首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were carried out in controlled environment rooms reflecting field situations. In the presence of the devastating soilborne pathogen Phytophthora clandestina, subterranean clover (Trifolium subterraneum) seedling emergence was significantly affected by moisture, soil type, temperature and cultivar. The level of rotting of tap and lateral roots was significantly affected by nutrition, soil type, temperature and cultivar. There were significant interactions involving temperature, moisture, soil type and cultivar; cultivar resistance, high moisture, high or medium temperature, high nutrition and sand soil all contributed towards less pre‐emergence damping‐off and tap and lateral root disease and to greater clover productivity. Host resistance of subterranean clover cultivars was critical for reducing disease severity and increasing productivity, even when favourable environmental conditions for severe disease occurred. In the presence of P. clandestina, the most resistant cultivar, Seaton Park, performed best under a high temperature, high nutrition and high moisture combination, but showed lower productivity under conditions of low nutrition or lower temperature, even when moisture level was high. In contrast, less resistant cultivars Riverina and Meteora had less disease and greater productivity under low moisture conditions. Findings reflect field observations that pre‐emergence damping‐off and root disease from P. clandestina in subterranean clover is particularly severe under colder conditions and in nutritionally impoverished sandy soils, and demonstrate how variations in soil type, nutrition, moisture, temperature and cultivar have profound effects on the expression and severity of phytophthora pre‐emergence damping‐off and root disease and the productivity of subterranean clover forages.  相似文献   

2.
Studies were undertaken to examine the potential for manipulating the ecosystem by altering forage species composition, intensity of grazing or by adding Rhizobium, to enhance productivity of subterranean clover (Trifolium subterraneum) forages affected by the soilborne pathogens Pythium irregulare and Rhizoctonia solani. Levels of tap and lateral root disease on clover and its productivity were differentially and significantly affected by the relative proportions of clover to annual ryegrass (Lolium rigidum). In the presence of P. irregulare, both tap and lateral root disease decreased as percentage clover composition increased (R2 = 0.58, 0.59, respectively); there was no such significant effect in the presence of R. solani (R2 = 0.08, 0.18, respectively). Increasing and maintaining high clover content in forage offers a means to both reduce root disease and increase productivity and forage legume stand persistence. With simulated grazing studies, continuous (i.e. intensive) grazing in the presence of P. irregulare resulted in the most severe tap and lateral root disease, poorest nodulation and smallest roots and shoots compared with intermittent grazing. Hence, reducing grazing intensity also offers potential for significantly increasing productivity of root-rot-affected clover forage. For Rhizobium studies, nodulation was reduced in the presence of P. irregulare or R. solani; the extent of this was dependent upon which pathogen and the clover variety. Overall, these different studies highlight significant potential for manipulating the ecosystem to better manage soilborne pathogen complexes and improve productivity and persistence in annual legume forage systems adversely affected by soilborne oomycete and fungal pathogens.  相似文献   

3.
The consequence of 10 successive monocultural cycles involving different legume species/cultivars on the inoculum potential (IP) of soils naturally infested by Aphanomyces euteiches was investigated under greenhouse conditions. The results showed that the IP of a soil naturally infested by A. euteiches can be significantly modified not only by the non‐host or host status of crop species but also by the level of resistance of the cultivar. Susceptible species/cultivars (pea, lentil and susceptible cultivars of vetch and faba bean) are very favourable to pathogen multiplication, and continuous cultivation of each of these increased the IP values of a soil with a moderate initial IP (from 1·9 to 3·5 after 10 cycles). Conversely, non‐host species and resistant cultivars of vetch or faba bean contributed to reducing the IP values of soils irrespective of the initial IP (from 1·9 to 0·5 and from 4 to 2, respectively, after 10 cycles). Aphanomyces root rot severity values on the resistant legume species/cultivars were not affected by the successive cultural cycles. This study, which showed that the IP of A. euteiches in soil can be reduced by planting appropriate legume species and cultivars in greenhouse conditions, will be useful for defining better crop successions for legumes.  相似文献   

