首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
小麦赤霉病是影响我国小麦生产安全和食品安全最重要的病害之一。由于受全球气候变暖、耕作制度变化等因素影响,小麦赤霉病在我国发生区域呈北移西扩的态势,病害发生流行频率明显上升。本文从赤霉菌群体遗传结构、侵染循环、致病与毒素合成调控机制以及抗病遗传育种、病害监测预警和防控技术等方面综述了国内外相关研究进展,分析了我国小麦赤霉病频繁暴发成灾原因以及监测与防控工作中存在的问题,并提出了有效防控病害暴发危害的应对策略。  相似文献   

2.
Interactions between Barley yellow dwarf virus (BYDV) and Fusarium species causing Fusarium head blight (FHB) in winter wheat cvs Agent (susceptible to FHB) and Petrus (moderately resistant to FHB) were studied over three years (2001–2003) in outdoor pot experiments. FHB developed more rapidly in cv. Agent than in cv. Petrus. The spread of FHB was greater in BYDV-infected plants than in BYDV-free plants. Thousand grain weight (TGW) was reduced more in Fusarium-infected heads of cv. Agent than in cv. Petrus. A highly significant negative correlation was found between disease index and TGW in cv. Agent (r = −0.916), while in cv. Petrus the correlation was less significant (r = −0.765). Virus infection reduced TGW in cv. Petrus more than in cv. Agent. In plants with both infections, TGW reductions in cv. Petrus corresponded to those of BYDV infection, and in cv. Agent TGW was more diminished than in BYDV infection. Effects of different treatments determined over three years on ergosterol contents in grain were generally similar to effects on disease indices. Grain weight per ear and ear weight of the different treatments of both cultivars largely corresponded with the TGW results. Deoxynivalenol (DON) content in grain of cv. Agent infected with Fusarium spp. was 11–25 times higher compared to the corresponding treatments in cv. Petrus. The DON content in grain of plants of the two cultivars infected with both pathogens was higher than that of plants infected only with Fusarium over the three years.  相似文献   

3.
Determination of the Fusarium protein equivalent (FPE) levels in kernels for better characterisation of genotypes showing Fusarium head blight (FHB) resistance, and better detection of susceptibility to kernel infection among genotypes with slight symptom expression was carried out. Twelve wheat cultivars and eight hexaploid winter wheat lines derived from a cross of Triticum aestivum with related species T. macha, T. polonicum, and T. dicoccoides were evaluated for levels of spike and kernel infection, the content of the mycotoxin deoxynivalenol (DON) and FPE in kernels after artificial inoculation with the fungus Fusarium culmorum in the field in 2006–2007. The ELISA immunochemical method was employed for the quantitative analyses of DON and FPE. Three wheat lines had a significantly low infection of spikes and kernels compared to cvs Sumai 3 and Nobeoka Bozu, indicating the presence of specific resistance mechanisms to FHB. The significantly low AUDPC (area under the disease progress curve) and the high level of FPE and DON content in kernels indicated a lack of resistance in one wheat line (crossed with T. polonicum). The results showed highly significant correlations (P < 0.01) between FPE and DON content and between FPE and AUDPC. In addition, correlations between FPE and reductions in yield components were also highly significant. Quantification of Fusarium spp. in wheat kernels can be helpful for evaluating wheat genotypes for their levels of resistance to FHB.  相似文献   

4.
Glasshouse studies were undertaken to determine if fungicides used for the control of Fusarium head blight (FHB) result in elevated concentrations of the trichothecene mycotoxin, deoxynivalenol (DON) in harvested wheat grain. Metconazole and azoxystrobin, at double, full, half or quarter the manufacturer's recommended dose rate, were applied to ears of wheat (cv. Cadenza), artificially inoculated with conidia of either Fusarium culmorum or F. graminearum. Metconazole demonstrated high activity against both pathogens, reducing significantly the severity of FHB and the DON concentrations at each of the four dose rates tested when compared to untreated controls. Applications of azoxystrobin significantly reduced FHB and DON compared to unsprayed controls. However, their effectiveness was significantly less than that of metconazole and no dose rate response was observed. Quantification of the amount of trichothecene-producing Fusarium present in harvested grain was determined using a competitive PCR assay based on primers derived from the trichodiene synthase gene (Tri5). Simple linear regression analyses revealed strong relationships between the amount of trichothecene-producing Fusarium present in grain and the DON concentrations (r 2=0.72–0.97). It is concluded that fungicides, applied for the control of FHB, affect DON concentrations indirectly by influencing the amount of trichothecene-producing Fusarium species present in wheat grain. There was no evidence that fungicide applications directly increase the concentration of DON in grain.  相似文献   

