首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phylogenetic relationships were determined for 45 Colletotrichum isolates causing anthracnose disease of chili in Queensland, Australia. Initial screening based on morphology, ITS and TUB2 genes resulted in a subset of 21 isolates being chosen for further taxonomic study. Isolates in the C. acutatum complex were analysed using partial sequences of six gene regions (ITS, GAPDH, ACT, CHS‐1, TUB2 and HIS3), and in the Cgloeosporioides complex were analysed using four gene regions (ITS, TUB2, ApMat and GS). Phylogenetic analysis delineated four Colletotrichum species including C. siamense, C. simmondsii, C. queenslandicum, Ctruncatum and a new Colletotrichum species, described here as C. cairnsense sp. nov. This is the first reported association of C. queenslandicum, C. simmondsii and C. siamense with chili anthracnose in Australia; these species were previously associated with anthracnose on papaya and avocado. Furthermore, the dominant species causing anthracnose of chili in Southeast Asia, C. scovillei, was not detected in Australia. Inoculations on chili fruit confirmed the pathogenicity of C. cairnsense and the other four species in the development of chili anthracnose in Australia.  相似文献   

2.
Anthracnose is an important disease in vineyards in south and southeast Brazil, the main grape‐producing regions in the country. This study aimed to identify the causal agents of grapevine anthracnose in Brazil through multilocus phylogenetic analyses, morphological characterization and pathogenicity tests. Thirty‐nine Elsinoë ampelina and 13 Colletotrichum spp. isolates were obtained from leaves, stems and berries with anthracnose symptoms collected in 38 vineyards in southern and southeastern Brazil. For E. ampelina isolates, the internal transcribed spacer (ITS), histone H3 (HIS3) and elongation factor 1‐α (TEF) sequences were analysed. HIS3 was the most informative region with 55 polymorphic sites including deletions and substitutions of bases, enabling the grouping of isolates into five haplotypes. Colonies of E. ampelina showed slow growth, variable colouration and a wrinkled texture on potato dextrose agar. Conidia were cylindrical to oblong with rounded ends, hyaline, aseptate, (3.57–) 5.64 (?6.95) μm long and (2.03–) 2.65 (?3.40) μm wide. Seven species of Colletotrichum were identified: C. siamense, C. gloeosporioides, C. fructicola, C. viniferum, C. nymphaeae, C. truncatum and C. cliviae, with a wide variation in colony and conidium morphology. Only E. ampelina caused anthracnose symptoms on leaves, tendrils and stems of Vitis vinifera and V. labrusca. High disease severity and a negative correlation between disease severity and shoot dry weight were observed only when relative humidity was above 95%. In this study, only E. ampelina caused anthracnose symptoms on grapevine shoots in Brazil.  相似文献   

3.
In 2012, Colletotrichum isolates were collected from field‐grown safflower (Carthamus tinctorius) crops in central Italy from plants exhibiting typical anthracnose symptoms. Colletotrichum isolates were also collected from seed surfaces and from within seeds. The genetic variability of these isolates was assessed by a multilocus sequencing approach and compared with those from Colletotrichum chrysanthemi and Colletotrichum carthami isolates from different geographic areas and other Colletotrichum acutatum sensu lato‐related isolates. Phylogenetic analysis revealed that all of the strains isolated from C. tinctorius belonged to the species described as C. chrysanthemi, whereas all of the strains belonging to C. carthami had been isolated from Calendula officinalis. Phenotypic characterization of isolates was performed by assessing growth rates at different temperatures, morphology of colonies on potato dextrose agar (PDA) and the size of conidia. All C. chrysanthemi isolates from safflower had similar growth rates at different temperatures, comparable colony morphologies when grown on PDA and conidial sizes consistent with previously described C. chrysanthemi isolates. Pathogenicity tests were performed by artificially inoculating both seeds and plants and confirmed the seedborne nature of this pathogen. When inoculated on plants, C. chrysanthemi caused the typical symptoms of anthracnose on leaves. This is the first record of this pathogen on C. tinctorius in Italy, and it presents an updated characterization of Colletotrichum isolates pathogenic to safflowers in Europe.  相似文献   