4.
The relation between the frequency of legume crops in a rotation and the root rot severity in pea was examined in a field survey. Additionally, greenhouse experiments were performed with soil samples from legume rotation trials or from farmers' fields. The frequency of pea crops in current rotations proved to be much less than the recommended value of one in six years. The correlation between pea root rot and the number of years that pea or other legumes were not grown on the field under consideration (called crop interval) was weak. Root rot severity correlated better with the frequency of peas or legumes in general over a period of 18 years, but the frequency still explained only a minor fraction of the variation in disease index. Some experimental data pointed to the occurrence of a highly specific pathogen microflora with continuous cropping of only one legume species, but this phenomenon probably does not occur in farmers' fields. In field samples, root disease index for pea correlated well with that for field bean. The survival of resting structures of pathogens such asAphanomyces euteiches probably explains why the frequency of legume cropping has a higher impact than crop interval on root disease incidence. Pea-free periods and legume frequencies have a poor predictive value for crop management purposes.  相似文献   

5.
ABSTRACT Relatively little is known about the population biology of the legume pathogen Aphanomyces euteiches. A. euteiches is a soilborne pathogen causing Aphanomyces root rot of several legumes, including alfalfa, bean, lentil, and pea. Our objectives were to assess the degree of diversity, selfing, and population differentiation in A. euteiches. We contrasted populations within and among two geographically separated fields with a history of pea production. Molecular genotyping relied on amplified fragment length polymorphism analysis. Samples of A. euteiches recovered from two fields in northeast Oregon and western Washington confirmed previous reports of moderately high genetic diversity in populations of A. euteiches at the regional scale, but revealed higher-than-expected genotypic diversity within individual soil samples. Populations of A. euteiches were significantly differentiated at the soil sample, field, and regional level. The population structure appears to be patterned by regular selfing via oospores, a mixed reproductive system including both asexual and sexual reproduction, with occasional migration of novel genotypes or outcrossing.  相似文献   

6.
Alfalfa (Medicago sativa) is one of several legumes that is affected by Aphanomyces root rot (ARR) caused by Aphanomyces euteiches. Symptoms of ARR on alfalfa seedlings include a yellow-grey discolouration of roots, rotting and loss of lateral roots, stunted growth, chlorotic foliage and reduction of nitrogen-producing nodules on roots. Infection can also occur on adult plants leading to loss of lateral roots and nodules. At the seedling stage, ARR decreases alfalfa stand establishment, and field longevity is reduced when adult plants are infected. A. euteiches is an oomycete pathogen that has motile zoospores and thick-walled oospores that can survive for many years in soil. Two races are currently recognized by pathogenicity on differential alfalfa check cultivars. Most alfalfa cultivars contain race 1 resistance, but there is an increasing development of cultivars with resistance to race 2. Management strategies include planting resistant cultivars, avoiding planting in fields with poor drainage and rotating crops with nonhost plants.  相似文献   

7.
Subterranean clover (Trifolium subterraneum) is an important pasture legume in Australia (29 million ha) and elsewhere. However, severe pasture decline occurs in association with several root pathogens, including Aphanomyces trifolii, that has been misidentified for decades as A. euteiches until recently confirmed as A. trifolii. A series of controlled environment experiments was undertaken to identify host resistance to A. trifolii in subterranean clover and to compare virulence and phylogeny of isolates. In experiment 1, Dalkeith, Bacchus Marsh, Riverina and Yarloop were the most resistant of 38 cultivars with a percentage disease index (PDI) ≤10 for both tap and lateral roots. Experiment 2 confirmed resistance of Yarloop, but a change in some relative varietal resistances suggested physiological specialization among A. trifolii isolates. Experiment 3 confirmed extensive variation in virulence and physiological specialization across 23 isolates of A. trifolii, with three distinct clades, two of which were distinct from isolates collected previously. Experiment 4 identified host resistance(s) effective against a mixture of 20 A. trifolii isolates, but the most resistant cultivars (Antas, Uniwager, Leura) still showed significant disease. This is the first study to show physiological specialization in A. trifolii and to identify host resistance. This study defines A. trifolii as a significant but largely unknown contributor to severe root disease of subterranean clover in southern Australia. Finally, development and calibration of a new soil commercial DNA test not only enables field quantification of the disease, but development of appropriate breeding, selection and farm management strategies to reduce its impact.  相似文献   

