首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root rot symptoms were observed in fields of alfalfa in Chifeng city, Inner Mongolia, China in 2016. Disease incidences of seven alfalfa varieties planted in 2014 ranged from 56% to 95%, while incidence of Gongnong No. 1 planted in 2016 was 8%, 31% and 76% in 2016, 2017 and 2018, respectively. Paraphoma isolates were consistently recovered from black necrotic root tissues of diseased plants with a frequency of 77.1%. Based on morphological characters and phylogenetic analysis of rDNA internal transcribed spacer (ITS), elongation factor 1-α (EF1-α) and β-tubulin (TUB), this fungus was identified as Paraphoma radicina. Glasshouse pathogenicity experiments showed that P. radicina significantly reduced above- and below-ground biomass of alfalfa plants 2 months after inoculation. Paraphoma radicina infected 70% of the plants inoculated with a root dip in conidia, and these symptoms were consistent with the symptoms in the field. Paraphoma radicina was successfully reisolated from disease roots of the inoculated alfalfa plants. This is the first report of P. radicina as the causal agent of alfalfa root rot in China.  相似文献   

2.
A homothallic Phytophthora species was found to be consistently associated with a rot of mature fruits of two local cultivars of olive (Olea europaea) in Calabria, southern Italy. The phylogenetic analysis of sequences of the ITS1‐5.8S‐ITS2 region and cox1 gene enabled its identification as a new species of clade 2, with a basal position compared to previously described subclades. The new species is described formally with the epithet Phytophthora oleae, referring to the natural matrix from which it was isolated. A unique combination of molecular and morphological characters clearly separates P. oleae from other already described Phytophthora species. This new species produced semipapillate, occasionally bipapillate, persistent sporangia on simple sympodially branching sporangiophores as well as globose and smooth‐walled oogonia, paragynous antheridia and spherical, plerotic oospores. The pathogenicity of P. oleae was confirmed in inoculation trials on fruits of three olive cultivars, including the two local cultivars from which the pathogen had been isolated.  相似文献   

3.
A new pathogen of pyrethrum (Tanacetum cinerariifolium) causing anthracnose was described as Colletotrichum tanaceti based on morphological characteristics and a four‐gene phylogeny consisting of rDNA‐ITS, β‐tubulin (TUB2), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) and actin (ACT) gene sequences. The fungus produced perithecia in culture, requiring an opposite mating type isolate in a heterothallic manner. The initial infection strategy on pyrethrum leaves involved the formation of appressoria followed by production of multilobed infection vesicles in the epidermal cells. Infection and colonization then proceeded through thinner secondary hyphae, which resulted in the initial production of water‐soaked lesions followed by black necrotic lesions. The infection process was suggestive of a hemibiotrophic infection strategy. Moreover, phylogenetic analysis clearly showed that C. destructivum, C. higginsianum and C. panacicola were separate species that also had similar intracellular hemibiotrophic infection strategies as C. tanaceti, which all clustered in the C. destructivum complex. Colletotrichum spp. were detected at 1% incidence in seed of 1 of 19 seed lines, indicating the potential for seed as a source of inoculum into crops. Colletotrichum tanaceti was detected in leaf lesions from 11 of 24 pyrethrum fields surveyed between April and July 2012, at a frequency of 1·3–25·0% of lesions. Anthracnose probably contributes to the complex of foliar diseases reducing green leaf area in pyrethrum fields in Australia.  相似文献   

4.
Since its first isolation from Salix roots in 1972, isolates of a sexually sterile Phytophthora species have been obtained frequently from wet or riparian habitats worldwide and have also been isolated from roots of Alnus and Prunus spp. Although originally assigned to Phytophthora gonapodyides on morphological grounds, it was recognized that these isolates, informally named P. taxon Salixsoil, might represent a separate lineage within ITS Clade 6. Based on phylogenetic analyses and comparisons of morphology, growth‐temperature relationships and pathogenicity, this taxon is formally described here as Phytophthora lacustris sp. nov. Isolates of P. lacustris form a clearly resolved cluster in both ITS and mitochondrial cox1 phylogenies, basal to most other Clade 6 taxa. Phytophthora lacustris shares several unusual behavioural properties with other aquatic Clade 6 species, such as sexual sterility and tolerance of high temperatures, that have been suggested as adaptations to riparian conditions. It appears to be widespread in Europe and has also been detected in Australia, New Zealand and the USA. It was shown to be weakly or moderately aggressive on inoculation to Alnus, Prunus and Salix. The extent of P. lacustris’ activity as a saprotroph in plant debris in water and as an opportunistic pathogen in riparian habitats needs further investigation. Its pathogenic potential to cultivated fruit trees also deserves attention because P. lacustris has apparently been introduced into the nursery trade.  相似文献   