5.
Fusarium head blight (FHB), caused by fungi belonging to the Fusarium genus, is a widespread disease of wheat (Triticum aestivum) and other small-grain cereal crops. The main causal agent of FHB, Fusarium graminearum, produces mycotoxins mainly belonging to type B trichothecenes, such as deoxynivalenol (DON), that can negatively affect humans, animals and plants. DON detoxification, mainly through glucosylation into DON-3-O-glucose, has been correlated with resistance to FHB. A UDP-glucosyltransferase from the model cereal species Brachypodium distachyon has been shown to confer resistance both to initial infection and to spike colonization (type I and type II resistances, respectively). Here, the functional characterization of transgenic wheat lines expressing the Bradi5g03300 UGT gene are described. The results show that, following inoculation with the fungal pathogen, these lines exhibit a high level of type II resistance and a strong reduction of mycotoxin content. In contrast, type I resistance was only weakly observed, although previously seen in B. distachyon, suggesting the involvement of additional host-specific characteristics in type I resistance. This study contributes to the understanding of the functional relationship between DON glucosylation and FHB resistance in wheat.  相似文献   

6.
Strategies for the Control of Fusarium Head Blight in Cereals   总被引:1,自引:0,他引:1  
Fusarium head blight (FHB) is a widespread and destructive disease of small grained cereals caused by a number of Fusarium species and Microdochium nivale. In addition to causing significant reductions in grain yield, FHB can result in the reduction of grain quality, either by affecting grain processing qualities or by producing a range of toxic metabolites that have adverse effects on humans and livestock. Control of FHB can be achieved by a number of cultural, biological and chemical strategies along with the exploitation of host plant resistance. In recent years, much of the research undertaken for the control of FHB has been concentrated on understanding and exploiting the genetic resistance of cereal plants to FHB-causing pathogens. Although, a brief overview of genetic resistance is presented, this review seeks to summarise the significance of FHB and review the effectiveness of cultural, biological and chemical control strategies that have been investigated for the control the disease.  相似文献   

7.
Y. Zhang  W. Chen  W. Shao  J. Wang  C. Lv  H. Ma  C. Chen 《Plant pathology》2017,66(9):1404-1412
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating wheat diseases in China. Phenamacril is a novel cyanoacrylate fungicide with a unique chemical structure and specific mode of action against Fusarium spp. In this study, the molecular, biological and physiological characteristics of laboratory‐induced mutants of F. graminearum with resistance to phenamacril were investigated. Compared to the wildtype strains, the phenamacril‐resistant mutants showed obvious defects in various biological and physiological characteristics, including vegetative growth, carbon source utilization, response to oxidative and osmotic stresses, sensitivity to cell wall and cell membrane integrity inhibitors, cell membrane permeability, glycerol accumulation and pathogenicity. The phenotypes of the phenamacril‐resistant mutants exhibited many variations. Sequencing indicated that the three parental strains studied were identical, and the mutants TXR1, TXR2, BMR1, BMR2, SYR1 and SYR2 each had a single point mutation in the amino acid sequence encoded by the myosin‐5 gene (FGSG_01410). These results provide new reference information for future investigations concerning the resistance mechanism of F. graminearum to phenamacril and could offer important relevant data for the management of FHB caused by F. graminearum.  相似文献   

8.
Piriformospora indica (Sebacinaceae) is a cultivable root endophytic fungus. It colonizes the roots of a wide range of host plants. In many settings colonization promotes host growth, increases yield and protects the host from fungal diseases. Evaluation was made of the effect of P. indica on fusarium head blight (FHB) disease of winter (cv. Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn) wheat and consequent contamination by the mycotoxin deoxynivalenol (DON) under UK weather conditions. Interactions of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), fungicide application (Aviator Xpro) and low and high fertilizer levels were considered. Piriformospora indica application reduced FHB disease severity and incidence by 70%. It decreased mycotoxin DON concentration of winter and spring wheat samples by 70 and 80%, respectively. Piriformospora indica also increased aboveground biomass, 1000‐grain weight and total grain weight. Piriformospora indica reduced disease severity and increased yield in both high and low fertilizer levels. The effect of P. indica was compatible with F. mosseae and foliar fungicide application. Piriformospora indica did not have any effects on plant tissue nutrients. These results suggest that P. indica might be useful in biological control of Fusarium diseases of wheat.  相似文献   

