首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Puccinia psidii has long been considered a significant threat to Australian plant industries and ecosystems. In April 2010, P. psidii was detected for the first time in Australia on the central coast of New South Wales (NSW). The fungus spread rapidly along the east coast and in December 2010 was found in Queensland (Qld) followed by Victoria a year later. Puccinia psidii was initially restricted to the southeastern part of Qld but spread as far north as Mossman. In Qld, 48 species of Myrtaceae are considered highly or extremely susceptible to the disease. The impact of P. psidii on individual trees and shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity. Tree death, as a result of repeated infection, has been recorded for Rhodomyrtus psidioides. Rust infection has also been recorded on flower buds, flowers and fruits of 28 host species. Morphological and molecular characteristics were used to confirm the identification of P. psidii from a range of Myrtaceae in Qld and compared with isolates from NSW and overseas. A reconstructed phylogeny based on the LSU and SSU regions of rDNA did not resolve the familial placement of P. psidii, but indicated that it does not belong to the Pucciniaceae. Uredo rangelii was found to be con‐specific with all isolates of P. psidii in morphology, ITS and LSU sequence data, and host range.  相似文献   

2.
Puccinia psidii, the causal agent of myrtle rust, was first recorded from Latin America more than 100 years ago. It occurs on many native species of Myrtaceae in Latin America and also infects non‐native plantation‐grown Eucalyptus species in the region. The pathogen has gradually spread to new areas including Australia and most recently South Africa. The aim of this study was to consider the susceptibility of selected Eucalyptus genotypes, particularly those of interest to South African forestry, to infection by P. psidii. In addition, risk maps were compiled based on suitable climatic conditions and the occurrence of potential susceptible tree species. This made it possible to identify the season when P. psidii would be most likely to infect and to define the geographic areas where the rust disease would be most likely to establish in South Africa. As expected, variation in susceptibility was observed between eucalypt genotypes tested. Importantly, species commonly planted in South Africa show good potential for yielding disease‐tolerant material for future planting. Myrtle rust is predicted to be more common in spring and summer. Coastal areas, as well as areas in South Africa with subtropical climates, are more conducive to outbreaks of the pathogen.  相似文献   

3.
Austropuccinia psidii, cause of myrtle rust, has spread globally where Myrtaceae occur. Multiple strains of A. psidii have been identified, including a unique strain found only in South Africa. The South African strain is a biosecurity concern for species of Myrtaceae worldwide. This is because preliminary testing of South African Myrtaceae suggests it could have a wide host range, and thus has the potential to be invasive. In this study, we assessed the ability of the South African strain to infect other species of Myrtaceae by testing the susceptibility of New Zealand provenance Myrtaceae. Seedlings of four native New Zealand Myrtaceae species (Metrosideros excelsa, Leptospermum scoparium, Kunzea robusta, and Kunzea linearis) were artificially inoculated in South Africa with a single-uredinium isolate of the South African strain. Fourteen days after inoculation, uredinia, and in many cases telia, had developed on the young leaves and stems of all four host species, which led to shoot tip dieback in the more severe cases. When comparisons were made between the species, K. robusta was the least susceptible to the South African strain of A. psidii, while L. scoparium and M. excelsa were the most susceptible. While only a limited number of seed families were tested, only a small proportion of the seedlings showed resistance to infection by the South African strain. This preliminary testing highlights the potential invasive risk the South African strain poses to global Myrtaceae communities, including New Zealand Myrtaceae.  相似文献   

