首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of Citrus tristeza virus (CTV) infection on photosynthetic activity and antioxidant metabolism was analysed in plants of the highly susceptible citrus genotype Mexican lime (Citrus aurantifolia). Two virus isolates differing in their virulence (the severe T318 and the mild T385) were used in the experiments. CTV infection caused a reduction in photosynthetic capacity in infected plants. This limitation was mainly due to a reduction in the carboxylative efficiency whereas the limitation of CO2 diffusion through the stoma had lower impact. The virus did not damage the antennae and did not reduce the efficiency of light harvesting complexes. Oxidative damage occurred in infected plants, as evidenced by the increase in malondialdehyde levels. Indeed, CTV infection caused an increase in ascorbate peroxidase activity in new shoots developed in infected plants during the 2 years of the experiment. Data suggest that the H2O2 removal machinery was not damaged as a result of stress but the defence mechanism was overwhelmed with time due to the continuing pressure of biotic stress.  相似文献   

2.
Citrus tristeza virus (CTV) has existed in northern Iran for more than five decades. The long-time interaction of different virus genotypes with Aphis gossypii, as the only aphid vector of CTV in northern Iran, has led to the emergence of highly virulent subpopulations, among others, in the established foci. Here, we studied the population structure of the originally established CTV isolates present in Satsuma mandarin (Citrus unshiu) trees imported from Japan, and subisolates thereof, formed following experimental transmission by Agossypii, as well as those evolved through natural transmission by this aphid species in the groves. Symptoms of the naturally spread and the experimentally aphid-transmitted isolates were similar to those of the Satsuma CTV source isolates for all indicator plants except for sour orange (Citrus aurantium) and grapefruit (Citrus paradisi), with the aphid-transmitted isolates additionally inducing severe seedling yellows and stunting in these two indicators. Studies on the population heterogeneity of these isolates through comparison of their single-strand conformational polymorphism profiles and nucleotide sequences of the 25 kDa capsid protein gene from the predominant haplotypes, and dot-blot hybridization signals, revealed the presence of two major T36- and SY568- (or NUagA-) like genotypes along with a minor poorly characterized one in the originally infected Satsuma trees; in contrast, only a certain genomic variant having the highest similarity to the isolate SY568 (and NUagA) was predominant both in the naturally infected trees and in those infected experimentally by Agossypii. It seems that transmission by Agossypii to sweet orange (Citrus sinensis) has led to the preponderance of the CTV genomic variants inducing severe seedling yellows in northern Iran.  相似文献   

3.
The potential of UV‐C radiation of Andean lupin (Lupinus mutabilis) seeds to eradicate seedborne infections of anthracnose caused by Colletotrichum acutatum was investigated. UV‐C doses from 0 to 691.2 kJ m?2 (resulting from 0 to 96 h of exposure time) on disease incidence reduction and germination on artificially and naturally infected seed were evaluated. The degree of incidence reduction and seed germination was dependent on the dose of UV‐C. The UV‐C doses of 86.4 kJ m?2 and higher reduced incidence from 6% to 7% to undetectable levels, but these UV‐C doses also reduced seed germination. UV‐C can deleteriously affect physiological processes and overall growth. To assess its impact, L. mutabilis seeds irradiated with UV‐C doses of 57.6 and 86.4 kJ m?2 were grown. Seedlings grown from noninfected seed and UV‐C treated seed showed an increased concentration of chlorophyll and protein contents, as well as an increase in the activation of defence enzymes peroxidase and catalase, in comparison with plants grown from infected seed. UV‐C doses resulted in seed emergence and seedling dry weight rates that were similar to the noninfected control or better than the fungicide control. Moreover, 57.6 kJ m?2 reduced transmission of the pathogen from seed to the plantlets by 80%, while 86.4 kJ m?2 apparently eradicated the pathogen, under greenhouse conditions. The use of UV‐C, first reported here, is advantageous for controlling anthracnose in lupin.  相似文献   