4.
Since the 1980s a new disease has been affecting Australian lychee. Pepper spot appears as small, black superficial lesions on fruit, leaves, petioles and pedicels and is caused by Colletotrichum gloeosporioides, the same fungus that causes postharvest anthracnose of lychee fruit. The aim of this study was to determine if a new genotype of C. gloeosporioides is responsible for the pepper spot symptom. Morphological assessments, arbitrarily‐primed PCR (ap‐PCR) and DNA sequencing studies did not differentiate isolates of C. gloeosporioides from anthracnose and pepper spot lesions. The ap‐PCR identified 21 different genotypes of C. gloeosporioides, three of which were predominant. A specific genotype identified using ap‐PCR was associated with the production of the teleomorph in culture. Analysis of sequence data of ITS and β‐tubulin regions of representative isolates did not group the lychee isolates into a monophyletic clade; however, given the majority of the isolates were from one of three genotypes found using ap‐PCR, the possibility of a lychee specific group of C. gloeosporioides is discussed.  相似文献   

5.
为明确引起福建省大豆炭疽病的病原菌种类,2018—2019年从福建省福州、三明、莆田、泉州和南平市采集具有大豆炭疽病症状的大豆豆荚,采用组织分离法分离病原菌,结合形态学特征和多基因系统发育分析对病原菌进行鉴定。结果表明,从采集的豆荚样本中共分离获得152株炭疽菌菌株,经形态学初步鉴定分属于3种类型,从3种类型的病原菌中分别选取3株代表菌株进行多基因系统发育分析,这9株代表菌株分别与Colletotrichum plurivorum、平头炭疽菌C.truncatum和胶孢炭疽菌C.gloeosporioides聚在一起。形态学和多基因系统发育分析结果表明,引起福建省大豆炭疽病的病原菌有3种,分别为C.plurivorum、平头炭疽菌和胶孢炭疽菌,其占比分别为10.53%、50.00%、39.47%。致病性测定结果表明,C.plurivorum、平头炭疽菌和胶孢炭疽菌对大豆均有致病作用,但不同的菌株致病力存在差异。表明平头炭疽菌是引起福建省大豆炭疽病的主要病原菌,而C.plurivorum为引起我国大豆炭疽病的新纪录种。  相似文献   

6.
An important constraint for crop production in Colombia is the high incidence of anthracnose caused by Colletotrichum species. Although several studies have focused on these fungi, the relationship between the different fungal species within the genus and their hosts and whether they display any host preference or host specificity has yet to be examined. In Colombia, diseases caused by Colletotrichum species are particularly severe in mango (Mangifera indica) and tree tomato (Solanum betaceum) crops. In a previous investigation, the Colletotrichum phylogenetic species attacking these crops were identified. The present study aimed to determine whether isolates collected from tree tomato and mango showed host preference or host specificity by assessing aggressiveness, spore density, latent period, and fitness of each strain on the two hosts. In the departments of Cundinamarca and Tolima, Colombia, isolates were collected from plants that presented typical anthracnose symptoms and were identified as C. acutatum, C. asianum, C. boninense, C. gloeosporioides, C. tamarilloi and C. theobromicola. Inoculation of conidia of each isolate onto both hosts showed isolates had no host preference and only the C. gloeosporioides isolate showed host specificity. However, in general, isolates produced a higher spore density when inoculated on the alternate host, which may indicate a difference in the degree of adaptation to each host. Statistical analyses of the assessed parameter values revealed that isolates use different infection strategies when infecting each host. In light of these results, the implications of using quantitative estimations of fitness when studying fungal pathogens are discussed.  相似文献   

7.
This study follows a survey carried out in 2012 and 2013 on tomato and pepper crops in the Foggia province (southern Italy), for morphological, molecular and pathogenicity analyses of Plectosphaerella fungi. The Plectosphaerella genus includes several species that are pathogens of horticultural plants. The survey identified tomato and pepper crops that showed abundant wilt, leaf yellowing, and discolouration and necrosis of roots, plus collar and stem symptoms. Different fungi including Plectosphaerella spp. were isolated from tissues with and without symptoms. Subsequent molecular and morphological studies identified first records of P. citrulli infecting tomato and pepper, and P. pauciseptata and P. ramiseptata infecting pepper. Pathogenicity testing confirmed that most isolated species of Plectosphaerella caused symptoms on tomato and pepper, with P. ramiseptata the most aggressive. On the basis of these data, it is considered that Plectosphaerella species may cause stunting disease in tomato and pepper.  相似文献   