4.
Myrtle rust (Austropuccinia psidii) is an invasive species causing damage to Myrtaceae species in natural and managed ecosystems in many countries. To better understand myrtle rust epidemiology we studied latent period (LP) and ontogenic resistance in relation to temperature on three susceptible hosts (Metrosideros excelsa, Lophomyrtus bullata × L. obcordata and Syzygium jambos). The latent period curve was U-shaped, with latent development >0 from between 8 and 10 °C, depending on the host, to 32 °C. Optimum range was 22–28 °C with minimum LP of 5–7 days. Peak spore production occurred over about 2 weeks, starting about 1 week after the LP ended. Some spore production continued for 1–2 months. Comparison of the LP data with field temperatures indicated that the uredinial stage of A. psidii can overwinter in the latent phase in temperate areas of New Zealand and southern Australia and, therefore, uredinial or telial reinfection is not required during winter. The LP information was used to correct the LP function in a New Zealand myrtle rust climatic risk model. The transition of emergent leaf and stem tissues in susceptible Myrtaceae genotypes from susceptible to immune (ontogenic resistance) was characterized in terms of uredinium density and LP. Onset of ontogenic resistance was closely linked to the degree of leaf expansion, with fully expanded leaves being immune to infection. Because ontogenic resistance restricts infection to periods when growth flushes occur, understanding it is crucial for explaining the seasonality of myrtle rust development in the natural environment.  相似文献   

5.
The exotic rust pathogen Puccinia psidii is now widespread along the east coast of Australia from temperate Victoria to tropical far north Queensland, with a current host range exceeding 200 species from 37 myrtaceous genera. To determine the threat P. psidii poses to plantation and native eucalypts, artificial inoculation was used to screen germplasm of spotted gum (Corymbia spp.) for resistance to the biotype of P. psidii that has become established in Australia. The objective was to characterize resistance to P. psidii within the Corymbia species complex so that management strategies for the deployment of germplasm from existing breeding programmes of these spotted gum species could be developed. Symptom development initiated 7 days after inoculation, with resistant and susceptible seedlings identified within all species, provenances and families. Inter‐ and intraspecific variability in rust resistance was observed among spotted gum species. There was no apparent relationship between climatic conditions at the provenance origin and disease resistance. The heritability estimates for all assessments are moderate to high and indicate a significant level of additive genetic variance for rust resistance within the populations. The results of this study clearly identify potential to select for resistance at the family level within the tested populations. While the potential for P. psidii to detrimentally impact upon Corymbia in the nursery and in young plantations was demonstrated, estimations of the heritability of resistance suggest that efforts to enhance this trait through breeding have reasonable prospects for success.  相似文献   

6.
Myrtle rust poses a significant biosecurity threat to Australia with potential for long-term damaging impacts on native flora and plant industries. This study describes the disease cycle of Austropuccinia psidii, the myrtle rust pathogen, in Eucalyptus globulus and Eucalyptus obliqua, two commercially and ecologically important species from different subgenera of Eucalyptus. Ontogeny and morphology of infection structures of A. psidii on plants of both Eucalyptus species with different rust response phenotypes, i.e. completely resistant, hypersensitive and highly susceptible, were investigated. Plants were inoculated with single-uredinium-derived urediniospores and examined by scanning electron microscopy. No differences between rust response phenotypes were observed in germination of urediniospores, formation of appressoria or length of germ tubes. The growth of germ tubes had no affinity towards stomata of either species. Histological observations indicated direct penetration by infection pegs through the leaf cuticle and no penetration beyond the epidermis on rust-resistant E. obliqua. Eucalyptus obliqua plants that were identified as susceptible to A. psidii at 3- and 6-months-old showed no disease when reinoculated with A. psidii at 12-months-old; this indicated possible early acquisition of adult plant resistance to A. psidii in this species. In the susceptible phenotype of E. globulus rust inoculation led to rapid colonization of leaf parenchyma cells with the disease cycle completed within 10 days. These findings provide valuable insights into host–pathogen interactions in the EucalyptusA. psidii pathosystem, which might be useful for the development of effective rust control strategies across Eucalyptus subgenera.  相似文献   