4.
Characterization of Citrus tristeza virus isolates in northern Iran   总被引:1,自引:0,他引:1  
The biological and molecular properties of four Citrus tristeza virus (CTV) isolates isolated from infected Satsuma trees imported from Japan, and growing in citrus groves in northern Iran (Mahdasht orchards, Mazandaran Province), were investigated. CTV-infected samples were collected from sweet orange trees and grafted onto Alemow (Citrus macrophylla Wester) seedlings. On indicator plants, these isolates produced various symptoms including vein clearing and stem pitting on Mexican lime, Alemow, and Citrus hystrix, and yellowing and stunting on sour orange and grapefruit seedlings. Citrus samples were also surveyed for CTV using serological tests. The coat protein (CP) gene of these isolates was amplified using specific primers, yielding an amplicon of 672 bp for all isolates. Sequence analysis showed 98%–99% sequence homology of Iranian isolates with the Californian CTV severe stem-pitting isolate SY568 and 97%–98% homology with the Japanese seedling yellows isolate NUagA. The Iranian isolates were compared by restriction fragment length polymorphism (RFLP) analysis of the CP amplicon for further classification.  相似文献   

5.
Two experiments were carried out to assess the changes associated with photoassimilate production and partitioning in the source–sink relationship of flag leaves and spikes of wheat plants infected with Pyricularia oryzae, the causal agent of blast. Flag leaves and spikes were inoculated at 10 and 20 days after anthesis (daa) with a conidial suspension of P. oryzae. Analysis of chlorophyll a fluorescence using maximal photosystem II quantum efficiency (Fv?Fm), fraction of energy absorbed that is used in photochemistry (YII), quantum yield of non‐regulated energy dissipation (Y(NO)) and quantum yield of regulated energy dissipation (Y(NPQ)), showed an impairment of the photosynthetic performance in both infected flag leaves and spikes, coupled with reduced concentrations of chlorophyll b and carotenoids. Compared to non‐inoculated controls, there was lower capacity for CO2 fixation by RuBisCO in the infected flag leaves. Similarly, in the infected flag leaves and grains (obtained from infected spikes), there were lower concentrations of soluble sugars, while the hexoses‐to‐sucrose ratio increased in infected flag leaves. Compared to non‐inoculated controls, infected flag leaves showed lower sucrose phosphate synthase (SPS) activity and lower expression of the sucrose synthesis (SuSy) gene, while higher expression and activity of acid invertases also occurred. At the advanced stages of fungal infection, the concentration of starch in grains decreased but remained high for the infected flag leaves. There were reductions in ADP‐glucose pyrophosphorylase activity and the expression of ADP‐glucose pyrophosphorylase genes and a down‐regulation of β‐ and α‐amylase expression at the advanced stages of fungal infection on flag leaves and spikes. In conclusion, the effect of blast on both grain quality and yield can be associated with alterations in both production and partitioning of carbohydrates during the grain filling process.  相似文献   

6.
Wheat blast, caused by Pyricularia oryzae, can cause large yield losses in crops. This study aimed to investigate defence responses in flag leaves and spikes of wheat cultivars BR-18 (moderately resistant) and BRS-Guamirim (susceptible), which differ in their levels of basal resistance. In contrast to cultivar BRS-Guamirim, infected plants of cultivar BR-18 showed more pronounced increases in activities of β-1,3-glucanase and chitinase as well as higher concentrations of lignin-thioglycolic acid derivatives in the flag leaves and total soluble phenolics in the spikes. Polyphenoloxidase activity increased in both flag leaves and spikes in response to fungal infection, regardless of cultivar. Phenylalanine ammonia-lyase (PAL) activity increased in infected flag leaves of both cultivars, especially in BR-18. PAL activity was lower in spikes of infected compared to noninfected plants of both cultivars, although to a lesser extent in BR-18. Compared to BRS-Guamirim, the antioxidative system in both flag leaves and spikes of BR-18 was more efficient in removing reactive oxygen species, reducing cellular damage caused by fungal infection. The lower catalase and peroxidase activities, associated with high superoxide dismutase activity, in flag leaves and spikes of infected BR-18 culminated in a high hydrogen peroxide concentration. The increase in ascorbate peroxidase activity was higher in both flag leaves and spikes of infected plants of BR-18 than in infected BRS-Guamirim. It was concluded that wheat resistance to blast depended on the basal level of resistance of the cultivar, which was mainly associated with the activities of defence enzymes and a more effective antioxidative system.  相似文献   

