首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is a disease of crucifer crops. The objective of this study was to characterize races of Xcc, their distribution and genetic diversity in India. Two hundred and seventeen isolates of bacteria were obtained from 12 different black rot‐infected crucifer crops from 19 states of India; these were identified as Xcc based on morphology, hrpF gene and 16S rRNA gene based molecular markers and pathogenicity tests. Characterization of races was performed by using a set of seven differential crucifer hosts, comprising two cultivars of turnip (Brassica rapa var. rapa) and cultivars of Indian mustard (B. juncea), Ethiopian mustard (B. carinata), rapeseed mustard (B. napus), cauliflower (B. oleracea) and Savoy cabbage (B. oleracea var. sabauda). Races 1, 4 and 6 of Xcc were identified and, among these races, race 1 followed by race 4 dominated most of the states of India. Genetic diversity of the Indian isolates of Xcc was analysed using repetitive sequence‐based PCR (rep‐PCR) including primers for REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX (amplifying with BOX A1 R primer) repetitive elements. This method of fingerprinting grouped the isolates into 56 different DNA types (clusters) with a 75% similarity coefficient. Among these clusters, DNA types 22 and 53 contained two different races 1 and 4, whereas DNA type 12 contained races 1, 4 and 6. However, no clear relationship was observed between fingerprints and races, hosts or geographical origin.  相似文献   

2.
Xanthomonas campestris pv. musacearum (Xcm) is the causal agent of banana xanthomonas wilt, a major threat to banana production in eastern and central Africa. The pathogen is present in very high levels within infected plants and can be transmitted by a broad range of mechanisms; therefore early specific detection is vital for effective disease management. In this study, a polyclonal antibody (pAb) was developed and deployed in a lateral flow device (LFD) format to allow rapid in‐field detection of Xcm. Published Xcm PCR assays were also independently assessed: only two assays gave specific amplification of Xcm, whilst others cross‐reacted with non‐target Xanthomonas species. Pure cultures of Xcm were used to immunize a rabbit, the IgG antibodies purified from the serum and the resulting polyclonal antibodies tested using ELISA and LFD. Testing against a wide range of bacterial species showed the pAb detected all strains of Xcm, representing isolates from seven countries and the known genetic diversity of Xcm. The pAb also detected the closely related Xanthomonas axonopodis pv. vasculorum (Xav), primarily a sugarcane pathogen. Detection was successful in both naturally and experimentally infected banana plants, and the LFD limit of detection was 105 cells mL?1. Whilst the pAb is not fully specific for Xcm, Xav has never been found in banana. Therefore the LFD can be used as a first‐line screening tool to detect Xcm in the field. Testing by LFD requires no equipment, can be performed by non‐scientists and is cost‐effective. Therefore this LFD provides a vital tool to aid in the management and control of Xcm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号