7.
Hundreds of species in one of Australia's dominant plant families, the Myrtaceae, are at risk from the invasive pathogenic fungus Austropuccinia psidii. Since its arrival in Australia in 2010, native plant communities have been severely affected, with highly susceptible species likely to become extinct from recurring infections. While severe impact on Australian native and plantation forestry has been predicted, the lemon myrtle industry is already under threat. Commercial cultivars of lemon myrtle (Backhousia citriodora) are highly susceptible to A. psidii. Detecting and monitoring disease outbreaks is currently only possible by eye, which is costly and subject to human bias. This study aims at developing a proof‐of‐concept for automated, non‐biased classification of healthy (naïve), fungicide‐treated and diseased lemon myrtle trees by means of their spectral reflectance signatures. From a lemon myrtle plantation, spectral signatures of fungicide‐treated and untreated leaves were collected using a portable field spectrometer. A third class of spectra, from naïve lemon myrtle leaves that had not been exposed to A. psidii, was collected from a botanical garden. Reflectance spectra in their primary form and their first‐order derivatives were used to train a random forest classifier resulting in an overall accuracy of 78% (kappa = 0.68) for primary spectra and 95% (kappa = 0.92) for first‐order derivative‐transformed spectra. Thus, an optical sensor‐based discrimination, using spectral reflectance signatures of this as yet uninvestigated pathosystem, seems technically feasible. This study provides a foundation for the development of automated, sensor‐based detection and monitoring systems for myrtle rust.  相似文献   

8.
Myrtle rust (caused by Austropuccinia psidii) affects more than 500 known host species in the Myrtaceae family. Three different modelling approaches (CLIMEX, MaxEnt and Multi-Model Framework) were used to project the habitat suitability for myrtle rust at both global and local scales. Current data on the global occurrence of myrtle rust were collected from online literature and expert solicitation. Long-term averages of climate data (1960–1990) were sourced from WorldClim and CliMond websites. Recent reports of myrtle rust in New Zealand were used for validation of model outputs but not in model training and testing. The model outputs were combined into a consensus model to identify localities projected to be suitable for myrtle rust according to two or three models (hotspots). In addition to the locations where the pathogen is currently present, all models successfully projected independent occurrence data in New Zealand suitable for establishment of the pathogen. Climate suitability for the pathogen was primarily related to temperature followed by rainfall in MaxEnt and the CLIMEX model. The results confirmed the optimum temperature range of this pathogen in the literature (15–25 °C). Additional analysis of the precipitation variables indicated that excessive rain (more than 2000 mm in warmest quarter of the year) combined with high temperatures (>30 °C) constrain pathogen establishment. The results of the current study can be useful for countries such as New Zealand, China, South Africa and Singapore where the pathogen has not fully spread or established.  相似文献   

9.
A non‐native rust of Myrtaceae was first detected in Australia in 2010, and was later identified as Puccinia psidii. The presence of many native species of Myrtaceae and a lack of understanding of genetic variability in P. psidii in Australia led to the current study. Low coverage genome sequencing of P. psidii suggested a genome size of c. 142 Mb. A set of 240 simple sequence repeat (SSR) primers was designed based on the genome sequence information generated. Seventeen isolates of P. psidii comprising 14 from Australia, two from Brazil and one from Hawaii were selected to study genetic variation in the pathogen. Out of 240 initially screened markers, 74% showed amplification among P. psidii isolates and 38% were polymorphic. Primers were fluorescently labelled and genotyping revealed three distinct genotypes among the isolates: one comprising Australian isolates and an isolate from Hawaii, and the second and third comprising two Brazilian isolates. Locus USYD_Pp151 produced a fourth genotype for the Hawaiian isolate of P. psidii. Markers revealed that all Australian isolates were genetically similar to the one from Hawaii. There was no genetic variation among the Australian isolates of P. psidii, supporting the hypothesis that only one genotype of P. psidii was introduced into Australia. The SSR markers developed in this study are highly specific to P. psidii and can be used confidently as a new profiling tool to monitor evolution of P. psidii in Australia and elsewhere.  相似文献   