8.
The taxonomic status of Colletotrichum gloeosporioides sensu lato (s.l.) associated with olive anthracnose is still undetermined and the pathogenic ability of this species complex is controversial. In the present study, isolates obtained from olive and provisionally identified as C. gloeosporioides s.l. on the basis of morphological and cultural features were reclassified using ITS and TUB2 as DNA barcode markers and referred to seven distinct species, recently separated within C. gloeosporioides (C. aenigma, C. gloeosporioides sensu stricto (s.s.), C. kahawae, C. queenslandicum, C. siamense and C. theobromicola) and C. boninense (C. karstii) species complexes. Furthermore, isolates of Ckahawae were ascribed to the subspecies ciggaro by analysing the GS gene. A single isolate, not in either of these two species complexes, was not identified at the species level. In pathogenicity tests on detached olive drupes some of these species, including C. aenigma, C. kahawae subsp. ciggaro, C. queenslandicum, C. siamense and C. karstii, were shown to be weakly pathogenic. Moreover, they were found very sporadically on olive. In contrast, some isolates of C. gloeosporioides s.s. and isolates of C. theobromicola proved to be virulent on both green and ripening olives. This study gives a better insight into both the aetiology and the epidemiology of olive anthracnose and might have implications for biosecurity and quarantine because C. theobromicola has never been reported in major European olive‐producing countries.  相似文献   

9.
Recently, anthracnose has become a major problem in papaya production and postharvest stages. The occurrence of both Colletotrichum gloeosporioides and Colletotrichum capsici has been demonstrated in this crop. The differential response of these pathogens to fungicides has highlighted the need to use rapid and accurate techniques to identify them. Thus, the objective of this study was to reveal the genetic diversity of Colletotrichum isolates in Mexican papaya fields. C. gloeosporioides-and C. capsici-specific primers were successfully used to detect the pathogens from different papaya parts. A combination of morphological characters, molecular techniques and pathogenicity tests were used to characterize 37 isolates from different localities of five papaya-producing states. Analyses of the 5.8-ITS region and arbitrarily primed-PCR revealed intraspecific groups; most of the isolates within these groups have the same geographical location and morphological characteristics. Knowledge of the genetic diversity of Colletotrichum spp. in Mexican papaya fields will facilitate the identification of the pathogen population in this crop in order to select the appropriate fungicide to control anthracnose, as well as to improve genetic resistance breeding programs.  相似文献   

10.
In recent years, anthracnose has become a significant disease affecting avocado fruit in the state of Michoacan, Mexico, where it significantly reduces fruit quality and commercial yield. Anthracnose has been assumed to involve Colletotrichum gloeosporioides and C. acutatum as causal agents. However, because of the increasing incidence of anthracnose, a more precise identification of the Colletotrichum spp. involved in this disease has become desirable. During the years 2004–2007, avocado fruits of different sizes exhibiting brown‐black and reddish spots on the pericarp and soft rot in the mesocarp, were gathered from orchards in nine counties. Fungal isolates were cultured on potato dextrose agar, and among these, 31 were selected for molecular, morphological and pathogenicity analyses. The molecular approaches used sequence typing of the internal transcribed spacer region and the partial nuclear large ribosomal subunit, allowing the unequivocal identification of C. gloeosporioides (71%), C. acutatum (16%) and C. boninense (13%). This last species has not been previously reported as being associated with anthracnose symptoms in avocado fruits anywhere in the world. Various morphological characteristics such as the size and shape of conidia were determined, as well as the conidial mass colour. Pathogenicity tests performed with all three species were conducted by inoculating healthy fruits. In each case, identical symptoms developed within 3 days of inoculation. Knowledge of the Colletotrichum populations in the Michoacan state, including the newly encountered avocado pathogen C. boninense, will facilitate further studies addressing the relationships between these Colletotrichum spp. and their avocado host.  相似文献   

11.
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post‐bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration.  相似文献   