5.
Isolates of an unknown Phytophthora species from the ‘Phytophthora citricola complex’ have been found associated with mortality of Aucuba japonica in the UK. Based on morphological characteristics, growth–temperature relationships, sequences of five DNA regions and pathogenicity assays, the proposed novel species is described as Phytophthora pachypleura. Being homothallic with paragynous antheridia and semipapillate sporangia, P. pachypleura resembles other species in the ‘P. citricola complex’ but can be discriminated by its distinctively thick‐walled oospores with an oospore wall index of 0·71. In the phylogenetic analysis based on three nuclear (ITS, β‐tubulin, EF‐1α) and two mitochondrial (cox1, nadh1) DNA regions, P. pachypleura formed a distinct clade within the ‘P. citricola complex’ with P. citricola s. str., P. citricola E and P. acerina as its closest relatives. Phytophthora pachypleura is more aggressive to A. japonica than P. plurivora and P. multivora and has the potential to affect other ornamental species.  相似文献   

6.
Calonectria pseudonaviculata, the causal agent of the disease of Buxus spp. known as ‘box blight’, was first detected in the mid‐1990s in the UK and New Zealand. Since then, the geographic range of box blight has rapidly expanded to at least 21 countries throughout temperate regions of the world, causing significant losses in nurseries, gardens and wild boxwood populations. This study determined the genetic diversity in a collection of 234 Calonectria isolates from diseased Buxus plants, originating from 15 countries and four continents. Two genetic clades, G1 and G2, were identified within this sample using multilocus phylogenetic analysis. The application of genealogical concordance phylogenetic species recognition criteria using four independent nuclear loci determined that the Calonectria isolates in these two clades are separate phylogenetic species. The isolates in the G1 clade were upheld as C. pseudonaviculata sensu stricto. Based on phylogenetic distinctiveness and the lack of mating, a new species is proposed, Calonectria henricotiae sp. nov., for the Calonectria isolates in the G2 clade. A PCR‐RFLP assay and real‐time PCR assays were developed to easily and reproducibly differentiate these species. To assess the practical implications of the identification of the two species, their physiology, fungicide susceptibility and pathogenicity were compared. No differences in pathogenicity were observed. However, C. henricotiae isolates exhibited greater thermotolerance and reduced sensitivity to specific triazole as well as strobilurin fungicides. The identification of a second phylogenetic species causing box blight may have a substantial impact on the epidemiology and control of this destructive disease.  相似文献   

7.
A severe dieback of Acer pseudoplatanus trees was noticed in planted forest stands in northern Italy in 2010. Affected trees showed collar rot and aerial bleeding cankers along the stems, leading to crown dieback and eventually death. An unknown Phytophthora species was consistently isolated from necrotic bark and xylem tissue and from rhizosphere soil. Based on its unique combination of morphological and physiological characters and phylogenetic analysis, this new taxon is here described as Phytophthora acerina sp. nov. Phylogenetic analysis of ITS, cox1 and β‐tubulin gene regions demonstrated that P. acerina is unique and forms a separate cluster within the ‘P. citricola complex’, closely related to P. plurivora. Phytophthora acerina is homothallic with smooth‐walled oogonia, thick‐walled, mostly aplerotic oospores with a high abortion rate, paragynous antheridia, and persistent, morphologically variable semipapillate sporangia. Four to 5‐week‐old cultures produced globose to subglobose, appressoria‐like and coralloid hyphal swellings and characteristic stromata‐like hyphal aggregations. Optimum and maximum temperatures for growth are 25°C and 32°C, respectively. Genetic uniformity of all 15 studied isolates and the apparent absence of this species in the extensive surveys of nurseries, forests and seminatural ecosystems conducted in the previous two decades across Europe indicate a recent clonal introduction to northern Italy. Under‐bark inoculation tests demonstrated high aggressiveness of P. acerina to A. pseudoplatanus indicating that this pathogen might be a serious risk to maple plantations and forests in Europe.  相似文献   