7.
The development of plant diseases is associated with biophysical and biochemical changes in host plants. Various sensor methods have been used and assessed as alternative diagnostic tools under greenhouse conditions. Changes in photosynthetic activity, spectral reflectance and transpiration rate of diseased leaves, inoculated with Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV), and the powdery mildew fungus Sphaerotheca fuliginea were assessed by the use of non‐invasive sensors during disease development. Spatiotemporal changes in leaf temperature related to transpiration were visualized by digital infrared thermography. The maximum temperature difference within a leaf was an appropriate parameter to differentiate between healthy and diseased plants. The photosynthetic activity of healthy and diseased cucumber plants varied as measured by chlorophyll fluorescence and compared to the actual chlorophyll content. Hyperspectral imaging data were analysed using spectral vegetation indices. The results from this study confirm that each pathogen has a characteristic influence on the physiology and vitality of cucumber plants, which can be measured by a combination of non‐invasive sensors. Whereas thermography and chlorophyll fluorescence are unspecific indicators for plant diseases, hyperspectral imaging offers the potential for an identification of plant diseases. In a sensor data fusion approach, an early detection of each pathogen was possible by discriminant analysis. Although it still needs to be validated under real conditions, the combination of information from different sensors seems to be a promising tool.  相似文献   

8.
Cassava common mosaic virus (CsCMV) is a potexvirus that causes systemic infections in cassava plants, leading to chlorotic mosaic and producing significant yield losses. To date, the physiological alterations and the mechanism underlying biotic stress during the cassava–CsCMV compatible interaction remains unknown. In this study, we found that CsCMV infection adversely modified chloroplast structure and had functional effects on chloroplasts in source leaves during the course of viral infection. Extrusion of the chloroplast membrane with amoeboid-shaped appearance and disorganized grana stacks were observed in infected mesophyll cells. These alterations were associated with up to 35% reduction of relative chlorophyll content, and a decline of CO2 fixation (13.5% and 24.2% at 90 and 210 days after planting, respectively). The effects of CsCMV infection on the performance index on absorption basis dropped up to 37%. The analysis of chlorophyll a fluorescence showed a progressive loss of both oxygen evolving complex activity and “connectivity” within the tripartite system (core antenna-LHCII-reaction centre). Here, we report the latter phenomenon for the first time in a viral infection. The oxidative stress process was observed in CsCMV-infected plants (20.8% reduction of antioxidant capacity with respect to noninfected plants). Other effects of the pathogen included reduction of starch and maltose content in source leaves, and a significant increase (24.7%) of the sucrose:starch ratio, which indicates an altered pattern of carbon allocation. Our results suggest that CsCMV induces chloroplast distortion associated with progressive chloroplast function loss and diversion of carbon flux in source leaf tissue, leading to the loss of cassava tuber yield.  相似文献   

9.
正由柑橘衰退病病毒(Citrus tristeza virus,CTV)引起的柑橘衰退病,对全世界柑橘产业造成了严重威胁。褐色橘蚜Toxoptera citricida(Kirkaldy)属半翅目蚜科,以非循回型半持久方式传播CTV,是CTV的最有效传播媒介~([1])。我国广泛分布着CTV的各种株系和传媒褐色橘蚜,对我  相似文献   