12.
为明确引起四川省红叶石楠炭疽病的病原菌及其潜在侵染源,采集疑似感染炭疽病的典型病叶进行分离获得纯化病原菌菌株,从中随机选取菌株HYSN3制成分生孢子悬浮液和菌饼,以无伤、刺伤、剪伤3种方式进行接种,筛选出效果最好的接种方式进行致病性测定,结合形态学特征与多基因序列分析将病原菌鉴定到种,并采用筛选出的接种方式将分离自其它19种寄主的23株炭疽菌接种到红叶石楠上,明确其潜在侵染源。结果表明,从红叶石楠病叶中共纯化得到14株菌株,基于形态特征和显微初步鉴定结果,从中选择8株代表菌株进行进一步鉴定。3种接种方式中,以刺伤后接种菌株HYSN3菌饼的效果最好,可用于致病性测定。基于形态学特征、致病性测定和多基因序列分析结果,将病原菌鉴定为胶孢炭疽菌Colletotrichum gloeosporioides(5株)、喀斯特炭疽菌C.karstii(1株)和暹罗炭疽菌C. siamense(2株),表明四川省红叶石楠炭疽病是由多种病原菌复合侵染引起的。来自其它寄主的23株炭疽菌菌株都能侵染红叶石楠,但致病力强弱不同,附近受炭疽菌侵染的植物都有可能成为红叶石楠炭疽病的潜在侵染源,园林植物养护过程中需予以一定的重视。  相似文献   

13.
Nine isolates of Phtophthora nicotianae were isolated from infected pepper plants. Their pathogenicity was studied in Capsicum annuum in comparison with P. nicotianae isolates from tomato and tobacco. The pathogenicity test showed that pepper isolates of P. nicotianae are adapted to their host. Banding patterns obtained by RAPD analysis with six oligonucleotide primers revealed polymorphism that grouped the isolates independently of the plant host. The polygenic dendrogram showed that pepper isolates were more similar to tomato isolates than to tobacco isolates. The RAPD bands of 1300 and 1500 bp, detected with primers OPD-01 and OPD-10, respectively, appeared specific to the most pathogenic pepper isolates. The OPK-08-1950 seems specific to the isolates of P. nicotianae from tomato. These results suggest that host specified might occur in P. nicotianae and that may be due to interspecific hybridization events resulting in novel pathogenic behavior.  相似文献   

14.
Milk vetch dwarf virus (MDV) is an important member of the genus Nanovirus and is transmitted by the aphid Aphis craccivora. MDV has multiple single-stranded DNA genome components, each approximately 1 kb, and two or three alpha-satellite molecules. It mainly infects plants of the legume family Fabaceae. Recently, papaya (Carica papaya) collected in Yesan, South Korea, displaying symptoms of leaf yellowing and dwarfism, was identified as a new host for MDV. To examine the geographical distribution of MDV, papaya samples with symptoms were harvested in South Korea, Vietnam, and Taiwan in August 2018, along with tomato and pepper samples grown in adjacent fields in Vietnam. The results revealed the presence of MDV not only in papaya but also in pepper and tomato. This MDV infection in members of the Solanaceae family was confirmed by Southern blot hybridization performed using a PCR product of segment S as a probe. Based on sequence analysis of three MDV components (M, S, and C3), we verified the presence of three different isolates of MDV in these three countries and homology between sequences of isolates from papaya and from members of the Solanaceae from Vietnam. Taken together, our results clearly demonstrate MDV infection in Vietnam and Taiwan for the first time and confirm that MDV can infect economically important pepper and tomato.  相似文献   

