首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
M. Wu  B. Li  P. Liu  Q. Weng  J. Zhan  Q. Chen 《Plant pathology》2017,66(7):1182-1190
Phytophthora sojae is a destructive soilborne pathogen causing seedling damping‐off and root rot of soybean (Glycine max). The goal of this study was to determine the genetic structure of P. sojae populations in Fujian, China. Nine microsatellite markers were used to investigate the genetic variation in 19 P. sojae populations, sampled from Fujian Province and northeastern China (Jilin and Heilongjiang Provinces) between 2002 and 2013. Overall, a low genetic diversity, Hardy–Weinberg disequilibrium, and an index (an index of association) that was significantly different from zero were detected in populations; these results were consistent with self‐fertilization and clonal modes of reproduction for this pathogen. However, using Bayesian Markov chain Monte Carlo approach, principal component analysis and neighbour joining (NJ) algorithm, the Fujian P. sojae populations clustered into three distinct groups, one of which included most isolates of the northeast populations. What is more, significant estimates of pairwise fixation indices (FST) were detected between most populations, especially in different clusters. It is hypothesized that the cropping system used, the limited dispersal ability, and human‐mediated gene flow may account for the observed genetic structure of P. sojae populations in Fujian, China. In addition, a high virulence frequency of the pathogen on different cultivars carrying known major R genes for resistance, and a rapid increase in virulence frequency, indicated that these major R genes should not be used to manage seedling damping‐off and root rot diseases of soybean (Glycine max).  相似文献   

2.
Isolates of an unknown Phytophthora species from the ‘Phytophthora citricola complex’ have been found associated with mortality of Aucuba japonica in the UK. Based on morphological characteristics, growth–temperature relationships, sequences of five DNA regions and pathogenicity assays, the proposed novel species is described as Phytophthora pachypleura. Being homothallic with paragynous antheridia and semipapillate sporangia, P. pachypleura resembles other species in the ‘P. citricola complex’ but can be discriminated by its distinctively thick‐walled oospores with an oospore wall index of 0·71. In the phylogenetic analysis based on three nuclear (ITS, β‐tubulin, EF‐1α) and two mitochondrial (cox1, nadh1) DNA regions, P. pachypleura formed a distinct clade within the ‘P. citricola complex’ with P. citricola s. str., P. citricola E and P. acerina as its closest relatives. Phytophthora pachypleura is more aggressive to A. japonica than P. plurivora and P. multivora and has the potential to affect other ornamental species.  相似文献   

3.
Late blight caused by Phytophthora infestans is the most devastating disease of potato worldwide. To understand the P. infestans population structure and dynamics in northwestern China, 959 single‐lesion isolates were purified in three consecutive years (2009–2011) and were characterized for mating type, pathotype, mtDNA haplotype and molecular variation at eight SSR loci. The results showed that the distribution of mating types changed significantly over years, with self‐fertile isolates dominant in 2010 and 2011. SSR genotyping distinguished 959 isolates into 151 genotypes, and association analysis indicated that P. infestans populations in 2010 and 2011 were strictly asexual while in 2009 they showed signs of sexual reproduction. Population analysis showed that the majority of genetic variation was within P. infestans populations. Isolates sharing identical SSR genotypes were detected in distant regions, indicating that migration of P. infestans could have occurred between regions. Pathogenicity assays on a set of potato differential lines containing R1 to R11 resistance genes detected four pathotypes from 74 selected isolates, with the pathotype virulent against all 11 R genes being dominant. Three mtDNA haplotypes (Ia, IIa, IIb) were detected with Ia being dominant among 507 isolates examined. Phylogenetic analysis indicated that P. infestans populations in northwestern China are distant from European lineages including 13‐A2 (blue‐13) at the time of this survey. The results have implications for the trade of healthy seed tubers as a means of managing late blight.  相似文献   

