour‐sap odour, was observed throughout the length of the excised twigs of both Actinidia species after Psa inoculation and winter frost. Psa inoculation induced a remarkably higher necrosis in excised twigs that were not frozen compared with P. s. pv. syringae inoculation. Antifreeze protection using irrigation sprinklers did not influence the short‐term period of Psa and P. s. pv. syringae multiplication in both A. deliciosa and A. chinensis twigs. Thus, the damage from frost, freeze thawing and the accumulation of Psa in Actinidia twigs promotes the migration of the pathogen within and between the orchards. Taken together, the results obtained in this study confirmed that A. deliciosa is more frost tolerant than A. chinensis, autumn frosts are more dangerous to these crops than winter frosts, and in the absence of Psa, young kiwifruit plants remain sensitive to frost.  相似文献   

12.
利用叠氮溴乙锭(ethidium monoazide bromide,EMA)与实时荧光定量PCR技术相结合(EMA-qPCR),建立了一种有效快速检测猕猴桃溃疡病菌活菌的方法。以猕猴桃溃疡病菌ITS序列为检测靶标,菌体经EMA渗透处理,再进行qPCR特异性扩增。结果显示,qPCR检测灵敏度为2cfu;当EMA的浓度为2.0μg/mL时,能有效抑制1.0×10~7 cfu/mL经高温灭活的死菌的扩增,对活菌的扩增没有影响。当活菌数在1.0×10~1~1.0×10~5 cfu范围内,每个qPCR反应体系中活菌数与Ct值呈线性相关(R~2=0.988)。不同温度处理活菌菌悬液后用EMA-qPCR检测猕猴桃溃疡病菌的存活情况并与平板计数法进行比较,结果表明待检样品可在4℃和20℃短期保存。对疑似带病猕猴桃材料进行EMA-qPCR检测,结果表明能减少猕猴桃溃疡病菌PCR的假阳性结果。本研究建立的EMAqPCR方法是一种有效检测猕猴桃溃疡病菌活菌的方法,能有效避免PCR检测实际样品可能造成的假阳性结果。  相似文献   

13.
Copper-containing bactericides have been used to control bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae. However, the efficacy of copper has been reduced by the occurrence of copper-resistant strains. Analysis of the DNA sequence of a cluster region containing the copper-resistance genes from P. syringae pv. actinidiae suggested the presence of three possible different systems for copper resistance: copper-trapping, copper-efflux and copper-transport systems. Transposon insertional inactivation analysis indicated that the copper-trapping system was essential for copper resistance.  相似文献   

14.
猕猴桃品种酚类物质及可溶性蛋白含量与抗溃疡病的关系   总被引:4,自引:0,他引:4  
以安徽省猕猴桃主栽品种金魁、早鲜、魁蜜、华美2号、秦美、金丰为研究对象,于展叶孕蕾期分别取发病的枝条、叶片,以未发病健株的相应组织为对照,分析枝条、叶片中酚类物质和可溶性蛋白的含量变化。结果表明:抗病品种健株枝条、叶片中可溶性蛋白含量显著高于易感病品种,说明枝条中可溶性蛋白含量与品种抗性成正相关。自然发病后,感病品种枝条中可溶性蛋白含量增加,抗病品种可溶性蛋白含量降低。抗病品种健枝条、叶片中酚类物质含量高于易感病品种的健枝、叶,发病后抗感品种酚类物质含量都增加。  相似文献   

15.
Bleeding canker of European horse chestnut, caused by the pathogenic bacterium Pseudomonas syringae pv. aesculi (Pae), is now an established disease throughout several countries in northwest Europe after first emerging in 2001–2002. Pae infects the woody branches of horse chestnut directly via natural discontinuities in the bark, such as lenticels, leaf scars and leaf traces, and nodes. However, the timing of infection in relation to seasonality of host development, and the dispersal mechanisms of Pae, in particular its ability to survive and spread in soil and water, remains unknown. In this study, infection of freshly cut horse chestnut shoots by Pae was assessed at monthly intervals over a 12 month period. Pae infected the greatest numbers of lenticels and leaf scars of horse chestnut when inoculated onto actively elongating shoots in spring and early summer, whereas lesion extension from artificial wound sites was greatest after inoculation during early dormancy. Soil survival experiments showed that Pae was still detectable and viable after 50 weeks' incubation in sterile soil and 41 weeks' incubation in nonsterile soil in the absence of host debris. Pae also remained viable and pathogenic after 1 year's storage in King's B broth at ?20 and ?80°C, and was not killed by freeze/thaw treatments. Thus Pae is able to survive independently for extended periods in soil and water, and can tolerate lengthy periods of freezing at very low temperatures. Such information may facilitate a greater understanding of the epidemiology and spread of Pae in northern Europe.  相似文献   

16.
猕猴桃溃疡病菌biovar 3群体MLVA分型技术的建立与应用   总被引:1,自引:0,他引:1  
 丁香假单胞菌猕猴桃致病变种生物型3(Pseudomonas syringae pv. actinidiae biovar 3,Psa3)是猕猴桃溃疡病菌的世界流行群体,但仅在中国存在复杂的遗传多样性。开发适于Psa3群体分型的MLVA(multilocus variable-number tandem-repeat analysis)技术是探索中国Psa3起源与流行学特性的基础。本研究对7个Psa3菌株进行了全基因组测序,结合已公布的86个全基因组数据,进行比较分析发现,中国Psa3至少存在7个亚群;在各亚群间存在多态性的24个串联重复序列中,其中10个可以通过琼脂糖凝胶电泳区分开且变异指数合适,据此建立了适于Psa3的MLVA技术。采用该技术对分别来自贵州和陕西的62和9个Psa3菌株进行群体分型,分型结果与全基因组分析高度一致,证明该MLVA体系分型准确。MLVA分型结果表明:贵州主产区修文县Psa3有3个MLVA群体,其中亚群4的组内分化明显,代表最早发生的群体;而亚群 1和3的结构单一,且多在新果园发现,是新传入群体。总之,本研究建立了一套可用于Psa3群体分型的MLVA技术,将有助于解析中国各猕猴桃产区Psa3群体结构,以及探索中国Psa3的起源、传播和流行学特征。  相似文献   