10.
Alterations in some physiological processes in source leaves of sugar beet—such as chlorophyll and carbohydrate concentrations, stomatal conductance, rate of net photosynthesis and transpiration, and activity of the photosynthetic apparatus during root interaction with Aphanomyces cochlioides, were investigated. The influence of time of infection on plant health, yield quality and quantity was also examined. Plants were infected at different times of their growth period: on the sowing day and 4 or 8 weeks after sowing. A variation treatment, with non-pelleted seeds infected on the sowing day, was also analyzed. The experiment showed that development of disease symptoms depends on the time of infection and seed protection. A significant root yield decrease was observed in case of late infection, as compared to the yield of plants infected on the sowing day. The fresh weight of leaves was significantly increased where there was late infection. The infected plants showed a lower content of K+, Na+ and α-amino-N than did the controls. Infection by A. cochlioides induced chlorophyll degradation mostly in older leaves with the occurrence of natural senescence processes. Chlorophyll fluorescence parameters indicated that the photosynthetic apparatus of younger leaves was more sensitive to pathogen infection, when compared to older ones. The photochemical efficiency of photosystem II was reduced in young leaves mainly due to disturbance of the water-splitting system. In plants grown from non-pelleted seeds a strong impairment of PSII was observed only in those leaves which developed during early pathogen infection. In young leaves of plants infected in the fourth week after sowing, inhibition of the rate of net photosynthesis was correlated with the increase in intercellular CO2 concentration, indicating some disturbance in the carbon assimilation phase. In mature leaves of late infected plants the reduction of photosynthesis net rate was associated with a decrease of stomatal conductance and an increase of diffusion resistance to CO2 and H2O, which was also the cause of the transpiration rate inhibition. When the leaves developed during early infection, an increase of specific leaf weight and accumulation of carbohydrates was observed. In mature leaves of non-protected plants infected on the sowing day, the recovery of all physiological processes was observed together with a diminution of disease symptoms.  相似文献   

11.
 柑橘衰退病毒(Citrus tristeza virus,CTV),柑橘碎叶病毒(Citrus tatter\|leaf virus,CTLV),柑橘裂皮病类病毒(Citrus exocortis viroid,CEVd)和柑橘黄龙病(Huanglongbing, HLB)亚洲种病原(Candidatus liberobacter asiaticus)是重要的柑橘嫁接传播病原。本文建立了同时检测HLB病菌、CTV、CEVd 和CTLV 4种柑橘嫁接病原的一步法、双温多重PCR检测技术体系,同时在体系中设置内参基因。应用该体系快速评价了4种嫁接传播病原在田间侵染情况,结果表明28个田间样品CTV、CEVd、CTLV和HLB感染率分别为89.3 %、17.9 %、10.7 %和28.6 %,接近半数样品为混合感染。并且将该方法应用于快速评价茎尖嫁接苗病毒的脱除情况。  相似文献   

12.
Nucleoside and nucleotide contents of the flag leaves of wheat plants, naturally infected with the powdery mildew fungus Erysiphe graminis were analysed in a field experiment. Fungicide treated plants were used as controls. Only low levels of infection occurred during the experiment (1% to 4% of the leaf area), but they resulted in higher leaf dry weight, and lower levels of chlorophyll, inorganic phosphate and NADP compared with the control plants. Although the total adenine nucleotide pools were the same in the flag leaves of infected and control plants, the energy charge values were slightly larger in the infected flag leaves. The total nucleoside content was higher in the infected flag leaves than the control; while the adenosine pool decreased, that of uridine increased strongly. Although the level of UDP-glucose was similar in the flag leaves of infected and control plants only decreasing slightly with time, UDP-N-acetylglucosamine, a precursor for fungal chitin biosynthesis, showed very different behaviour. The amounts of UDP-N-acetylglucosamine were very low in the control plants but increased greatly in the infected flag leaves to very high values (900nmol g−1 d.wt) obviously reflecting exploitation of the hosts metabolism by the fungus for precursors for chitin biosynthesis. The size of the uridine pools was also correlated with the degree of infection and probably reflected recycling of the UDP moiety.  相似文献   

13.
The roles of several phenolic compounds in plant defence response have been extensively studied, yet little is known about the role of flavonoids in plant-virus interaction. Quantitative and qualitative changes of selected phenolics in Arabidopsis thaliana induced by Cucumber mosaic virus containing satellite RNA (CMVsat) infection were analysed accompanied by plant hormone, chalcone synthase and pathogenesis-related gene expression analysis. Lower leaves of infected plants had a lower concentration of total phenolics compared to control plants. The concentration of kaempferol in upper leaves of all infected plants was significantly lower compared to control plants, while the expression of the chalcone synthase gene in those leaves was in most cases upregulated. All infected plants had a higher concentration of indole-3-acetic acid in lower leaves, which was accompanied with a lower concentration of kaempferol in upper leaves. Our research demonstrates a correlation between kaempferol and indole-3-acetic acid in response to CMVsat infection in Arabidopsis. We demonstrated two different metabolic patterns in infected plants suggesting the activation of two different defence responses. We also propose kaempferol to be an important part of the auxin-dependent defence response which limits systemic movement of CMVsat and that this defence response is activated prior to the well-known salicylic acid dependent defence response. Further research on kaempferol and its role in Arabidopsis-CMVsat interaction will improve our understanding on the role of flavonoids in plant defence.  相似文献   