8.
Members of the Phytophthora citricola complex (Phytophthora clade 2c), such as P. plurivora, are destructive pathogens of trees and shrubs in nursery, landscape and forest settings worldwide. During surveys of Phytophthora species from streams and rivers in Massachusetts and North Carolina, a novel species in the P. citricola complex was recovered. Based on sequences from three nuclear (ITS, β‐tub and tef1) and two mitochondrial (cox1 and nadh1) loci, morphological characters, temperature–growth relationships and host plant inoculations, this novel species is described as Phytophthora caryae sp. nov. Phytophthora caryae resembles several other species in the P. citricola complex, demonstrating homothallism and producing paragynous antheridia and semipapillate and noncaducous sporangia. However, P. caryae exhibits smaller sexual structures, higher rates of oogonia with a tapered base and sporangia with an offset attachment of the sporangiophores. Phylogenetic analyses using maximum likelihood and Bayesian inference placed isolates of P. caryae into a unique clade with significant statistical support. Based on the mitochondrial dataset, P. caryae is most closely related to P. pini and P. citricola III, which are believed to be native in eastern North America. Inoculations of P. caryae on 1‐year‐old twigs of 12 tree species representing nine genera resulted in under‐bark lesions on species of Carya and Juglans. Sapling inoculations under greenhouse conditions suggest that P. caryae may be pathogenic to shagbark hickory (Carya ovata) but not to black walnut (Juglans nigra).  相似文献   

9.
Outbreaks of a rust disease in eucalypt forestry plantations and nurseries in Kenya, Mozambique and South Africa occurred between 2009 and 2014. The pathogen was identified using morphology and molecular phylogenetic analyses as an undescribed species in the Phakopsoraceae. A systematic study, based on nuclear ribosomal DNA, showed that it is a species of Phakopsora, herein named Phakopsora myrtacearum sp. nov. This new species of rust is the second validly described species on Eucalyptus, along with Puccinia psidii. Phakopsora myrtacearum is distinguished from P. psidii by leaf symptoms, morphology of the urediniospores and distinct phylogenetic placement. Phakopsora myrtacearum has been found on three species of Eucalyptus in Kenya, Mozambique and South Africa, and it may have future negative implications for commercial forestry in these areas.  相似文献   

10.
Eighty stone fruit nurseries located in different regions of Poland were examined for the presence of crown gall affected plants. The disease was observed in 39 nurseries, and galls were sampled for bacterial isolation. Out of 1213 isolates, 409 were pre‐identified as Agrobacterium/Rhizobium spp. with 23S rDNA‐based multiplex PCR, and out of these, 315 were pathogenic when tested on sunflowers. Sequence analysis of three housekeeping genes (fusA, recA, rpoD) revealed that 366 strains belonged to Rhizobium rhizogenes, 23 to Agrobacterium tumefaciens species complex, and the rest of the strains were allocated to new phylogenetic lineages. Of these, the most numerous was the lineage allocated in the Pararhizobium genus. Positive results obtained from pathogenicity tests were generally in agreement with results obtained by PCR with primers complementary to T‐DNA except for two strains, which were positive for PCR but negative for the pathogenicity test. All detected Ti plasmids were nopaline‐type. Independent of their pathogenicity, 59% of tested strains were not sensitive to agrocin 84 in in vitro tests. Analysis of biochemical and physiological features distinguished 50 groups with different phenotypic profiles, but the tested traits were not consistent for strains classified to one taxon. This finding shows limited value of biochemical tests in identification procedures. The bacteria causing tumours were heterogeneous and strains classified to different taxa were found even in a single tumour.  相似文献   

11.
Historical records report Fusarium moniliforme sensu lato as the pathogen responsible for Fusarium diseases of sorghum; however, recent phylogenetic analysis has separated this complex into more than 25 species. During this study, surveys were undertaken in three major sorghum‐producing regions in eastern Australia to assess the diversity and frequency of Fusarium species associated with stalk rot‐ and head blight‐infected plants. A total of 523 isolates were collected from northern New South Wales, southern Queensland and central Queensland. Nine Fusarium species were isolated from diseased plants. Pathogenicity tests confirmed F. andiyazi and F. thapsinum were the dominant stalk rot pathogens, whilst F. thapsinum and species within the F. incarnatumF. equiseti species complex were most frequently associated with head blight.  相似文献   

12.
Fusarium pseudograminearum, F. culmorum and F. graminearum are the most important fusarium crown rot (FCR) causal agents. They have the common ability to biosynthesize deoxynivalenol (DON). To elucidate the behaviour of each of the three species, a comparative study was carried out to investigate symptom progression, fungal systemic growth and translocation of DON following stem base inoculation of soft wheat. FCR symptoms were mainly localized in the inoculated area, which extended up to the second node for all inoculated species. Only the most aggressive strains caused symptoms up to the third node. Real‐time quantitative PCR showed that fungal colonization reached the third node for all the tested species, but a low percentage of plants showed colonization above the third node following inoculation with the most aggressive strains. Fungal growth was detected in symptomless tissues but none of the three species was able to colonize as far as the head tissues. However, even if the pathogens were not detected in the heads, DON was detected in head tissues of the plants inoculated with the most aggressive strains. These results demonstrate that F. pseudograminearum, F. culmorum and F. graminearum, under the same experimental conditions, follow a similar pattern of symptom progression, fungal colonization and DON translocation after stem base infection. Differences in the extent of symptoms, fungal colonization and mycotoxin distribution were mainly attributable to strain aggressiveness. These findings provide comparative information on the events following infection of the stem base of wheat by three of the most important FCR casual agents.  相似文献   