4.
Huanglongbing (HLB), associated with the phloem‐limited bacterium ‘Candidatus Liberibacter asiaticus’ (Las), is devastating trees in citrus orchards of Florida. Additionally, Phytophthora nicotianae, omnipresent in citrus soils, causes root rot that reduces water and nutrient uptake by fibrous roots. To investigate fibrous root damage and replacement and canopy size in relation to infection of fibrous roots by Las and P. nicotianae, rootstock seedlings of Swingle citrumelo (Citrus paradisi × Poncirus trifoliata) were inoculated with Las or P. nicotianae in two greenhouse pot trials. Phytophthora nicotianae caused root damage within 5 weeks post‐inoculation, which led to greater reduction of canopy size than for Las‐infected seedlings by the end of the experiment. Las increased accumulation of fibrous root biomass at 5 weeks post‐root trimming (wpt) in the 2014 trial and at 11 wpt in the 2015 trial. New root length was not consistently increased by Las. Reduced total leaf area of symptomless Las‐infected seedlings compared to noninoculated controls might be due to the combined effect of altered carbohydrate allocation between shoots and roots and altered leaf morphology.  相似文献   

5.
The pathogenicity of some Phytophthora species recently described from Western Australia, together with P. cinnamomi as a control, was tested against seven Western Australian native plant species in the glasshouse. Host species were Banksia grandis, B. littoralis, B. occidentalis, Casuarina obesa, Corymbia calophylla, Eucalyptus marginata and Lambertia inermis. Twenty‐two Phytophthora species were grown on a vermiculite, millet seed and V8 substrate and used as soil inoculum when the plant hosts were approximately 3 months old. Pathogenicity was assessed after 6 weeks and plants were scored for death, root damage, and percentage reduction of shoot growth compared with control plants. The pathogenicity of P. cinnamomi was confirmed. Phytophthora niederhauserii was shown to be similar to P. cinnamomi in pathogenicity and of concern ecologically. Other species that killed one or more hosts were P. boodjera, P. constricta, P. elongata, P. moyootj and P. rosacearum, while P. condilina, P. gibbosa, P. gregata, P. litoralis and P. ‘personii’ caused significant reduction to shoot and/or root growth, but did not kill plants. Host species susceptible to the highest number of Phytophthora species were B. grandis, B. littoralis, B. occidentalis and E. marginata. No Phytophthora species tested killed C. calophylla.  相似文献   

6.
Y. Tian  J. Sun  H. Li  G. Wang  Y. Ma  D. Liu  J. Quan  W. Shan 《Plant pathology》2015,64(1):200-206
Late blight caused by Phytophthora infestans is the most serious disease of potato worldwide. To understand the P. infestans population structure in northern Shaanxi, an emerging potato production region in China, 125 single‐lesion isolates were randomly collected from farmers' fields in 2009 and characterized phenotypically and genotypically. A mating type assay showed that 94 isolates were A1 mating type. Virulence determination of selected isolates on a set of differential potato lines containing R1 to R11, respectively, showed the presence of two pathotypes, of which the pathotype lacking avirulence genes Avr3, Avr4 and Avr10 was dominant. Isolates lacking all avirulence factors Avr1 to Avr11 were detected but at lower frequency (13·6%). Analysis for mtDNA haplotype showed all 61 examined isolates were IIa. A total of seven multilocus genotypes were distinguished among 125 isolates, as determined with seven polymorphic microsatellite markers. The genotype SG‐1 was dominant in the population with a frequency of 75·2% and was present throughout the region. Analysis of the phenotypic and genotypic structures of P. infestans populations indicated strict clonal reproduction of the pathogen and suggested that sexual reproduction probably does not occur. Potential implications for disease management are discussed.  相似文献   

7.
Insight into pathogen population dynamics provides a key input for effective disease management of the potato late blight pathogen Phytophthora infestans. Phytophthora infestans populations vary from genetically complex to more simple with a few clonal lineages. The presence or absence of certain strains of P. infestans may impact the efficacy of fungicides or host resistance. Current evidence indicates that genetically, the Irish populations of P. infestans are relatively simple with a few clonal lineages. In this study, P. infestans populations were genetically characterized based on samples collected at the national centre for potato breeding during the period 2012–16. The dominance of clonal lineages within this P. infestans population was confirmed and the potential selection pressure of fungicide treatment (2013–15) and host resistance (2016) on this clonal P. infestans population was then investigated. It was found that fungicide products did not notably affect the genetic structure of sampled populations relative to samples from untreated control plants. In contrast, samples taken from several resistant potato genotypes were found to be more often of the EU_13_A2 lineage than those taken from control King Edward plants or potato genotypes with low resistance ratings. Resistant potato varieties Sarpo Mira and Bionica, containing characterized R genes, were found to strongly select for EU_13_A2 strains.  相似文献   