8.
The susceptibility/resistance to Aphanomyces euteiches of various genotypes (cultivars and breeding lines) of several grain legume species was assessed in controlled conditions. A total of 279 genotypes from the major grain legumes grown in temperate climates (faba bean, chickpea, lentil, lupin and common vetch) and three other legumes frequently cultivated in France (French bean, clover and alfalfa) were screened with one pea-infecting isolate from France. Four different categories of susceptibility/resistance were identified among the legume species/cultivars tested with the pea A. euteiches isolate: (1) susceptible legume species (lentil, alfalfa, French bean) among which low levels of partial resistance was observed; (2) legume species including susceptible genotypes and genotypes with high levels of resistance (common vetch, faba bean and clover), (3) species with a very high level of resistance (chickpea) and (4) species displaying no symptoms (lupin). It is therefore important to consider pathogen-species and pathogen-genotype interactions when defining the host specificity of A. euteiches and considering the possible role of different legume species in increasing or decreasing the soil inoculum potential.  相似文献   

9.
Controlled‐environment and field experiments were done to quantify the individual contribution of seed‐tuber and soilborne inoculum of Colletotrichum coccodes in causing black dot disease of potato tubers. Seed‐tuber and soilborne inocula of C. coccodes were quantified using an existing real‐time PCR assay and related to subsequent incidence and severity of disease. In four field trials, a controlled‐environment experiment and through the monitoring of 122 commercial crops, seed‐tuber inoculum was found to be relatively less important than soilborne inoculum in causing black dot, and the level of seed‐tuber inoculum did not significantly affect either the incidence or severity of disease or the percentage of progeny tubers deemed unmarketable. By contrast, soilborne inoculum had the potential to result in high levels of disease and the level of C. coccodes soil infestation (pg DNA g?1 soil) was found to have a significant effect. At soil infestation levels below 100 pg DNA C. coccodes g?1 soil, 7% of commercial crops had an incidence of black dot greater than 20%, increasing to 40% and 57% of crops at levels of 100–1000 pg g?1 and >1000 pg g?1 soil, respectively. These arbitrary threshold levels for soilborne inoculum related to disease risk are discussed. Interpretation of disease risk based on inoculum levels must, in the future, be informed by agronomic variables and potential control strategies.  相似文献   

10.
Clubroot, a disease of Brassicaceae species, is caused by the soilborne pathogen Plasmodiophora brassicae. High soil water content was previously described to favour the motility of zoospores and their penetration into root cells. In this study, the effect of irrigation regimes on clubroot development during the post‐invasive secondary phase of infection was investigated. Three irrigation regimes (low, standard, high) were tested on two Arabidopsis accessions, Col‐0 (susceptible) and Bur‐0, a partially resistant line. In Col‐0, clubroot symptoms and resting spore content were higher under the ‘low irrigation’ regime than the other two regimes, thus enhancing the phenotypic contrast between the two Arabidopsis accessions. Clubroot severity under high and low irrigation regimes was evaluated in near‐isogenic lines derived from a Col‐0 ×  Bur‐0 cross, to assess the effect of soil moisture on the expression of each of four quantitative trait loci (QTL) controlling partial resistance. The presence of the Bur‐0 allele at the QTL PbAt5.2 resulted in reduced severity only under low irrigation, whereas the Bur‐0 allele at QTL PbAt5.1 was associated with partial resistance only under high irrigation. QTL PbAt4 reduced the number of resting spores in infected roots, but was not associated with reduced clubroot symptoms. The results indicated that soil moisture could have consequences for the secondary phase of clubroot development, depending on plant genotype. Future genetic studies may benefit from using combinations of watering conditions during the secondary stage of infection, thus opening up the possibility of identifying genetic factors expressed under specific environmental conditions.  相似文献   

