首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sclerotinia stem rot (SSR) of oilseed rape (OSR, Brassica napus), caused by Sclerotinia sclerotiorum, is a serious problem in the UK and worldwide. As fungicide‐based control approaches are not always reliable, identifying host resistance is a desirable and sustainable approach to disease management. This research initially examined the aggressiveness of 18 Sclerotinia isolates (17 S. sclerotiorum, one S. subarctica) on cultivated representatives of B. rapa, B. oleracea and B. napus using a young plant test. Significant differences were observed between isolates and susceptibility of the brassica crop types, with B. rapa being the most susceptible. Sclerotinia sclerotiorum isolates from crop hosts were more aggressive than those from wild buttercup (Ranunculus acris). Sclerotinia sclerotiorum isolates P7 (pea) and DG4 (buttercup), identified as ‘aggressive’ and ‘weakly aggressive’, respectively, were used to screen 96 B. napus lines for SSR resistance in a young plant test. A subset of 20 lines was further evaluated using the same test and also in a stem inoculation test on flowering plants. A high level of SSR resistance was observed for five lines and, although there was some variability between tests, one winter OSR (line 3, Czech Republic) and one rape kale (line 83, UK) demonstrated consistent resistance. Additionally, one swede (line 69, Norway) showed an outstanding level of resistance in the stem test. Resistant lines also had fewer sclerotia forming in stems. New pre‐breeding material for the production of SSR resistant OSR cultivars relevant to conditions in the UK and Europe has therefore been identified.  相似文献   

2.
3.
Sclerotinia sclerotiorum is an important pathogen of many crop plants which also infects wild hosts. The population structure of this fungus was studied for different crop plants and Ranunculus acris (meadow buttercup) in the UK using eight microsatellite markers and sequenced sections of the intergenic spacer (IGS) region of the rRNA gene and the elongation factor 1‐alpha (EF) gene. A total of 228 microsatellite haplotypes were identified within 384 isolates from 12 S. sclerotiorum populations sampled in England and Wales. One microsatellite haplotype was generally found at high frequency in each population and was distributed widely across different hosts, locations and years. Fourteen IGS and five EF haplotypes were found in the 12 populations, with six IGS haplotypes and one EF haplotype exclusive to buttercup. Analysis of published sequences for S. sclerotiorum populations from the USA, Canada, New Zealand and Norway showed that three of the IGS haplotypes and one EF haplotype were widely distributed, while eight IGS haplotypes were only found in the UK. Although common microsatellite and IGS/EF haplotypes were found on different hosts in the UK, there was evidence of differentiation, particularly for one isolated population on buttercup. However, overall there was no consistent differentiation of S. sclerotiorum populations from buttercup and crop hosts. Sclerotinia sclerotiorum therefore has a multiclonal population structure in the UK and the wide distribution of one microsatellite haplotype suggests spatial mixing at a national scale. The related species S. subarctica was also identified in one buttercup population.  相似文献   

4.
Sclerotinia sclerotiorum is a major pathogen that infects stem tissue, causing yield loss and poor seed quality in rapeseed (Brassica napus). Here we report a reliable detached stem inoculation method for evaluating resistance under controlled environment. Two sets of Brassica materials were employed, including 17 genotypes from five Brassica crops in experiment 1, and 71 F2 lines derived from a cross between susceptible and resistant lines of B. oleracea in experiment 2. High correlations were detected between stem and branch for lesion length in both experiments and between stem and sections of stem in experiment 1. Although the lesion length of detached stem inoculation under controlled environment was positively correlated with that of toothpick inoculation in the field, the variation of lesion length in the detached stem inoculation was lower than that in toothpick inoculation in experiment 2. Moreover, no significant association was detected between lesion length and the diameter of stem or branch. These findings suggest that the detached stem inoculation under controlled conditions is a large-scale, flexible and reliable method of screening for resistance against S. sclerotiorum in Brassica crops. The application of detached stem inoculation is discussed in resistance breeding programs against S. sclerotiorum in Brassica crops.  相似文献   