15.
为有效防控由胶孢炭疽菌Colletorichum gloeosporioides引起的辣椒炭疽病,自辣椒上分离得到内生细菌,通过平板拮抗和辣椒离体生防试验筛选对胶孢炭疽菌有抑制作用的拮抗菌株,通过形态学特征、生理生化特征以及分子生物学技术对其进行鉴定,并于室内测定其对胶孢炭疽菌菌丝生长的影响、对辣椒炭疽病的防效及接种后辣椒内抗病活性物质含量以及防御酶活性。结果显示,从辣椒上共分离纯化获得46株细菌,其中菌株SQ-6对胶孢炭疽菌有明显的抑制作用,抑制率为61.11%,显著高于其他45株。结合菌株SQ-6的形态学特征、生理生化特征以及分子生物学特征,将该菌株鉴定为解淀粉芽胞杆菌Bacillus amyloliquefaciens。SQ-6菌株的50%无细胞滤液可引起胶孢炭疽菌菌丝畸形、断裂等,对其抑制率为57.87%。SQ-6菌株的10%、50%发酵液和10%、50%无细胞滤液均能显著降低由胶孢炭疽菌引起的辣椒炭疽病的发病率和病情指数,其中50%无细胞滤液的防效最好。SQ-6菌株能够提高辣椒内Vc、酚类和黄酮类物质含量,诱导辣椒内过氧化物酶(peroxidase,POD)、丙氨酸解氨酶(p...  相似文献   

16.
Colletotrichum acutatum causes anthracnose on peppers (Capsicum spp.), resulting in severe yield losses in Taiwan. Fungal isolates Coll-153, Coll-365 and Coll-524 collected from diseased peppers were found to differ in pathogenicity. Pathogenicity assays on various index plants revealed that Coll-524 was highly virulent and Coll-153 was moderately virulent to three commercially available pepper cultivars. Both isolates induced anthracnose lesions and produced abundant conidia. Coll-365 was only weakly virulent on pepper fruit, where it caused small lesions and hardly produced conidia on pepper fruit. However, Coll-365 was highly pathogenic to tomato fruit and mango leaves, where it caused anthracnose lesions and formed acervuli and conidia. All three isolates showed similar abilities in the attachment and germination of conidia, formation of highly branched hyphae and appressoria, penetration of cuticles, and infection of epidermal cells on chili peppers. Coll-365 accumulated less turgor pressure in appressoria but produced higher levels of cutinase and protease activity than Coll-153 and Coll-524 did. All three isolates invaded the neighbouring cells through plasmodesmata in chili peppers and showed similar pectinase or cellulase activities in culture. However, the most virulent strain Coll-524 expressed stronger laccase activity and was more resistant to capsaicin compared to Coll-153 and Coll-365. The three isolates are different in numbers and sizes of double-stranded RNAs. Depending on the cultivar genotypes, cellular resistance of chili pepper to C. acutatum might rely on the ability to restrict penetration, colonization, or conidiation of the pathogen. We conclude that the differences in pathogenicity among the three C. acutatum isolates of pepper are attributed to their ability to colonize the host plant.  相似文献   

17.
Pseudocercosporella capsellae (white leaf spot disease) is an important disease on crucifers. Fifty‐four single‐conidial isolates collected from Brassica juncea (Indian mustard), B. napus (oilseed rape), B. rapa (turnip), and Raphanus raphanistrum (wild radish) across Western Australia were investigated for differences in pathogenicity and virulence using cotyledon screening tests, genetic differences using internal transcribed spacer (ITS) sequencing and phylogenetic analysis, and growth rates on potato dextrose, V8 juice and malt extract agars. All isolates from the four crucifer hosts were pathogenic on the three test species: B. juncea, B. napus and R. raphanistrum, but showed differences in levels of virulence. Overall, isolates from B. juncea, B. napus and B. rapa showed greatest virulence on B. juncea, least on R. raphanistrum and intermediate virulence on B. napus. Isolates from R. raphanistrum showed greatest virulence on B. juncea, least on B. napus and intermediate virulence on R. raphanistrum. Growth and production of a purple‐pink pigment indicative of cercosporin was greatest on malt extract agar and cercosporin production on V8 juice agar was positively correlated with virulence of isolates on B. juncea and B. napus. ITS sequencing and phylogenetic analysis showed that isolates collected from B. napus, B. juncea and B. rapa, in general and with few exceptions, had a high degree of genetic similarity. In contrast, isolates from R. raphanistrum were clearly differentiated from isolate groups collected from Brassica hosts. Pseudocercosporella capsellae reference isolates from other countries generally grouped into a single separate cluster, highlighting the genetic distinctiveness of Western Australian isolates.  相似文献   