11.
The effects of biofumigation using a Brassica juncea (mustard) cover crop on the dynamics of rhizoctonia root rot of sugar beet were recorded in two field trials in 2007 and 2008, and analysed using epidemiological modelling. Differences between partial biofumigation, involving the pulling up of mustard plants, and complete biofumigation, involving the crushing and incorporation of mustard residues into the soil, were compared with bare soil treatment. An epidemiological model was used that includes rates of transmission of primary and secondary infection, pre‐emergence damping off, and expression of wilting symptoms (above‐ground disease) due to infected roots (below‐ground disease). The model indicated that biofumigation reduces the transmission of primary infections but affects secondary infections in a variable pattern between field trials. Likewise, the proportion of infected plants expressing wilting was significantly reduced, by 28%, in the partial and complete biofumigation treatments compared with bare soil in the trial of 2007 but not in 2008. It is suggested that the effects of biofumigation on secondary infection and the expression of disease are more variable than those on primary infection, and that this is probably due to an interplay between pathogen, antagonists, host, and environmental factors. These interactions may or may not offset the benefits afforded by a reduction in primary infection and account for the overall variable success of biofumigation to control disease.  相似文献   

12.
Kauri (Agathis australis), which is one of the world's largest and longest-living conifer species, is under threat from a root and collar dieback disease caused by the oomycete pathogen Phytophthora agathidicida. The noted incidence of kauri dieback has increased in the past decade, and even trees >1000 years old are not immune. This disease has profound effects on both forest ecosystems and human society, particularly indigenous Māori, for whom kauri is a taonga or treasure of immense significance. This review brings together existing scientific knowledge about the pathogen and the devastating disease it causes, as well as highlighting important knowledge gaps and potential approaches for disease management. The life cycle of P. agathidicida is similar to those of other soilborne Phytophthora pathogens, with roles for vegetative hyphae, zoospores and oospores in the disease. However, there is comparatively little known about many aspects of the biology of P. agathidicida, such as its host range and disease latency, or about the impact on the disease of abiotic and biotic factors such as soil health and co-occurring Phytophthora species. This review discusses current and emerging tools and strategies for surveillance, diagnostics and management, including a consideration of genomic resources, and the role these play in understanding the pathogen and how it causes this deadly disease. Key aspects of indigenous Māori knowledge, which include rich ecological and historical knowledge of kauri forests and a holistic approach to forest health, are highlighted.  相似文献   

13.
Alternatives to soil fumigation are needed for soilborne disease control. The aim of this study was to test anaerobic soil disinfestation (ASD) as an alternative to soil fumigation for control of critical soilborne pathogens in Californian strawberry production. Controlled environment experiments were conducted at 25 and 15 °C to test different materials as carbon sources for ASD using soil inoculated with Verticillium dahliae. Field trials were conducted in three locations comparing ASD with 20 Mg ha?1 rice bran (RB) against fumigated and untreated controls, steam, mustard seed meal and fish emulsion. In ASD‐treated soils, temperature and extent of anaerobic conditions were critical for control of V. dahliae, but multiple carbon inputs reduced inoculum by 80–100%. In field trials, ASD with RB provided control of a number of pathogens, and in three of four trials produced marketable fruit yields equivalent to fumigation. Little weed control benefit from ASD was found. ASD with RB also induced changes in the soil microbiome that persisted through the growing season. When equivalent yields were obtained, net returns above harvest and treatment costs with ASD RB were 92–96% of those with bed fumigation based on average prices over the previous 5 years. ASD can be a viable alternative for control of some soilborne pathogens. Growers are adopting ASD in California strawberry production, but research to determine optimal soil temperatures, anaerobicity thresholds and carbon sources for effective control of specific pathogens is needed.  相似文献   