5.
The success of the necrotrophic fungus Sclerotinia sclerotiorum is largely dependent on its major virulence factor, oxalic acid (OA). Virulence is lost in transgenic plants that express OA degrading enzymes, e.g. oxalate oxidase (OxO). The histopathology of Ssclerotiorum infection and OA accumulation was examined in a transgenic soybean line over‐expressing OxO (OxO‐OE) and its isogenic parent (WT). In situ flower inoculation showed that the OxO‐OE plants were highly resistant to the pathogen while the WT parents were susceptible. This difference in resistance was not apparent in the floral tissues, as aggressive hyphal activity was similar on both hosts, showing that high OxO activity and low OA accumulation in OxO‐OE was not a deterrent. However, the process of fungal infection on excised leaf tissue differed on the two hosts. Primary lesions developed and showed similar severe ultrastructural damage on both hosts but rapid lesion expansion (colonization) proceeded only on the WT, concomitant with OA accumulation. Oxalic acid rose in OxO‐OE 1 day post‐inoculation and did not change over the following 3 days, showing that colonization can be blocked by maintaining low levels of OA. However, OxO degradation of OA did not deter initial host penetration and primary lesion formation. This shows that OA, the major virulence factor of S. sclerotiorum, is critical for host colonization but may not be required during primary lesion formation, suggesting that other factors are contributing to the establishment of the primary lesion.  相似文献   

6.
Sclerotinia stem rot (Sclerotinia sclerotiorum) is a serious disease in oilseed Brassica crops worldwide. In this study, temperature adaptation in isolates of S. sclerotiorum collected from differing climatic zones is reported for the first time on any crop. Sclerotinia sclerotiorum isolates from oilseed rape (Brassica napus) crops in warmer northern agricultural regions of Western Australia (WW3, UWA 7S3) differed in their reaction to temperature from those from cooler southern regions (MBRS‐1, UWA 10S2) in virulence on Brassica carinata, growth on agar, and oxalic acid production. Increasing temperature from 22/18°C (day/night) to 28/24°C increased lesion diameter on cotyledons of B. carinataBC054113 more than tenfold for warmer region isolates, but did not affect lesion size for cooler region isolates. Mean lesion length averaged across two B. carinata genotypes (resistant and susceptible) fell from 4·6 to 2·4 mm for MBRS‐1 when temperature increased from 25/21°C to 28/24°C but rose for WW3 (2·35 and 3·21 mm, respectively). WW3, usually designated as low in virulence, caused as much disease on stems at 28/24°C as MBRS‐1, historically designated as highly virulent. Isolates collected from cooler areas grew better at low temperatures on agar. While all grew on potato dextrose agar between 5 and 30°C, with maximum growth at 20–25°C, growth was severely restricted above 32°C, and only UWA 7S3 grew at 35°C. Oxalate production increased as temperature increased from 10 to 25°C for isolates MBRS‐1, WW3 and UWA 7S3, but declined from a maximum level of 101 mg g?1 mycelium at 20°C to 24 mg g?1 mycelium at 25°C for UWA 10S2.  相似文献   