9.
A. Serfling  F. Ordon 《Plant pathology》2014,63(6):1230-1240
Fusarium culmorum causes head blight, produces toxins and reduces yield and quality of cereals. To prevent damage caused by fusarium head blight (FHB), azole fungicides are mainly applied. The occurrence of insensitivity to azoles is a major problem in agriculture. The present study shows that a tebuconazole insensitive strain of F. culmorum can be readily produced in the laboratory, but that the resulting strain of the fungus is of lower fitness in vitro. Insensitivity was confirmed microscopically and by cell viability and metabolic activity. The tebuconazole insensitive strain shows cross insensitivity to nine important azoles. In addition, plants inoculated with the insensitive F. culmorum strain showed no reduction of FHB symptoms and deoxynivalenol (DON) content after tebuconazole treatment, compared to an inoculation with the sensitive strain. Use of wheat cultivars carrying a high resistance level (i.e. cv. Toras) was the most effective method for reducing symptoms and decreasing DON content, independent from the level of fungicide insensitivity of the F. culmorum strain. In conclusion, resistant cultivars and a fungicide mixture which combines different mechanisms of action in fungal metabolism should be applied to avoid fungicide insensitivity of Fusarium spp. in future.  相似文献   

10.
为研究小麦UDP-葡萄糖基转移酶7(UDP-glycosyltransferase 7,TaUGT7)的抗赤霉病功能,利用DNAMAN 6.0软件对Ta UGT7及其同源蛋白进行序列比对,应用实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)技术分析经赤霉菌Fusarium graminearum和脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)处理后的苏麦3号小穗中TaUGT7基因的表达特征,利用基因枪在洋葱表皮细胞瞬时表达TaUGT7-eGFP进行亚细胞定位,采用农杆菌介导法在小麦品种Fielder中过量表达TaUGT7基因并进行赤霉病抗性鉴定。结果表明,TaUGT7在氨基酸序列上与已知赤霉病抗性相关UGT相似性较低;TaUGT7在赤霉菌接种24 h后开始被诱导表达,在DON处理2 h后逐步被诱导表达;Ta UGT7蛋白亚细胞定位于细胞膜和细胞核中;qRT-PCR检测发现,TaUGT7在8株独立的过表达转基因株系中均有不同程度的上调表达;与野生型对照相比,过表达株系TaUGT7-395和TaUGT7-457中的平均病小穗率显著下降。...  相似文献   

11.
Fusarium head blight (FHB) is an important fungal disease of wheat. The aim of this research was to determine the diversity of Fusarium species infecting winter wheat ears in East Croatia. In 2008 wheat kernels were obtained from three locations in the eastern part of Croatia (Tovarnik, Osijek, Pozega), and in 2009 from two additional locations (Slavonski Brod, Nova Gradiska). In total, 498 visually diseased kernels were selected for morphological identification of Fusarium spp. The identity of 226 selected isolates was further investigated by molecular techniques. The predominant species on wheat kernels in East Croatia in 2008 were F. graminearum, isolated and confirmed from more than 80% of sampled wheat kernels, followed by F. avenaceum (8%) and F. culmorum (7%). Incidence of F. poae was less than 2%. The most common species identified in 2009 were F. graminearum (50%), F. culmorum (13%), F. avenaceum (12%) and F. poae (7%). This is the first report on the identification of Fusarium species isolated from naturally infected wheat ears in Croatia.  相似文献   

12.
The root endophytic fungus Piriformospora indica (Sebacinacea) forms mutualistic symbioses with a broad range of host plants, increasing their biomass production and resistance to fungal pathogens. This study evaluated the effect of P. indica on fusarium crown rot disease of wheat, under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium isolates under axenic culture conditions indicated no direct antagonistic activity of P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. indica and pathogenic Fusarium culmorum or F. graminearum and grown in sterilized soil‐free medium or in a non‐sterilized mix of soil and sand. Fusarium alone reduced emergence and led to visible browning and reduced root growth. Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were free of visible symptoms; seed emergence and root biomass were equivalent to the uninoculated. DNA was quantified by real‐time polymerase chain reaction (qPCR). The ratio of FusariumDNA to wheat DNA rose rapidly in the plants inoculated with Fusarium alone; isolates and species were not significantly different. Piriformospora indica inoculation reduced the ratio of Fusarium to host DNA in the root systems. The reduction increased with time. The ratio of P. indica to wheat DNA initially rose but then declined in root systems without Fusarium. With Fusarium, the ratio rose throughout the experiment. The absolute amount of FusariumDNA in root systems increased in the absence of P. indica but was static in plants co‐inoculated with P. indica.  相似文献   