14.
The application of silicon to the roots or leaves reduces the severity of powdery mildew (Podosphaera xanthii) in melon but the latter treatment is less effective. This study compared key biochemical defence responses of melon triggered by P. xanthii after root or foliar treatment with potassium silicate (PS). Treatments consisted of pathogen‐inoculated or mock‐inoculated plants supplied with PS via roots or foliarly, as well as a non‐treated control. The activity of defence enzymes and the concentration of phenolic compounds, lignin and malondialdehyde were determined from leaf samples at different time points after inoculation. Pathogen‐inoculated plants irrigated with PS showed both an accumulation of silicon and primed defence responses in leaves that were not observed in pathogen‐inoculated plants either sprayed with PS or not treated. These responses included the anticipated activity of peroxidase and accumulation of soluble phenols, the activation of chitinase and repression of catalase, and the stronger activation of superoxide dismutase, peroxidase and β‐1,3‐glucanase. Moreover, the lignin concentration increased in response to inoculation, whereas the malondialdehyde concentration decreased. For the foliar treatment, however, only an increase in lignin deposition was observed compared with the control plants. The results show that silicon strongly plays an active role in modulating the defence responses of melon against P. xanthii when supplied to the roots as opposed to the foliage.  相似文献   

15.
L. Ma  J. Li  L. Ma  J. Wu  J. Wu 《Plant pathology》2017,66(2):277-284
The phytohormone ethylene plays an important role in plant defence responses to pathogen attack. When infected by the necrotrophic fungal pathogen Alternaria alternata (tobacco pathotype), which causes severe diseases in Nicotiana species, the wild tobacco plant Nicotiana attenuata accumulates a high amount of the jasmonate (JA)‐dependent phytoalexin scopoletin to defend itself against this fungal pathogen. However, it is still not known whether ethylene signalling is also involved in scopoletin biosynthesis and the resistance of N. attenuata. After infection, ethylene biosynthetic genes were highly elicited. Furthermore, plants strongly impaired in ethylene biosynthesis or perception had dramatically decreased scopoletin levels, and these plants became more susceptible to the fungus, while A. alternata‐elicited JA levels were increased, indicating that the decreased defence responses were not due to lower JA levels. Thus, it is concluded that after infection, ethylene signalling is activated together with JA signalling in N. attenuata plants and this subsequently regulates scopoletin biosynthesis and plant resistance.  相似文献   

16.
Citrus tristeza virus (CTV) is one of the most destructive citrus virus diseases in the world. The construction of an engineered antibody, EMBL accession number AJ278109, able to specifically recognize its antigen, i.e. the coat protein of CTV, directly on infected plant material without any purification or manipulation of the entire woody plant. The potential uses of this engineered antibody are discussed.  相似文献   

17.
Thatcher near‐isogenic lines (NILs) of wheat carrying resistance gene Lr2a, Lr3, LrB or Lr9 were inoculated with Puccinia triticina races of virulence phenotype BBBD, MBDS, SBDG and FBDJ. Puccinia triticina infection structures were analysed under the fluorescence microscope over a course of 14 days after inoculation (dai). The relative proportion of P. triticina and wheat genomic DNA in infected leaves was estimated with a semiquantitative multiplex PCR analysis using P. triticina‐ and wheat‐specific primers. The occurrence of a hypersensitive response (HR), cellular lignification and callose deposition in inoculated plants was investigated microscopically. In interactions producing highly resistant infection type (IT) ‘0;’, a maximum of two haustorial mother cells per infection site were produced, and there was no increase in the proportion of P.  triticina genomic DNA in infected leaves, indicating the absence of P. triticina growth. In comparison, sizes of P. triticina colonies increased gradually in interactions producing moderately resistant IT ‘1’ and ‘2’, with the highest proportion of P. triticina genomic DNA found in leaves sampled at 14 dai. In interactions producing susceptible IT ‘3–4’, the highest proportion of P. triticina genomic DNA was found in leaves sampled at 10 dai (45·5–51·5%). HR and cellular lignification were induced in interactions producing IT ‘0;’ and ‘1’ at 1 dai but they were not observed in interactions producing IT ‘2’ until 2 dai. No HR or cellular lignification were induced in interactions producing susceptible IT ‘3–4’. Furthermore, a strong deposition of callose was induced in Lr9 + BBBD and Lr9 + FBDJ (IT ‘0;’), whereas this defence response was not induced in resistant or susceptible interactions involving Lr2a, Lr3 or LrB, indicating that Lr9 mediated resistance was different from that conditioned by Lr2a, Lr3 or LrB.  相似文献   