7.
Studies were undertaken to compare susceptible and resistant host responses to Pseudocercosporella capsellae in cotyledons of Brassica carinata, B. juncea and B. napus in order to define the mechanisms of resistance in these three species. On both resistant and susceptible hosts, hyphal penetration was always through stomatal openings and without infection pegs or appressoria. On resistant B. carinata ATC94129P, up to 72% of spores disintegrated and, generally, germination (<22%) and germ tube lengths (<25 μm) were comparatively low. Resistant B. napus Hyola 42 had the lowest germination (8%) and susceptible B. carinata UWA#012 had the highest (51%). On resistant B. carinata ATC94129P, germ tube extension was impeded across 24–60 h post‐inoculation (hpi) and percentage stomatal penetration lower (4%) at 60 hpi compared with susceptible B. carinata UWA#012 (26%). Stomatal densities (stomata/14 757 μm2) on resistant B. juncea Dune (2·12) and B. napus Hyola 42 (1·62) were lower than for susceptible B. juncea Vardan (2·40) and B. napus Trilogy (2·03). Resistant B. carinata ATC94129P had greater stomatal density (1·89) than susceptible B. carinata UWA#012 (1·58). Overall, B. juncea had greater stomatal density (2·26) compared with B. napus (1·83) and B. carinata (1·74). In resistant B. carinata ATC94129P, P. capsellae induced 28% stomata to close, while in susceptible B. carinata UWA#012 no such closure was induced. Epicuticular wax crystalloids were present only on resistant B. carinata ATC94129P and probably also contribute towards resistance.  相似文献   

8.
F. Liu  M. Wang  J. Wen  B. Yi  J. Shen  C. Ma  J. Tu  T. Fu 《Plant pathology》2015,64(6):1407-1416
Sclerotinia stem rot (SSR) is a severe disease of oilseed rape, which severely impacts the crop productivity worldwide. Sclerotinia sclerotiorum causes SSR, resulting in the secretion of oxalic acid (OA), which can be further degraded to carbon dioxide (CO2) and hydrogen peroxide (H2O2) by oxalate oxidase (OXO). In the present investigation, the barley oxalate oxidase (BOXO, Y14203) gene was introduced into oilseed rape by Agrobacterium‐mediated transformation to investigate the mechanism by which OXO promotes resistance to S. sclerotiorum. Compared to the control 72 h post‐inoculation, there were c. 15–61% fewer lesions on leaves of the transgenic oilseed rape, which thus exhibited a detectable level of partial resistance in leaf tissue to S. sclerotiorum. Transgenic oilseed rape also showed decreased oxalate and increased hydrogen peroxide levels compared to the control, and the expression of defence response genes involved in the hydrogen peroxide signalling pathway was also induced. Therefore, the improved resistance of oilseed rape could be attributed to the enhanced OA metabolism, production of hydrogen peroxide and the hydrogen peroxide‐mediated defence levels during infection.  相似文献   

9.
Blackleg disease of canola/rapeseed (Brassica napus), caused by the devastating fungal pathogen Leptosphaeria maculans, can significantly influence B. napus production worldwide, except for China, where only the less aggressive L. biglobosa has been found associated with the disease. The aim of this study was to characterize both seedling resistance (major gene resistance, R gene resistance) and adult plant resistance (APR) from a collection of Chinese B. napus varieties/lines (accessions) to L. maculans. Evaluation of seedling resistance was carried out under a controlled environment, using 11 well‐characterized L. maculans isolates as differentials. The identification of APR was performed under multiple field environments in western Canada. R genes were detected in more than 40% of the accessions tested. Four specific R genes, Rlm1, Rlm2, Rlm3 and Rlm4 were identified, with Rlm3 and Rlm4 being the most common genes, while Rlm1 and Rlm2 were detected only occasionally. Results of field evaluation indicated significant variations among field locations as well as accessions; a large portion of the B. napus accessions, regardless of the resistance level observed at the seedling stage, showed high to moderate levels of APR under all environments tested. This study highlights that both R gene resistance and APR are present in Chinese B. napus germplasm and could be potential sources of resistance against blackleg caused by L. maculans if the pathogen ever becomes established in China.  相似文献   