13.
Different sets of wheat genotypes were tested under field conditions by spraying inocula of isolates of seven Fusarium spp. and Microdochium nivale (formerly F. nivale) in the period 1998–2002. The severity of Fusarium head blight (FHB), Fusarium-damaged kernels (FDK), the yield reduction and the deoxynivalenol (DON) contamination were also measured to describe the nature of the resistance. The degrees of FHB severity of genotypes to F. graminearum, F. culmorum, F. avenaceum, F. sporotrichioides, F. poae, F.␣verticillioides, F. sambucinum and M. nivale were very similar, indicating that the resistance to F.␣graminearum was similar to that for other Fusarium spp. listed. This is an important message to breeders as the resistance relates not only to any particular isolate of F. graminearum, but similarly to isolates of other Fusarium spp. This holds true for all the parameters measured. The DON contamination refers only to DON-producers F. graminearum and F. culmorum. Highly significant correlations were found between FHB, FDK, yield loss and DON contamination. Resistance components such as resistance to kernel infection, resistance to DON and tolerance were identified in the more susceptible genotypes. As compared with western European genotypes which produced up to 700 mg kg−1 DON, the Hungarian genotypes produced only 100 mg kg−1 at a similar FDK level. This research demonstrates the importance of measuring both FDK and DON in the breeding and selection of resistant germplasm and cultivars.  相似文献   

14.
This work presents an analysis of the relationship between components of partial disease resistance (PDR) detected using in vitro detached leaf and seed germination assays, inoculated with Microdochium majus, and Fusarium head blight (FHB) resistance to Fusarium graminearum assessed using point inoculation, termed Type II resistance. Relationships between in vitro-determined PDR components and FHB resistance using techniques which inoculate the wheat spike uniformly, termed Type I resistance (incidence and severity), have been reported previously. In this study shorter incubation periods, longer latent periods and shorter lesion lengths in the detached leaf assay and higher germination rates in the seed germination assay were related to greater FHB resistance measured by single point inoculation (Type II), collectively explaining 54% of the variation. Overall the relationships observed for Type II FHB resistance were similar to previous findings for Type I resistances. However, the relative magnitude of effects of the individual PDR components determined in vitro varied between FHB disease resistance parameters. Resistance in seed germination and latent period in the detached leaf assay were more strongly related to resistance assessed by point inoculation (Type II) and severity-Type I as opposed to incubation period which was most strongly related to disease incidence-Type I. The results provide evidence that individual components of partial disease resistance differentially affect aspects of FHB disease progression in the wheat spike. This work supports the view that the current model of types of resistance is an oversimplification of the interacting mechanisms underlying expression of FHB resistance.  相似文献   

15.
Pathogen development and host responses in wheat spikes of resistant and susceptible cultivars infected by Fusarium culmorum causing Fusarium head blight (FHB), were investigated by means of electron microscopy as well as immunogold labelling techniques. The studies revealed similarities in the infection process and the initial spreading of the pathogen in wheat spikes between resistant and susceptible cultivars. However, the pathogen’s development was obviously more slow in the resistant cultivars as in comparison to a susceptible one. The structural defence reactions such as the formation of thick layered appositions and large papillae were essentially more pronounced in the infected host tissues of the resistant cultivars, than in the susceptible one. β -1,3-glucan was detected in the appositions and papillae. Furthermore, immunogold labelling of lignin demonstrated that there were no differences in the lignin contents of the wheat spikes between susceptible and resistant cultivars regarding the uninoculated healthy tissue, but densities of lignin in host cell walls of the infected wheat spikes differed distinctly between resistant and susceptible cultivars. The lignin content in the cell walls of the infected tissues of the susceptible wheat cultivar increased slightly, while the lignin accumulated intensely in the host cell walls of the infected wheat spikes of the resistant cultivars. These findings indicate that lignin accumulation in the infected wheat spikes may play an important role in resistance to the spreading of the pathogen in the host tissues. Immunogold labelling of the Fusarium toxin DON in the infected lemma showed the same labelling patterns in the host tissues of resistant and susceptible cultivars. However, there were distinct differences in the toxin concentration between the tissues of the susceptible and resistant cultivars. At the early stage of infection, the labelling densities for DON in resistant cultivars were significantly lower than those in the susceptible one. The present study indicates that the FHB resistant cultivars are able to develop active defence reactions during infection and spreading of the pathogen in the host tissues. The lower accumulation of the toxin DON in the tissues of the infected spikes of resistant cultivars which results from the host’s defence mechanisms may allow more intensive defence responses to the pathogen by the host.  相似文献   