17.
 丁香假单胞菌猕猴桃致病变种生物型3(Pseudomonas syringae pv. actinidiae biovar 3,Psa3)是猕猴桃溃疡病菌的世界流行群体,但仅在中国存在复杂的遗传多样性。开发适于Psa3群体分型的MLVA(multilocus variable-number tandem-repeat analysis)技术是探索中国Psa3起源与流行学特性的基础。本研究对7个Psa3菌株进行了全基因组测序,结合已公布的86个全基因组数据,进行比较分析发现,中国Psa3至少存在7个亚群;在各亚群间存在多态性的24个串联重复序列中,其中10个可以通过琼脂糖凝胶电泳区分开且变异指数合适,据此建立了适于Psa3的MLVA技术。采用该技术对分别来自贵州和陕西的62和9个Psa3菌株进行群体分型,分型结果与全基因组分析高度一致,证明该MLVA体系分型准确。MLVA分型结果表明:贵州主产区修文县Psa3有3个MLVA群体,其中亚群4的组内分化明显,代表最早发生的群体;而亚群 1和3的结构单一,且多在新果园发现,是新传入群体。总之,本研究建立了一套可用于Psa3群体分型的MLVA技术,将有助于解析中国各猕猴桃产区Psa3群体结构,以及探索中国Psa3的起源、传播和流行学特征。  相似文献   

18.
A total of 101 Pseudomonas syringae pv. syringae strains, obtained from international culture collections or isolated from diseased tissues of herbaceous and woody plant species, were assessed by repetitive PCR using the BOX primer, and for the presence of the syrB gene. Representative strains were also tested for pathogenicity to lilac, pear, peach, corn and bean, as well as for virulence to lemon and zucchini fruits. The unweighted pair-group method using arithmethic averages analysis (UPGMA) of genomic fingerprints revealed 17 different patterns which grouped into three major clusters, A, B and C. Most of the strains (52·4%) were included in patterns 1–4 of group A. These patterns comprised strains obtained from either herbaceous or woody species, and showed four fragments of similar mobility. Genetic variability was ascertained for strains isolated from apple, pear, apricot, Citrus spp. and cereals. No clear relationship was observed between host plant and bacterial genomic fingerprint. Variability was also observed in pathogenicity and virulence tests. The inoculation of pear leaves discriminated strains isolated from pear as well as the very aggressive strains, whereas inoculation of lilac, peach and corn did not discriminate the host plant from which the strains were originally isolated. Lemon fruit inoculation proved very effective for P. syringae pv. syringae virulence assessment. The syrB gene was present in almost all strains.  相似文献   

19.
Pseudomonas savastanoi pv. savastanoi (Psav) is a member of P. syringae sensu lato, and causes olive knot disease, a disease first reported over 2000 years ago. Analysing 124 isolates of Psav from 15 countries by rep‐PCR, the population genetic structure of Psav was investigated. A total of 113 distinct fingerprints were detected. Cluster analysis revealed the existence of two clusters and four subclusters. These clusters were associated with the geographic origin of isolates, which in turn correspond to historic human migration events and trade routes across the Mediterranean Sea. In contrast, multilocus sequence typing (MLST) of 2788 bp of the gapA, gltA, gyrB and rpoD genes found only one variable site among 77 representative isolates. Virulence variation was observed within the Psav population, with the most virulent strains generating knots that had a weight that was 10‐fold greater than those generated by the least virulent strains. Taken together, these data suggest that today's Psav population is the result of clonal expansion of a single strain, that moderate migration of the pathogen occurred between countries, and that changes in virulence arose during its evolution.  相似文献   

20.
Efficient control of Xanthomonas axonopodis pv. dieffenbachiae, the causal agent of anthurium bacterial blight, requires sensitive and reliable diagnostic tools. The European standard EN ISO 16140:2003 has been followed to compare a nested PCR assay (N‐PCR) to a reference method (isolation and serological identification of bacterial colonies) and to other alternative serological detection methods. The evaluation was performed in two steps: a comparative study and a collaborative study involving 15 European laboratories. Although inclusivity was maximal (100%) for all methods, a maximal exclusivity was obtained only with N‐PCR followed by an enzymatic restriction digestion of the amplicons. Exclusivity indices of 90·6, 88·7 and 47·2% were found for indirect ELISA, immunofluorescence and double antibody sandwich ELISA, respectively. An exclusivity of 92·5% was obtained with the reference method, further increased to 100% if pathogenicity tests were performed as a supplemental assay. The best level of sensitivity (relative detection level) was obtained with the reference method followed by the N‐PCR assay. The N‐PCR performance in terms of relative accuracy, accordance and concordance was very similar to that of the reference method. Moreover, N‐PCR had undeniable advantages compared to the reference method (less labour‐intensive and less time‐consuming). In addition, post‐test probabilities of infection were calculated to select the most appropriate detection scheme related to the prevalence of the pathogen. The N‐PCR assay has since been included in a revised version of the EPPO detection protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号