10.
Sclerotinia stem rot (SSR) caused by the phytopathogenic fungus Sclerotinia sclerotiorum is a major disease of oilseed rape (Brassica napus). During infection, large, white/grey lesions form on the stems of the host plant, perturbing seed development and decreasing yield. Due to its ability to produce long‐term storage structures called sclerotia, S. sclerotiorum inoculum can persist for long periods in the soil. Current SSR control relies heavily on cultural practices and fungicide treatments. Cultural control practices aim to reduce the number of sclerotia in the soil or create conditions that are unfavourable for disease development. These methods of control are under increased pressure in some regions, as rotations tighten and inoculum levels increase. Despite their ability to efficiently kill S. sclerotiorum, preventative fungicides remain an expensive gamble for SSR control, as their effectiveness is highly dependent on the ability to predict the establishment of microscopic infections in the crop. Failure to correctly time fungicide applications can result in a substantial cost to the grower. This review describes the scientific literature pertaining to current SSR control practices. Furthermore, it details recent advances in alternative SSR control methods including the generation of resistant varieties through genetic modification and traditional breeding, and biocontrol. The review concludes with a future directive for SSR control on oilseed rape.  相似文献   

11.
The plant‐pathogenic fungus Sclerotinia sclerotiorum has a broad host range and a worldwide distribution. Boscalid, an inhibitor of succinate dehydrogenase in the electron transport chain of fungi, is highly effective in controlling sclerotinia stem rot caused by S. sclerotiorum. The current study characterized the S. sclerotiorum boscalid‐resistant (BR) mutants obtained by fungicide induction. Among the bioactive fungicides against S. sclerotiorum, cross‐resistance was not detected between boscalid and dimethachlon, fluazinam or carbendazim; positive cross‐resistance was detected between boscalid and carboxin; and negative cross‐resistance was detected between boscalid and kresoxim‐methyl. Compared to their parental isolates, BR mutants had slower radial growth, no ability to produce sclerotia, lower virulence and oxalic acid content but higher mycelial respiration and succinate dehydrogenase (SDH) activity. Moreover, BR mutants had decreased sensitivity to salicylhydroxamic acid (SHAM) but not to oxidative stress. All the results indicated that the risk of resistance to boscalid in S. sclerotiorum is low to moderate. DNA sequence analysis showed that all of the BR mutants had the same point mutation A11V (GCA to GTA) in the iron sulphur protein subunit (SDHB). Interestingly, expression of the cytochrome b (cytb) gene was reduced to different degrees in the BR mutants, and this might be correlated with the negative cross‐resistance between boscalid and kresoxim‐methyl. Such information is vital in the design of resistance management strategies.  相似文献   

12.
Sclerotinia sclerotiorum is a necrotrophic fungus that causes a devastating disease called white mould, infecting more than 450 plant species worldwide. Control of this disease with fungicides is limited, so host plant resistance is the preferred alternative for disease management. However, due to the nature of the disease, breeding programmes have had limited success. A potential alternative to developing necrotrophic fungal resistance is the use of host‐induced gene silencing (HIGS) methods, which involves host expression of dsRNA‐generating constructs directed against genes in the pathogen. In this study, the target gene chosen was chitin synthase (chs), which commands the synthesis of chitin, the polysaccharide that is a crucial structural component of the cell walls of many fungi. Tobacco plants were transformed with an interfering intron‐containing hairpin RNA construct for silencing the fungal chs gene. Seventy‐two hours after inoculation, five transgenic lines showed a reduction in disease severity ranging from 55·5 to 86·7% compared with the non‐transgenic lines. The lesion area did not show extensive progress over this time (up to 120 h). Disease resistance and silencing of the fungal chs gene was positively correlated with the presence of detectable siRNA in the transgenic lines. It was demonstrated that expression of endogenous genes from the very aggressive necrotrophic fungus S. sclerotiorum could be prevented by host induced silencing. HIGS of the fungal chitin synthase gene can generate white mould‐tolerant plants. From a biotechnological perspective, these results open new prospects for the development of transgenic plants resistant to necrotrophic fungal pathogens.  相似文献   