13.
In western Europe, Pectobacterium carotovorum subsp. brasiliense is emerging as a causal agent of blackleg disease. In field experiments in the Netherlands, the virulence of this pathogen was compared with strains of other Dickeya and Pectobacterium species. In 2013 and 2014, seed potato tubers were vacuum infiltrated with high densities of bacteria (106 CFU mL?1) and planted in clay soil. Inoculation with P. carotovorum subsp. brasiliense and P. atrosepticum resulted in high disease incidences (75–95%), inoculation with D. solani and P. wasabiae led to incidences between 5% and 25%, but no significant disease development was observed in treatments with P. carotovorum subsp. carotovorum, D. dianthicola or the water control. Co‐inoculations of seed potatoes with P. carotovorum subsp. brasiliense and D. solani gave a similar disease incidence to inoculation with only P. carotovorum subsp. brasiliense. However, co‐inoculation of P. carotovorum subsp. brasiliense with P. wasabiae resulted in a decrease in disease incidence compared to inoculation with only P. carotovorum subsp. brasiliense. In 2015, seed potatoes were inoculated with increasing densities of P. carotovorum subsp. brasiliense, D. solani or P. atrosepticum (103–106 CFU mL?1). After vacuum infiltration, even a low inoculum density resulted in high disease incidence. However, immersion without vacuum caused disease only at high bacterial densities. Specific TaqMan assays were evaluated and developed for detection of P. carotovorum subsp. brasiliense, P. wasabiae and P. atrosepticum and confirmed the presence of these pathogens in progeny tubers of plants derived from vacuum‐infiltrated seed tubers.  相似文献   

14.
The pathogenicity of some Phytophthora species recently described from Western Australia, together with P. cinnamomi as a control, was tested against seven Western Australian native plant species in the glasshouse. Host species were Banksia grandis, B. littoralis, B. occidentalis, Casuarina obesa, Corymbia calophylla, Eucalyptus marginata and Lambertia inermis. Twenty‐two Phytophthora species were grown on a vermiculite, millet seed and V8 substrate and used as soil inoculum when the plant hosts were approximately 3 months old. Pathogenicity was assessed after 6 weeks and plants were scored for death, root damage, and percentage reduction of shoot growth compared with control plants. The pathogenicity of P. cinnamomi was confirmed. Phytophthora niederhauserii was shown to be similar to P. cinnamomi in pathogenicity and of concern ecologically. Other species that killed one or more hosts were P. boodjera, P. constricta, P. elongata, P. moyootj and P. rosacearum, while P. condilina, P. gibbosa, P. gregata, P. litoralis and P. ‘personii’ caused significant reduction to shoot and/or root growth, but did not kill plants. Host species susceptible to the highest number of Phytophthora species were B. grandis, B. littoralis, B. occidentalis and E. marginata. No Phytophthora species tested killed C. calophylla.  相似文献   

15.
This study follows a survey carried out in 2012 and 2013 on tomato and pepper crops in the Foggia province (southern Italy), for morphological, molecular and pathogenicity analyses of Plectosphaerella fungi. The Plectosphaerella genus includes several species that are pathogens of horticultural plants. The survey identified tomato and pepper crops that showed abundant wilt, leaf yellowing, and discolouration and necrosis of roots, plus collar and stem symptoms. Different fungi including Plectosphaerella spp. were isolated from tissues with and without symptoms. Subsequent molecular and morphological studies identified first records of P. citrulli infecting tomato and pepper, and P. pauciseptata and P. ramiseptata infecting pepper. Pathogenicity testing confirmed that most isolated species of Plectosphaerella caused symptoms on tomato and pepper, with P. ramiseptata the most aggressive. On the basis of these data, it is considered that Plectosphaerella species may cause stunting disease in tomato and pepper.  相似文献   