14.
Aphanomyces root rot ( Aphanomyces euteiches ) has become a very destructive disease in French pea crops since 1993. The host specificity of the French pea-infecting populations of this pathogen was investigated by inoculating pea, common vetch, alfalfa, broad bean and green bean with 91 pea-infecting A. euteiches isolates, originating from the main areas of infestation in France. These isolates were compared to 13 isolates from various countries and hosts (pea, green bean, alfalfa). Virulence phenotypes were defined according to the pathogenicity data on the different hosts: all isolates from France infected two to five legume species, with most infecting pea, vetch, alfalfa and broad bean. Four pathotypes were characterized within the French isolates: one type corresponded to broad host range isolates, the second was composed of isolates preferentially agressive on pea/vetch/alfalfa and weakly aggressive on broad bean, and two others corresponding to more specialized isolates that preferentially infected pea/vetch or pea/vetch/alfalfa. Most isolates from France were preferentially pathogenic on pea, like the pea-infecting isolates from other countries, but were less specialized than the alfalfa- and green bean-infecting isolates from other countries. These results suggest that A. euteiches isolates may be maintained on wild or cultivated legumes other than pea in France.  相似文献   

15.
Soilborne potato diseases and soil microbial community characteristics were evaluated over 8 years in different potato cropping systems designed to address specific management goals of soil conservation, soil improvement and disease suppression. Results were compared to a standard rotation and non‐rotation control in field trials in Maine. Standard rotation consisted of barley underseeded with red clover, followed by potato (2‐year). Soil‐conserving system (SC) featured an additional year of forage grass and reduced tillage (3‐year, barley/timothy–timothy–potato). Soil‐improving system (SI) added yearly compost amendments to SC, and the disease‐suppressive system (DS) featured crops with known disease‐suppressive capability (3‐year, mustard/rapeseed–sudangrass/rye–potato). Systems were established in 2004, evaluated with and without irrigation, and actively managed until 2010, with potato also planted in 2011 and 2012 to examine residual effects. All rotations reduced soilborne diseases black scurf and common scab, and increased yield after one rotation cycle (3 years), but diseases increased overall after two rotation cycles. DS maintained lower soilborne disease levels than all other rotations, as well as high yields, throughout the study. Cropping system effects became more pronounced after multiple cycles. SI system and irrigation both resulted in higher yields, but also higher levels of soilborne disease. Cropping system and irrigation effects were significant even after systems were no longer maintained. Soil microbial community data showed significant changes associated with cropping system, and differences increased over time. Cropping system strategy had significant and lasting effects on soil microbiology and soilborne diseases, and can be used to effectively enhance potato production.  相似文献   

16.
Rhizoctonia solani, the most important species within the genus Rhizoctonia, is a soilborne plant pathogen with considerable diversity in cultural morphology, host range and aggressiveness. Despite its history as a destructive pathogen of economically important crops worldwide, our understanding of its taxonomic relationship with other Rhizoctonia‐like fungi, incompatibility systems, and population biology is rather limited. Among the host of diseases it has been associated with, seedling diseases inflicted on soybean are of significant importance, especially in the soybean growing regions of North America. Due to the dearth of resistant soybean genotypes, as well as the paucity of information on the mechanisms of host–pathogen interactions and other molecular aspects of pathogenicity, effective management options have mostly relied upon a combination of cultural and chemical control options. The first section of this review summarizes what is currently known about the taxonomy and systematics, population biology and molecular genetics of R. solani. The second section provides an overview of the pathology and management of rhizoctonia root and hypocotyl rot of soybean, a seedling disease of importance in North America.  相似文献   

17.
Fusarium poses food and feed safety problems because most species produce mycotoxins. To understand the epidemiology of the Fusarium disease, efforts must focus more precisely on how environmental variables affect disease presence. The objectives of the present study were to monitor the occurrence of Fusarium species in maize kernels in northwestern Spain to determine the risk of mycotoxin contamination and to identify environmental traits affecting the composition of the Fusarium species identified. A combination of 24 environments was evaluated. The percentage of kernels infected by F. verticillioides ranged from 33 to 99%, supporting the idea that fumonisin contamination is the main maize‐based feed and food safety concern in this area. In this region, temperature and humidity primarily affected Fusarium spp. occurrence. Warmer temperatures during the later stages of kernel development and during kernel drying increased the frequency of F. verticillioides in maize kernels, while the presence of F. subglutinans was increased by higher relative humidity during the silking stage and cooler temperatures during kernel drying.  相似文献   