8.
A transposon‐like element, A3aPro, with multiple copies in the Phytophthora sojae genome, was identified as a suitable detection target for this devastating soyabean root rot pathogen. The PCR primers TrapF1/TrapR1 were designed based on unique sequences derived from the transposon‐like sequence. A 267‐bp DNA fragment was amplified using this primer pair, the specificity of which was evaluated against 118 isolates of P. sojae, 72 isolates of 25 other Phytophthora spp., isolates of Pythium spp. and isolates of true fungi. In tests with P. sojae genomic DNA, detection sensitivities of 10 pg and 10 fg DNA were achieved in standard PCR (TrapF1/TrapR1) and nested PCR (TrapF1/TrapR1 and TrapF2/TrapR2), respectively. Meanwhile, PCR with TrapF1/TrapR1 primers detected the pathogen at the level of a single oospore, and even one zoospore. These primers also proved to be efficient in detecting pathogens from diseased soyabean tissues, residues and soils. In addition, real‐time quantitative PCR (qPCR) assays coupled with the TrapF1/TrapR1 primers were developed to detect and quantify the pathogen. The results demonstrated that the TrapF1/TrapR1 and TrapF2/TrapR2 primer‐based PCR assay provides a rapid and sensitive tool for the detection of P. sojae in plants and in production fields.  相似文献   

9.
The population of Phytophthora infestans on potato landraces in three provinces (Carchi, Chimborazo and Loja) of Ecuador was analysed. All isolates (= 66) were of the A1 mating type. Simple sequence repeats (SSR) were used to assess the genetic diversity of the isolates. The P. infestans isolates from the potato landraces grouped in a single clade together with reference isolates belonging to the clonal lineage EC‐1. In the 66 SSR profiles obtained, 31 multilocus genotypes were identified. The 66 isolates constituted 49 different races according to the Solanum demissum differential set ( R1 to R11). The P. infestans population was complex and virulent on 4 to 11 R genes. Analysis showed that the subclonal variation in the Ecuadorian EC‐1 clone is increasing over time and is much larger than clonal variation in lineages in the Netherlands and Nicaragua, suggesting high mutation rates and little or no selection in Ecuador.  相似文献   

10.
A homothallic Phytophthora species was found to be consistently associated with a rot of mature fruits of two local cultivars of olive (Olea europaea) in Calabria, southern Italy. The phylogenetic analysis of sequences of the ITS1‐5.8S‐ITS2 region and cox1 gene enabled its identification as a new species of clade 2, with a basal position compared to previously described subclades. The new species is described formally with the epithet Phytophthora oleae, referring to the natural matrix from which it was isolated. A unique combination of molecular and morphological characters clearly separates P. oleae from other already described Phytophthora species. This new species produced semipapillate, occasionally bipapillate, persistent sporangia on simple sympodially branching sporangiophores as well as globose and smooth‐walled oogonia, paragynous antheridia and spherical, plerotic oospores. The pathogenicity of P. oleae was confirmed in inoculation trials on fruits of three olive cultivars, including the two local cultivars from which the pathogen had been isolated.  相似文献   

11.
The Fusarium graminearum species complex (FGSC) is an important group of pathogens distributed in maize‐producing areas worldwide. This study investigated the genetic diversity and pathogenicity of 40 FGSC isolates obtained from stalk rot and ear rot samples collected from 42 locations in northeastern China during 2013 and 2014. A phylogenetic tree of translation elongation factor (EF‐la) sequences designated the 40 isolates as F. graminearum sensu stricto (67.5%) and F. boothii (32.5%). By using inter‐simple sequence repeat analysis (ISSR), it was shown that the isolates were divided into two clades, which corresponded to the species identity of the isolates. However, the isolates from the two different diseases could not be distinguished in pathogenicity. The disease severity index of seedlings inoculated with stalk isolates was slightly higher than that of seedlings inoculated with isolates from infected ears, whereas the pathogenicity of the stalk and ear isolates were identical.  相似文献   