10.
Outbreaks of a rust disease in eucalypt forestry plantations and nurseries in Kenya, Mozambique and South Africa occurred between 2009 and 2014. The pathogen was identified using morphology and molecular phylogenetic analyses as an undescribed species in the Phakopsoraceae. A systematic study, based on nuclear ribosomal DNA, showed that it is a species of Phakopsora, herein named Phakopsora myrtacearum sp. nov. This new species of rust is the second validly described species on Eucalyptus, along with Puccinia psidii. Phakopsora myrtacearum is distinguished from P. psidii by leaf symptoms, morphology of the urediniospores and distinct phylogenetic placement. Phakopsora myrtacearum has been found on three species of Eucalyptus in Kenya, Mozambique and South Africa, and it may have future negative implications for commercial forestry in these areas.  相似文献   

11.
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the major fungal pathogens of wheat. A new pathotype was introduced to Australia in 2002 and several derivative pathotypes were detected in subsequent seasons. It has been suggested that the severity of stripe rust outbreaks in Australia since 2002 could be as a result of traits other than virulence in the pathogen population. This study was conducted to investigate the hypothesis that the stripe rust pathogen population dominant in Australia since 2002 was better adapted to warm temperature conditions compared to previous pathogen populations. Sixteen pathotypes were selected to examine the influence of two contrasting temperature regimes during the 24 h incubation (10°C and 15°C) and the subsequent post‐inoculation (17°C and 23°C) periods on latent period and infection efficiency on four susceptible wheat cultivars. In addition, the effect of two contrasting incubation temperatures on urediniospore germination was examined. The results indicated that pathotypes of P. striiformis f. sp. tritici detected after 2002 did not show evidence of adaptation to high temperatures, which suggests that other factors contributed to the observed increased aggressiveness.  相似文献   

12.
Cherry spruce rust causes huge yield losses in Norway spruce seed production in Fennoscandia. The causal agent, Thekopsora areolata, has three types of spores that disperse during spring: basidiospores are produced on basidia that grow out from teliospores in overwintered bird cherry leaf litter to infect new pistillate spruce cones, aeciospores are released from old diseased spruce cones to infect bird cherry leaves, and urediniospores are produced from new bird cherry leaves for reinfection. No study has examined the dispersal of T. areolata spores, including the basidiospores that cause primary infection in spruce cones. In this study, teliospores of T. areolata were germinated in the laboratory and the morphology of basidiospores was described. T. areolata spores were sampled in Ultuna, Sweden and Joutsa, Finland with 21 spore traps at each site. Peaks in aeciospores were observed from 11 to 25 May and from 2 to 8 June at the Finnish site, and from 4 to 18 May at the Swedish site. Urediniospores were first observed 2–3 weeks after the peaks in aeciospores and they were mainly distributed within 10 m from the bird cherry trees. Peaks of 1–2 weeks in basidiospore detection coincided with multiple rain events. The basidiospore peak overlapped with the spruce pollen peak in Finland but not in Sweden. The quantities of basidiospores from different spore traps within 100 m from the spore source had no gradient. Information on spatial and temporal spore release is important for making decisions on disease management strategies.  相似文献   

13.
The rust fungus Puccinia komarovii var. glanduliferae was first identified infecting Impatiens glandulifera in its native range (western Himalayas) between 2006 and 2010. Subsequently, it was imported into quarantine in the UK for evaluation as a classical biocontrol agent. To assess the safety of the rust, plant species relevant to Europe were tested for susceptibility. To confirm the life cycle, all infective spore stages were inoculated on I. glandulifera to follow disease progression. Teliospores were primed using bleaching and low temperatures to break dormancy. Temperature and dew period experiments using urediniospores were conducted to assess the parameters required for infection. Of the 74 plant species tested, only I. balsamina, an ornamental species, was fully susceptible to urediniospore inoculum. The life cycle of the rust – an autoecious, full‐cycled species with five spore stages – was confirmed. Urediniospores were infective between 5 and 25°C, with an optimum at 15°C. A minimum of 8 h dew period was required to achieve consistent infection. Based on a pest risk assessment, the rust poses no threat to native biodiversity within EU Member States; making P. komarovii var. glanduliferae a suitable candidate as the first fungal classical biocontrol agent against an exotic weed in the region.  相似文献   