16.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

17.
The relative resistance of 15 winter barley, three winter wheat and three winter oat cultivars on the UK recommended list 2003 and two spring wheat cultivars on the Irish 2003 recommended list were evaluated using Microdochium nivale in detached leaf assays to further understand components of partial disease resistance (PDR) and Fusarium head blight (FHB) resistance across cereal species. Barley cultivars showed incubation periods comparable to, and latent periods longer than the most FHB resistant Irish and UK wheat cultivars evaluated. In addition, lesions on barley differed from those on wheat as they were not visibly chlorotic when placed over a light box until sporulation occurred, in contrast to wheat cultivars where chlorosis of the infected area occurred when lesions first developed. The pattern of delayed chlorosis of the infected leaf tissue and longer latent periods indicate that resistances are expressed in barley after the incubation period is observed, and that these temporarily arrest the development of mycelium and sporulation. Incubation periods were longer for oats compared to barley or wheat cultivars. However, oat cultivars differed from both wheat and barley in that mycelial growth was observed before obvious tissue damage was detected under macroscopic examination, indicating tolerance of infection rather than inhibition of pathogen development, and morphology of sporodochia differed, appearing less well developed and being much less abundant. Longer latent periods have previously been related to greater FHB resistance in wheat. The present results suggest the longer latent periods of barley and oat cultivars, than wheat, are likely to play a role in overall FHB resistance if under the same genetic control as PDR components expressed in the head. However the limited range of incubation and latent periods observed within barley and oat cultivars evaluated was in contrast with wheat where incubation and latent periods were shorter and more variable among genotypes. The significance of the various combinations of PDR components detected in the detached leaf assay as components of FHB resistance in each crop requires further investigation, particularly with regard to the apparent tolerance of infection in oats and necrosis in barley, after the incubation period is observed, associated with retardation of mycelial growth and sporulation.  相似文献   

18.
The incidence of seed infection by fungal species pertinent to the fusarium head blight complex was monitored from 1999 to 2002 in two soft and three durum wheat cultivars grown across the northern, central and southern production zones of Italy, in order to characterize the species composition at the seed level. The main species recovered were Fusarium graminearum, F. poae and Microdochium nivale. There was a marked influence of production zone on seed infection incidence for both durum and soft wheat cultivars, with incidence of infection generally decreasing from the northern to the southern zone. Incidence of seed infection by different species of Fusarium was twice to four times higher in durum compared with the soft wheat cultivars in the study. There were no significant differences in terms of seed infection incidence between the two soft wheat cultivars, but the durum cultivars differed in their levels of seed infection for some of the pathogens. The results demonstrated that the durum cultivars were more at risk of seed infection by pathogens associated with fusarium head blight, and that wheat grown in northern Italy is at higher risk of seed infection by these species.  相似文献   

19.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

20.
Fusarium head blight in wheat spikes is associated with production of mycotoxins by the fungi. Although flowering is recognized as the most favourable host stage for infection, a better understanding of infection timing on disease development and toxin accumulation is needed. This study monitored the development of eight characterized isolates of F. graminearum, F. culmorum and F. poae in a greenhouse experiment. The fungi were inoculated on winter wheat spikes before or at anther extrusion, or at 8, 18 and 28 days later. Disease levels were estimated by the AUDPC and thousand‐kernel weight (TKW). The fungal biomass (estimated by qPCR) and toxin concentration (deoxynivalenol and nivalenol, estimated by UPLC‐UV‐MS/MS) were measured in each inoculated spike, providing a robust estimation of these variables and allowing correlations based on single‐individual measurements to be established. The toxin content correlated well with fungal biomass in kernels, independently of inoculation date. The AUDPC was correlated with fungal DNA, but not for early and late infection dates. The highest disease and toxin levels were for inoculations around anthesis, but early or late infections led to detectable levels of fungus and toxin for the most aggressive isolates. Fungal development appeared higher in kernels than in the chaff for inoculations at anthesis, but the opposite was found for later inoculations. These results show that anthesis is the most susceptible stage for FHB, but also clearly shows that early and late infections can produce significant disease development and toxin accumulation with symptoms difficult to estimate visually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号