12.
Tree tomato, Solanum betaceum, is an Andean fruit crop previously shown to be attacked by Phytophthora andina in Ecuador and Colombia. Blight‐like symptoms were discovered on tree tomato plants in the central highlands of Peru in 2003 and shown to be caused by P. andina. Isolates of P. andina, collected from three different plantations in Peru over a 6‐year time span (2003–2008), were compared genetically with P. andina isolates from Colombia and Ecuador to test whether the pathogen population is geographically structured in the Andes. Restriction fragment length polymorphism (RFLP), mitochondrial DNA and simple sequence repeat (SSR) genetic markers, and mating type behaviour indicated that the Peruvian P. andina population from tree tomato is genetically distinct from populations infecting tree tomato in Colombia (CO‐1) and Ecuador (EC‐3, Ia, A1), but is more similar to the population infecting solanaceous hosts of the Anarrhichomenum complex (EC‐2, Ic, A2). Such geographic substructuring within this pathogen species could result from spatial isolation. Most strikingly, in contrast to the Ecuadorian and Colombian P. andina isolates from tree tomato, the Peruvian isolates have the A2 mating type. The presence of both mating types in the Andean population of P. andina attacking tree tomato indicates a risk of sexual reproduction and the presence of long‐lasting oospores in this pathosystem.  相似文献   

13.
Members of the Phytophthora citricola complex (Phytophthora clade 2c), such as P. plurivora, are destructive pathogens of trees and shrubs in nursery, landscape and forest settings worldwide. During surveys of Phytophthora species from streams and rivers in Massachusetts and North Carolina, a novel species in the P. citricola complex was recovered. Based on sequences from three nuclear (ITS, β‐tub and tef1) and two mitochondrial (cox1 and nadh1) loci, morphological characters, temperature–growth relationships and host plant inoculations, this novel species is described as Phytophthora caryae sp. nov. Phytophthora caryae resembles several other species in the P. citricola complex, demonstrating homothallism and producing paragynous antheridia and semipapillate and noncaducous sporangia. However, P. caryae exhibits smaller sexual structures, higher rates of oogonia with a tapered base and sporangia with an offset attachment of the sporangiophores. Phylogenetic analyses using maximum likelihood and Bayesian inference placed isolates of P. caryae into a unique clade with significant statistical support. Based on the mitochondrial dataset, P. caryae is most closely related to P. pini and P. citricola III, which are believed to be native in eastern North America. Inoculations of P. caryae on 1‐year‐old twigs of 12 tree species representing nine genera resulted in under‐bark lesions on species of Carya and Juglans. Sapling inoculations under greenhouse conditions suggest that P. caryae may be pathogenic to shagbark hickory (Carya ovata) but not to black walnut (Juglans nigra).  相似文献   

14.
Since its first isolation from Salix roots in 1972, isolates of a sexually sterile Phytophthora species have been obtained frequently from wet or riparian habitats worldwide and have also been isolated from roots of Alnus and Prunus spp. Although originally assigned to Phytophthora gonapodyides on morphological grounds, it was recognized that these isolates, informally named P. taxon Salixsoil, might represent a separate lineage within ITS Clade 6. Based on phylogenetic analyses and comparisons of morphology, growth‐temperature relationships and pathogenicity, this taxon is formally described here as Phytophthora lacustris sp. nov. Isolates of P. lacustris form a clearly resolved cluster in both ITS and mitochondrial cox1 phylogenies, basal to most other Clade 6 taxa. Phytophthora lacustris shares several unusual behavioural properties with other aquatic Clade 6 species, such as sexual sterility and tolerance of high temperatures, that have been suggested as adaptations to riparian conditions. It appears to be widespread in Europe and has also been detected in Australia, New Zealand and the USA. It was shown to be weakly or moderately aggressive on inoculation to Alnus, Prunus and Salix. The extent of P. lacustris’ activity as a saprotroph in plant debris in water and as an opportunistic pathogen in riparian habitats needs further investigation. Its pathogenic potential to cultivated fruit trees also deserves attention because P. lacustris has apparently been introduced into the nursery trade.  相似文献   