18.
Root‐knot nematodes (RKNs), Meloidogyne spp., are a major disease problem in solanaceous crops worldwide, including pepper (Capsicum spp.). Genetic control provides an economically and environmentally sustainable protection alternative to soil fumigants. In pepper, resistance to the main RKN species (M. incognita, M. javanica and M. arenaria) is conferred by the major genes (R genes) Me1, Me3 and N. However, RKNs are able to develop virulence, thus endangering the efficiency of R genes. Quantitative resistance (QR) against Meloidogyne spp. is expected to provide an alternative to R genes, or to be combined with R genes, to increase the resistance efficiency and durability in pepper. In order to explore the ability of QR to protect pepper against RKNs, five pepper inbred lines, differing in their QR level, were tested directly, or after combination with the Me1 and Me3 genes, for their resistance to a panel of M. arenaria, M. javanica and M. incognita isolates. The M. arenaria and M. javanica isolates showed low pathogenicity to pepper, unlike the M. incognita isolates. The QR, controlled by the pepper genetic background, displayed a high resistance level with a broad spectrum of action, protecting pepper against Me3‐virulent as well as avirulent M. incognita isolates. The QR was also expressed when combined with the Me1 and Me3 genes, but presented additive genetic effects so that heterozygous F1 hybrids proved less resistant than homozygous inbred lines. The discovery of this QR is expected to provide promising applications for preserving the efficiency and durability of nematode resistance.  相似文献   

19.
Anthracnose caused by species of Colletotrichum is considered one of the main postharvest diseases for avocado. In this study, Colletotrichum isolates associated with avocado anthracnose, collected in different states of Brazil, were evaluated through phylogenetic analysis, morphological characterization, and pathogenicity assays. Moreover, the events during pathogen infection of avocados were examined by scanning electron microscopy. To assess the genetic diversity of 54 Colletotrichum isolates, partial sequence analysis of the gene gapdh was performed. According to the generated groupings and the geographical origins of isolates, a subset of 14 strains was selected for performing multilocus phylogeny analysis (using sequences of gapdh, act, tub2, and ApMat). Two species previously described were identified: C. siamense belonging to the C. gloeosporioides species complex and Colletotrichum karstii belonging to the C. boninense species complex. All Colletotrichum strains evaluated caused typical symptoms of anthracnose in avocado fruits. Conidia of the most virulent strain germinated between 6 and 12 hr after inoculation (hai). Penetration through wounds occurred 48 hai, tissue colonization occurred between 144 and 240 hai, and sporulation took place at 240 hai via the production of an acervulus, conidiophores, and conidia. The findings shed light on the aetiology of avocado anthracnose in Brazil and provide a better understanding of the infection process of this pathogen, which may assist in the development of disease management strategies.  相似文献   

20.
A population of 84?V. dahliae isolates mainly originating from Crete, Greece, was characterized in terms of pathogenicity and virulence on different hosts, in parallel with morphological/physiological characterization, vegetative compatibility grouping and mating type determination. Tomato race 2 was found to have supplanted race 1 and was more virulent on a tomato-susceptible cultivar than race 1. Using a differential host classification system which tests pathogenicity to tomato, eggplant, sweet pepper and turnip, 59 isolates were assigned to tomato, 19 to eggplant, one to sweet pepper and five to tomato-sweet pepper pathogenicity groups. All isolates from Crete fell into VCG subgroups 2A, 2B and 4B, while a remarkably high incidence of bridging isolates (compatible with two or more VCGs) was recorded. The tomato-sweet pepper pathogenicity group was morphologically quite distinct from the others, while conidial length and pigment intensity were discriminatory parameters among VCGs 2A, 2B and 4B. PCR-based molecular marker Tr1/Tr2 was reliable in race prediction among tomato-pathogenic isolates, except for members of VCG 4B, while the application of markers Tm5/Tm7 and 35-1/35-2 was highly successful for tomato-pathogenic isolates. E10 marker was related to VCG 2B, rather than to pathogenicity groups. A single nucleotide polymorphism in the ITS2 region, and two novel molecular markers, M1 and M2, proved useful for the fast and accurate determination of major VCGs 2A, 2B and 4B, and can be used for high-throughput population analyses in future studies. The mating type was unrelated to VCG classification and probably does not control heterokaryon incompatibility in V. dahliae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号