14.
BACKGROUND: Recent studies have shown the effects of glyphosate drift on decreasing rust intensity on Eucalyptus grandis plants. However, the effects of the herbicide on Puccinia psidii initial development are unknown. In this study the systemic action of glyphosate on rust severity was evaluated on Eucalyptus plants maintained under greenhouse conditions. Urediniospore germination and apressorium formation on detached leaves and on water agar medium, previously treated with glyphosate, were also evaluated. RESULTS: Rust severity and the number of urediniospores per leaf area were significantly reduced with increasing glyphosate doses, even on branches not directly treated with the herbicide, indicating a systemic effect of glyphosate on pathogen development. Similarly, higher glyphosate doses also reduced germination and apressorium formation on detached Eucalyptus leaves, regardless of the direct application of the product on the leaf limb or on the petiole base. Puccinia psidii urediniospore germination in water agar medium also decreased with increasing herbicide doses. CONCLUSIONS: Reductions in germination and apressorium formation of P. psidii urediniospores with increasing glyphosate dose indicate that a lower severity and intensity of the disease may perhaps be due to blockage of the shikimic acid pathway in the fungal metabolic system. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Commercial areas containing Eucalyptus plantations have expanded in recent years due to increased demands for pulp, paper and bioenergy. One of the threats that can reduce Eucalyptus production is the eucalyptus rust disease caused by Austropuccinia psidii, a biotrophic fungus that affects a broad range of Myrtaceae. An accurate diagnosis tool for the early detection of rust disease could be useful in breeding programs for selection of resistant plants against rust, in phytosanitary purposes or in rust epidemics studies. The aim of the present work was to develop a SYBR Green-based quantitative real-time PCR (qPCR) assay for the early detection and quantification of A. psidii in Eucalyptus grandis leaves. Three sets of primers based on the A. psidii ribosomal DNA intergenic space region (IGS), beta-tubulin and elongation factor genes were designed and evaluated. The assays using the IGS primer set resulted in the highest detection efficiency, detecting a lower limit of 0.5 pg of A. psidii DNA. Under artificial inoculation in plants, A. psidii was detected immediately after pathogen inoculation until 240 h post-inoculation using qPCR. In field validation of the method, A. psidii was detected using qPCR in naturally infected leaves with or without rust symptoms. This easy and fast method can be used for an efficient detection of A. psidii in E. grandis leaves. The implications of this tool for rust studies are discussed below.  相似文献   

16.
Leaf rust, caused by the fungus Puccinia triticina, is the most common rust disease of wheat in wheat‐producing areas worldwide. The Israeli population of wheat leaf rust has been consistently monitored since 1993. A total of 840 single urediniospore isolates from Triticum aestivum (567), T. dicoccoides (119) and T. durum (154) were analysed during 1993–2008. The structure of the pathogen population has changed to a large extent since 1993. The annual populations of P. triticina were separated into two distinct groups: 1993–1999 and 2000–2008. Differentiation among the annual pathogen populations, as well as between the overall populations of the 1990s and 2000s, could be mainly attributed to the following forces: (i) migration of leaf rust urediniospores from neighbouring regions; and (ii) selection pressure of new yellow rust‐resistant wheat cultivars that have been introduced into Israel since 1997. Genetic multiplicity of wild emmer contributes to P. triticina variability in Israel. Leaf rust populations collected from common wheat, wild emmer and durum wheat differed. The population that originated from T. durum was rather stable during the years of the survey, whereas that from T. aestivum changed significantly from the 1990s to the 2000s. Diversity within the annual populations of P. triticina was highest in 1994 when many new pathotypes and associations between virulences were observed. Single‐step derivatives of the new pathotypes became dominant after 2000. Significant changes in virulence frequency to a number of Lr genes (e.g. Lr2a, Lr15, Lr17, Lr21, Lr26) were also registered in 2000–2008.  相似文献   