15.
Q. Jia  Q. Gu  L. Zheng  T. Hsiang  C. Luo  J. Huang 《Plant pathology》2015,64(6):1440-1449
Studies on population genetics of Villosiclava virens are limited because of the lack of polymorphic markers. Based on a draft genome sequence of isolate HWD‐2 produced in this study, 20 of 403 potential simple sequence repeats (SSR) loci showed polymorphisms in preliminary screening using eight diverse V. virens isolates. Among polymorphic loci, most of them with tetra‐ to hexanucleotide unit motifs showed higher levels of polymorphism than loci with smaller motifs. After testing with 20 polymorphic SSR markers, the 87 isolates of V. virens from eight populations in China showed a high level of genetic diversity, with each as a unique haplotype. This differs from some previous findings showing little to no genetic variation based on random amplified polymorphic DNA and amplified fragment length polymorphism analyses. Among eight populations from major rice production areas of China, the population from Guangxi province in south China showed the highest levels of polymorphism, which led to the speculation that it might be closer to the centre of origin of this pathogen. The northern, central and eastern populations (Jilin, Liaoning, Hubei, Hunan, Jiangxi and Zhejiang), when considered together as a group, showed significant molecular variation compared to the southern populations (Fujian and Guangxi) (ΦPT = 0·043, = 0·037). A significant relationship (Mantel test, = 0·027) but with low correlation (R2 = 0·23) was also found between geographic distance and genetic distance. The 20 polymorphic SSR primer pairs designed in this study provide a tool for further research on the population diversity of this emerging fungal pathogen of rice.  相似文献   

16.
Late blight remained a significant disease for potato growers in Europe long after the famine of the 1840s. Of the four mitochondrial haplotypes of Phytophthora infestans, only the Ia mitochondrial DNA (mtDNA) haplotype has been identified previously in infected potato leaves from famine‐era herbarium specimens collected in England, Ireland and Europe in the 19th century. Long‐term soil fertility experiments were conducted on potato between 1876 and 1901 in Rothamsted to investigate effects of combinations of organic manures and mineral fertilizers on disease and yield. This report identifies for the first time the same Ia mtDNA haplotype of P. infestans in three diseased tubers from 1877 from the long‐term Rothamsted trials, thus providing the earliest evidence of the presence of the founder Ia mtDNA haplotype of P. infestans in potato tubers in England. Soil amendments had a significant impact on disease and yield. A real‐time PCR assay was used to detect and quantify P. infestans in tubers. The level of pathogen DNA was greatest in tubers from highest yielding plots that received combinations of inorganic nitrogenous and mineral fertilizers and least in tubers from plots with organic farmyard manures or non‐nitrogenous mineral fertilizers. The Ia mtDNA haplotype was also confirmed from diseased potato leaves during the same time period. Thus, the founder Ia mtDNA haplotype survived in potato tubers after 1846 and was present over 30 years later in the UK.  相似文献   

17.
The evergreen holm oaks (Quercus ilex subsp. ilex and Q. ilex subsp. ballota) are the most representative tree species in the Iberian peninsula and the main tree species in oak‐rangeland ecosystems (dehesas). Oak decline in western, central and southern parts of Spain has been associated with root rot caused by Phytophthora cinnamomi for decades. However, Phytophthora species such as P.  quercina and P. psychrophila have recently been found associated with Quercus decline in eastern Spain where calcareous soils are predominant. Soil and root samples from two Quercus forests presenting decline symptoms in two different geographical areas in eastern Spain (Carrascar de la Font Roja and Vallivana) were analysed by amplicon pyrosequencing. Metabarcoding analysis showed Phytophthora species diversity, and revealed that an uncultured Phytophthora taxon, named provisionally Phytophthora taxon ballota, was the predominant species in both areas. In addition, a real‐time PCR assay, based on the pyrosequencing results, was developed for the detection of this uncultured Phytophthora taxon, and also for the detection of P. quercina. TaqMan assays were tested on soil and root samples, and on Phytophthora pure cultures. The new assays showed high specificity and were consistent with metabarcoding results. A new real‐time PCR protocol is proposed to evaluate the implication of different Phytophthora spp. in oak decline in eastern Spain.  相似文献   