13.
14.
Choy sum (Brassica rapa var. parachinensis), leafy mustard (Brassica juncea) and pak choi (B. rapa var. chinensis) are highly nutritious components of diets in Taiwan and other Asian countries, and bacterial black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a major biotic constraint in these crops. As very little was known about the Xcc strains from these crops in these regions, including their cross‐pathogenicity and aggressiveness on different hosts, Xcc strains were obtained from cabbage (Brassica oleracea var. capitata), choy sum, leafy mustard and pak choi crops in Taiwan. Two previously published PCR‐based assays reliably distinguished the Xcc strains from other Xanthomonas species and subspecies. Phylogenetic analysis based on repetitive sequence‐based PCR assays placed the Xcc strains in a clade distinct from other Xanthomonas species, and also showed host specificity. Although all of the Xcc strains from the different host species were pathogenic on all five Brassica test species in both a detached leaf assay and an intact plant assay, in the intact plant assay they showed differences in virulence or aggression on the different test hosts. The Xcc strains from leafy mustard and pak choi were consistently highly aggressive on all the test host genotypes, but the strains from choy sum and cabbage were less aggressive on leafy mustard and choy sum. The intact plant assay proved more discriminating and reliable than the detached leaf assay for comparing the aggressiveness of Xcc strains on different host genotypes, and so, with the new Xcc strains isolated in this study, will be useful for screening leafy brassica germplasm accessions for resistance to black rot.  相似文献   

15.
Genetic resistance is the main tool used to manage clubroot of canola (Brassica napus) in Canada. However, the emergence of new virulent strains of the clubroot pathogen, Plasmodiophora brassicae, has complicated canola breeding efforts. In this study, 386 Brassica accessions were screened against five single-spore isolates (represented by pathotypes 2F, 3H, 5I, 6M and 8N on the Canadian Clubroot Differential Set) and 17 field isolates (represented by 12 unique pathotypes: 2B, 3A, 3D, 3O, 5C, 5G, 5K, 5L, 5X, 8E, 8J and 8P) of P. brassicae to identify resistance sources effective against these strains. The results showed that one B. rapa accession (CDCNFG-046, mean index of disease (ID) = 3.3%) and two B. nigra accessions (CDCNFG-263, mean ID = 3.1%; and CDCNFG-262, mean ID = 4.7%) possessed excellent resistance to all 22 of the isolates evaluated. Fifty other accessions showed differential clubroot reactions (resistant, moderately resistant or susceptible), including 27 (one B. napus, two B. rapa, four B. oleracea and 20 B. nigra) accessions that were each resistant to 8–21 P. brassicae isolates, but developed mean IDs in the range of 5.3–29.6%. The remaining 23 accessions (two B. napus, one Brapa, five Boleracea and 15 B. nigra) were each resistant to 3–13 isolates, but developed mean IDs in the range of 30.3–47.0%. The three accessions that showed absolute resistance and the 50 accessions that showed differential clubroot reactions could be used to breed for resistance to the new P. brassicae strains.  相似文献   

16.
Predicting diseases caused by Sclerotinia sclerotiorum in field crops remains difficult, and published literature is largely inconsistent in finding significant relationships with environmental and agronomic factors for various life stages of the fungus. A scoping review was performed to synthesize the current quantitative insights into the role of the environment on the life cycle of S. sclerotiorum and the relationships between various life stages of the fungus and final disease expression under field conditions. For most variables, relationships with stages of the life cycle showed a wide range of responses ranging from closely related (high correlations or r2 values) to not related at all. The effects were often moderated by year, location and/or the presence of another variable such as irrigation, soil type, row spacing or cultivar. Studies that based analysis on a more nuanced understanding of pathogen biology rather than looking only at linear relationships tended to find stronger associations between variables. Yield was consistently negatively associated with disease levels, but cultivar, year, location and planting density were all important determinants of yield. Suggestions for improvement to future research in predictive model development of S. sclerotiorum diseases are discussed.  相似文献   