17.
Coffee leaf rust is the most limiting disease for coffee cultivation in Brazil. Despite its importance, relatively little is known about the genetic diversity of Hemileia vastatrix, the rust causal agent. In this work, the DNA from 112 monopustule isolates from different geographic locations and coffee genotypes were analysed by amplified fragment length polymorphisms (AFLP). The objectives were to assess the influence of the host and geographic origin on the diversity and population differentiation in H. vastatrix. The fungal population showed a low level of genotypic diversity. Gene diversity (h) was 0·027 and the hypothesis of random mating in the total population was rejected, but evidence for recombination was found for two subpopulations (São Paulo and Paraná). The analysis of molecular variance revealed that 90% of the genetic distribution of the pathogen occurs among isolates within the subpopulation (states or host of origin). There was no correlation between geographic and genetic distance (= ?0·024, = 0·74), which together with the high number of migrants and the low degree of differentiation in populations of Hvastatrix, is consistent with the fact that the inoculum is probably easily dispersed by wind over long distances, allowing dispersal of the pathogen among coffee growing areas in Brazil. Therefore, it is difficult to predict the durability of resistant sources to coffee rust. The recommendation for the breeding programmes is thus to incorporate multigenic resistance as a control strategy.  相似文献   

18.
The failure of chemical control of soybean rust has been related to the selection of less sensitive isolates, and the infection capacity of such isolates could have implications for the management of the disease. The aims of the present study were to compare the sensitivity to tebuconazole and azoxystrobin and the monocycle of soybean rust using isolates of Phakopsora pachyrhizi from two soybean fields with different production systems (organic and conventional) in 2012/13 and 2013/14 seasons, and to monitor mutations in the CYP51 gene. To assess the sensitivity to tebuconazole and azoxystrobin, detached leaf tests and in vitro germination, respectively, were used. To evaluate the monocycle, detached leaves were inoculated with a urediniospore suspension and evaluated daily by counting the number of uredia. The occurrence of the mutations in CYP51 was investigated by a pyrosequencing assay. In both 2012/13 and 2013/14 seasons, the EC50 to tebuconazole was lower for the population from the organic system (0.41 and 0.10 μg mL?1, respectively) compared to the conventional system (1.60 and 4.44 μg mL?1, respectively), while the EC50 to azoxystrobin was similar for both populations. The lower sensitivity to tebuconazole and azoxystrobin was associated with F120L + Y131H mutations in CYP51, and the F129L mutation in CYTB, respectively. The monomolecular model fitted to monocycle data and parameters related to the maximum asymptote and the AUDPC were superior for organic than the conventional system.  相似文献   

19.
Families of interspecific hybrids between Salix dasyclados and S. viminalis, and intraspecific hybrids of the two species, were monitored for rust infection caused by Melampsora epitea during the years 1997–1999. The resistance of interspecific hybrids was compared to intraspecific pure species halfsibs. In addition, uredospores were sampled from the most infected interspecific hybrids to determine whether rust from interspecific hybrids differed from the rust spores that infected the pure species. The results from 1997 and 1999 showed that interspecific hybrids were more resistant than the intraspecific pure species, thus exhibiting a pattern of hybrid resistance. In 1998 the interspecific hybrids showed intermediate resistance compared to intraspecific pure species hybrids, i.e., an additive pattern of resistance. The rust sampled from the interspecific hybrids consisted of the same types of rust that infect the pure species. Comparisons of weather conditions prevailing during the three growing seasons indicated that these conditions might play a role in the infection pattern, in addition to the level of sensitivity to infection shown by the plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号