18.
Quercus ilex is one of the European forest species most susceptible to root rot caused by the oomycete Phytophthora cinnamomi. This disease contributes to holm oak decline, a particularly serious problem in the ‘dehesas’ ecosystem of the southwestern Iberian Peninsula. This work describes the host–pathogen interaction of Q. ilex and P. cinnamomi, using new infection indices at the tissue level. Fine roots of 6‐month‐old saplings inoculated with P. cinnamomi were examined by light microscopy and a random pool of images was analysed in order to calculate different indices based on the measured area of pathogen structures. In the early stages of invasion, P. cinnamomi colonizes the apoplast and penetrates cortical cells with somatic structures. On reaching the parenchymatous tissues of the central cylinder, the pathogen develops different reproductive and survival structures inside the cells and then expands through the vascular system of the root. Some host responses were identified, such as cell wall thickening, accumulation of phenolic compounds in the middle lamella of sclerenchyma tissues, and mucilage secretion blocking vascular cells. New insights into the behaviour of P. cinnamomi inside fine roots are described. Host responses fail due to rapid expansion of the pathogen and a change in its behaviour from biotrophic to necrotrophic.  相似文献   

19.
Sclerotinia sclerotiorum, causal agent of white mould, is the most destructive and widely distributed soilborne pathogen of common bean during the autumn–winter season in Brazil. Nevertheless, little is known about the genetic structure of the pathogen population. Microsatellite (SSR) markers and mycelial compatibility groups (MCGs) were used to characterize 118 isolates collected from 20 bean fields located in the most important growing regions of Minas Gerais State (MG). Additionally, the genetic variability among 10 isolates obtained from a single sclerotium was investigated in 10 different sclerotia. Seventy SSR haplotypes and 14 MCGs were identified among the 118 isolates. The genetic differences within bean growing areas accounted for most of the genetic variation (72%). Despite the relatively high genotypic diversity, the SSR loci were at linkage disequilibrium. Moreover, 70% of the isolates were assigned to only two MCGs, and haplotypes of a given MCG were closely related. The discriminant analysis of principal components revealed five groups. There was strong genetic differentiation between isolates collected in one municipality in southern MG when compared to other regions. Common bean resistance to white mould should be assessed with representative isolates of the five genetic groups and, if possible, of the different MCGs detected in the present study. One to five haplotypes were detected among the 10 isolates obtained from a single sclerotium. Therefore, in order to ensure genetic identity of an isolate, hyphal tip or monoascosporic isolates should be used.  相似文献   

20.
Rhynchosporium commune is a destructive pathogen of barley, causing leaf scald. Previous microsatellite studies used Syria as a representative of cultivated barley's centre of origin, the Fertile Crescent. These suggested that R. commune and Hordeum vulgare (cultivated barley) did not co‐evolve in the host's centre of origin. The present study compares R. commune populations from Syria with those from Iran, which represents a secondary centre of origin for barley at the eastern edge of the Iranian Plateau. Results from this study also suggest that R. commune and barley did not co‐evolve in the centre of origin of cultivated barley. This was evidenced by the low pathogen genetic diversity in Iran, which was even lower than in Syria, indicating that the pathogen may have been introduced recently into Iran, perhaps through infected barley seed. Hierarchical analyses of molecular variance revealed that most genetic diversity in Iran and Syria is distributed within populations, with only 14% among populations. Analyses of multilocus association, genotype diversity and mating type frequency suggest that Iranian populations reproduce predominantly asexually. The presence of both mating types on barley and uncultivated grasses suggest a potential for sexual reproduction. Rhynchosporium commune was also found on Hordeum murinum subsp. glaucum, H. vulgare subsp. spontaneum, Lolium multiflorum and, for the first time, on Avena sativa. The variety of wild grasses that can be infected with R. commune in Iran raises concerns of these grasses acting as evolutionary breeding grounds and sources of inoculum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号