17.
Pseudocercosporella capsellae (white leaf spot disease) is an important disease on crucifers. Fifty‐four single‐conidial isolates collected from Brassica juncea (Indian mustard), B. napus (oilseed rape), B. rapa (turnip), and Raphanus raphanistrum (wild radish) across Western Australia were investigated for differences in pathogenicity and virulence using cotyledon screening tests, genetic differences using internal transcribed spacer (ITS) sequencing and phylogenetic analysis, and growth rates on potato dextrose, V8 juice and malt extract agars. All isolates from the four crucifer hosts were pathogenic on the three test species: B. juncea, B. napus and R. raphanistrum, but showed differences in levels of virulence. Overall, isolates from B. juncea, B. napus and B. rapa showed greatest virulence on B. juncea, least on R. raphanistrum and intermediate virulence on B. napus. Isolates from R. raphanistrum showed greatest virulence on B. juncea, least on B. napus and intermediate virulence on R. raphanistrum. Growth and production of a purple‐pink pigment indicative of cercosporin was greatest on malt extract agar and cercosporin production on V8 juice agar was positively correlated with virulence of isolates on B. juncea and B. napus. ITS sequencing and phylogenetic analysis showed that isolates collected from B. napus, B. juncea and B. rapa, in general and with few exceptions, had a high degree of genetic similarity. In contrast, isolates from R. raphanistrum were clearly differentiated from isolate groups collected from Brassica hosts. Pseudocercosporella capsellae reference isolates from other countries generally grouped into a single separate cluster, highlighting the genetic distinctiveness of Western Australian isolates.  相似文献   

18.
Isolates of Hyaloperonospora brassicae inoculated onto cotyledons of 28 diverse Brassicaceae genotypes, 13 from Brassica napus, two from B. juncea, five from B. oleracea, two from Eruca vesicaria, and one each from B. nigra, B. carinata, B. rapa, Crambe abyssinica, Raphanus sativus and R. raphanistrum, showed significant effects (P ≤ 0.001) of isolate, host and their interaction. Host responses ranged from no visible symptom or a hypersensitive response, to systemic spread and abundant pathogen sporulation. Isolates were generally most virulent on their host of origin. Using an octal classification, six host genotypes were identified as suitable host differentials to characterize pathotypes of H. brassicae and distinguished eight distinct pathotypes. There were fewer, but more virulent, pathotypes in 2015–2016 isolates than 2006–2008 pathogen populations, probably explaining the increase in severity of canola downy mildew over the past decade. Phylogenetic relationships determined across 20 H. brassicae isolates collected in 2006–2008 and 88 isolates collected in 2015–2016 showed seven distinct clades, with 70% of 2006–2008 isolates distributed within clade I (bootstrap value (BVs) of 100%) and the remaining 30% in clade V (BVs 83.3%). This is the first study to define phylogenetic relationships of H. brassicae isolates in Australia, setting a benchmark for understanding current and future genetic shifts within pathogen populations; it is also the first to use octal classification to characterize pathotypes of H. brassicae, providing a novel basis for standardizing phenotypic characterization and monitoring of pathotypes on B. napus and some crucifer species in Australia.  相似文献   

19.
The Gram‐negative bacterium Erwinia amylovora, causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that translocates effector proteins into plant cells that collectively function to suppress host defences and enable pathogenesis. Until now, there has only been limited knowledge about the interaction of effector proteins and host resistance presented in several wild Malus species. This study tested disease responses in several Malus wild species with a set of effector deletion mutant strains and several highly virulent E. amylovora strains, which are assumed to influence the host resistance response of fire blight‐resistant Malus species. The findings confirm earlier studies that deletion of the T3SS abolished virulence of the pathogen. Furthermore, a new gene‐for‐gene relationship was established between the effector protein Eop1 and the fire blight resistant ornamental apple cultivar Evereste and the wild species Malus floribunda 821. The results presented here provide new insights into the host–pathogen interactions between Malus sp. and E. amylovora.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号