16.
The Fusarium graminearum species complex (FGSC) is an important group of pathogens distributed in maize‐producing areas worldwide. This study investigated the genetic diversity and pathogenicity of 40 FGSC isolates obtained from stalk rot and ear rot samples collected from 42 locations in northeastern China during 2013 and 2014. A phylogenetic tree of translation elongation factor (EF‐la) sequences designated the 40 isolates as F. graminearum sensu stricto (67.5%) and F. boothii (32.5%). By using inter‐simple sequence repeat analysis (ISSR), it was shown that the isolates were divided into two clades, which corresponded to the species identity of the isolates. However, the isolates from the two different diseases could not be distinguished in pathogenicity. The disease severity index of seedlings inoculated with stalk isolates was slightly higher than that of seedlings inoculated with isolates from infected ears, whereas the pathogenicity of the stalk and ear isolates were identical.  相似文献   

17.
18.
This study aimed to demonstrate the association of the ash dieback pathogen Hymenoscyphus fraxineus with leaf symptoms on Fraxinus excelsior and to test its pathogenicity towards leaves of three European ash species, F. excelsior, F. angustifolia and F. ornus, in wound inoculation experiments. On F. excelsior, H. fraxineus was isolated from 94% of leaf rachises with necrotic lesions and from 74% of necrotic leaflet midribs. Following wound inoculation of leaf rachises, in two separate experiments performed in 2010 and 2011, the ash dieback pathogen caused symptoms (necrotic rachis lesions, leaf wilting and premature leaf shedding) on all three ash species, while control leaves remained symptomless. Hymenoscyphus fraxineus was consistently reisolated from fungus‐inoculated rachises. All 10 isolates tested were pathogenic to the three ash species and varied in virulence. Koch's postulates for H. fraxineus as causal agent of leaf symptoms on F. excelsior were fulfilled in this study. Complemented with the isolation of the fungus from naturally infected, symptomatic leaf rachises of F. angustifolia and F. ornus in previous investigations, H. fraxineus was confirmed to be a leaf pathogen of these ash species as well. The leaf inoculation experiments showed that F. excelsior was highly susceptible to H. fraxineus, F. angustifolia was equally or slightly less susceptible, whereas F. ornus was the least affected species; however, F. ornus should also be regarded as a host tree for the ash dieback pathogen. This susceptibility ranking corresponds well with field observations and previous stem inoculation experiments.  相似文献   

19.
The root endophytic fungus Piriformospora indica (Sebacinacea) forms mutualistic symbioses with a broad range of host plants, increasing their biomass production and resistance to fungal pathogens. This study evaluated the effect of P. indica on fusarium crown rot disease of wheat, under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium isolates under axenic culture conditions indicated no direct antagonistic activity of P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. indica and pathogenic Fusarium culmorum or F. graminearum and grown in sterilized soil‐free medium or in a non‐sterilized mix of soil and sand. Fusarium alone reduced emergence and led to visible browning and reduced root growth. Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were free of visible symptoms; seed emergence and root biomass were equivalent to the uninoculated. DNA was quantified by real‐time polymerase chain reaction (qPCR). The ratio of FusariumDNA to wheat DNA rose rapidly in the plants inoculated with Fusarium alone; isolates and species were not significantly different. Piriformospora indica inoculation reduced the ratio of Fusarium to host DNA in the root systems. The reduction increased with time. The ratio of P. indica to wheat DNA initially rose but then declined in root systems without Fusarium. With Fusarium, the ratio rose throughout the experiment. The absolute amount of FusariumDNA in root systems increased in the absence of P. indica but was static in plants co‐inoculated with P. indica.  相似文献   

20.
Colletotrichum truncatum (syn. C. capsici) has been identified as the causal agent of anthracnose on various hosts, predominantly pepper (Capsicum spp.) plants. The aim of this study was to determine whether C. truncatum isolates infecting papaya, pepper and physic nut in southeastern Mexico are morphologically, genetically and pathogenically different, in order to improve disease management strategies. A total of 113 C. truncatum isolates collected from five producer states were subjected to phenotypic characterization and divided into six different morphological groups. These morphological traits and the location of the isolates were used to select a subset of 20 isolates for further studies. Differences in the pathogenicity of the isolates were tested with a cross‐inoculation assay using pepper, papaya and physic nut. The pathogenicity tests revealed that all isolates could infect the three hosts and produce typical anthracnose symptoms, indicating a lack of host specificity for this species and therefore its pathogenic potential on other plants. Phylogenetic analysis using internal transcribed spacer (ITS) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) sequences of the C.   truncatum isolates from this study and reference strains was performed, grouping the isolates into a monophyletic clade. This study reports for the first time the characterization of C. truncatum causing anthracnose disease on three different hosts in Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号