18.
The soilborne fungi Sclerotinia sclerotiorum, Rhizoctonia solani and the oomycete Pythium ultimum are among the most destructive pathogens for lettuce production. The application of the biocontrol agent Paenibacillus alvei K165 to the transplant soil plug of lettuce resulted in reduced S. sclerotiorum, R. solani and P. ultimum foliar symptoms and incidence compared to untreated controls, despite the suppressive effect of the pathogens on the rhizosphere population of K165. In vitro, K165 inhibited the growth of S. sclerotiorum and R. solani but not P. ultimum. Furthermore, the expression of the pathogenesis‐related (PR) gene PR1, a marker gene of salicylic acid (SA)‐dependent plant defence, and of the Lipoxygenase (LOX) and Ethylene response factor 1 (ERF1) genes, markers of ethylene/jasmonate (ET/JA)‐dependent plant defence was recorded. K165‐treated plants challenged with P. ultimum showed up‐regulation of PR1, whereas challenge with R. solani resulted in up‐regulation of LOX and ERF1, and challenge with S. sclerotiorum resulted in up‐regulation of PR1, LOX and ERF1. This suggests that K165 triggers the SA‐ and the ET/JA‐mediated induced systemic resistance against P. ultimum and R. solani, respectively, while the simultaneous activation of the SA and ET/JA signalling pathways is proposed for S. sclerotiorum.  相似文献   

19.
Aphanomyces euteiches (races 1 and 2) causes root rot of alfalfa; however, its population biology and distribution are poorly understood where alfalfa is a major crop. The objectives of this study were to (1) characterise the distribution and frequency of races of A. euteiches in Illinois alfalfa fields, (2) determine host range of A. euteiches on cultivated and native legumes, and (iii) to describe genetic diversity and population genetic structure of A. euteiches in alfalfa fields. To accomplish this, soil samples (n = 103) were collected from 30 alfalfa fields in 18 Illinois counties. Using the susceptible cv. ‘Saranac’, 148 isolates of A. euteiches were baited from the soil. The virulence phenotype of isolates representing all 18 counties was tested, and 54% were R1 and 46% were R2. Both races were detected in 61% of the counties, whereas only R1 was detected in 22% and R2 in 17%. Thirteen legume hosts for isolates from alfalfa fields were identified based on symptoms and/or production of oospores in roots. In addition to six previously known hosts, seven species were susceptible to infection: kura clover, purple prairie clover, white prairie clover, ladino clover, hairy vetch, Canadian milk vetch, and Illinois tick trefoil. AFLP analysis revealed high levels of genetic diversity among the isolates from different fields and counties and a lack of genetic structuring of populations based on race or geographical origin. The results suggest that populations of A. euteiches in alfalfa fields are diverse, often composed of races 1 and 2, and create risk for alfalfa and to multiple cultivated and native legume species.  相似文献   

20.
Avocado root rot is the most important disease of this fruit crop worldwide. This pathology may be caused by several biotic and abiotic agents, with the oomycete Phytophthora cinnamomi being the pathogen more frequently associated with poor phytosanitary conditions. There are disease control methods available that can reduce disease severity and allow plants to recover; however, they are not consistently and promptly applied. In addition, only chemical products are used by farmers as the preferred management method. This research aimed to evaluate different root rot management strategies in a commercial orchard. Data suggest that individual control methods are not as effective as when they are applied in combination, as in the T8 treatment (metalaxyl + mancozeb applied in drench; injection of potassium phosphite to each plant stem; potassium silicate applied in drench; addition of a layer of organic mulch and incorporation of 10 kg of composted substrate, both applied to the ground around the base of each tree). Using this strategy, the area under the disease progress curve for the avocado root rot was reduced by up to 68.6%, and the extra‐quality avocado fruit class increased by as much as 44% compared to the diseased control plants (T0) (P < 0.01). With the combined treatment T8, farm income showed a 9.5‐fold increase, probably due to an increase in the percentage of viable roots by up to 9.4‐fold, which would have improved nutrient and water uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号