18.
In studies to identify genotypes resistant to infection with citrus viroids, Eremocitrus glauca and Microcitrus australis were selected because their evolution in their habitat in Australia and New Guinea may have led to the selection of unusual traits. The movement and accumulation of Citrus exocortis viroid (CEVd), Hop stunt viroid, Citrus bent leaf viroid, Citrus dwarfing viroid, Citrus bark cracking viroid and Citrus viroid V (CVd‐V) in self‐rooted as well as in graft‐ propagated E. glauca and M. australis plants was assessed by northern hybridization, RT‐PCR and by topworking to the sensitive selection 861‐S1 of Etrog citron. In both plant species the inoculated viroids were undetectable unless these plants were grafted to a susceptible Citrus partner, the rough lemon rootstock and/or the topworked Etrog citron, which acted as viroid sources. The results obtained indicate that M. australis and in particular E. glauca are poor viroid hosts in which viroid replication/accumulation does not occur or is extremely inefficient. However, viroid downward and upward movement to grafted Citrus partners in which viroid replication and accumulation occurs efficiently was not impaired. Eremocitrus glauca and M. australis showed differences regarding their properties as viroid hosts, but for both species CEVd seemed to have the lowest affinity among the viroid species tested and CVd‐V the highest. Even though E. glauca and M. australis do not appear to be truly resistant to viroid infection, they are interesting genotypes for further characterization of the mechanisms involved in viroid infection.  相似文献   

19.
Two important sources of Capsicum annuum (bell pepper) resistance were evaluated for their response to inoculation with two isolates of Tobacco etch virus strain NW (TEV‐NW, genus Potyvirus). The resistant cultivars were CA4 and Dempsey, which contain the pvr1 and pvr12 resistance genes, respectively. TEV‐NW was maintained by mechanical passage in the susceptible pepper cultivar Early Calwonder and Nicotiana tabacum cv. Kentucky 14. In initial experiments, the TEV‐NW isolate maintained in Early Calwonder infected two of seven CA4 plants; however, none of the CA4 plants inoculated with the TEV‐NW isolate maintained in Kentucky 14 were infected. The infected CA4 plants had low virus titres in non‐inoculated leaves and did not develop visible symptoms. When the infected CA4 plants were used as inoculum of additional CA4 plants, all newly inoculated plants became infected, developed systemic symptoms and accumulated virus in non‐inoculated leaves more quickly than the originally infected CA4 plants. This new NW isolate, referred to as NW‐CA4, was shown to overcome the resistances expressed by both CA4 (pvr1) and Dempsey (pvr12). The potyviral VPg is believed to be the determinant for pvr1 and pvr12 resistance genes, both of which are eIF4E‐encoding genes. The VPg amino acid sequence for NW‐CA4 was determined and compared with that of NW isolates and different TEV strains. No amino acid variation was identified that explained the infectivity of NW‐CA4 in CA4 and Dempsey plants.  相似文献   

20.
2005年5月到2006年4月逐月采样,运用一步法RT-PCR检测Citrus psorosis virus(CPV)在Dweet橘橙苗木叶片和枝皮中的分布。保存在控温温室中的Dweet橘橙病株中老叶、老皮、嫩叶和嫩皮全年都可以检测出CPV;保存在网室中的Dweet橘橙病株中老叶、老皮全年均能检测到CPV,而夏梢的嫩叶、嫩皮不能稳定地检测出CPV,春、秋梢的嫩叶、嫩皮均可检测到CPV,表明一步法RT-PCR检测CPV最佳取样部位为老叶和老皮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号