首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To mitigate the impact and dissemination of clubroot in western Canada, canola (Brassica napus) producers have relied on clubroot resistance traits. However, in 2013 and 2014, new strains of the clubroot pathogen, Plasmodiophora brassicae, emerged that are virulent on most clubroot‐resistant (CR) canola genotypes. Novel strains of the pathogen were inoculated onto two susceptible canola cultivars, one resistant line and six CR cultivars. Although all cultivars/lines showed a susceptible response to inoculation with the new strains of P. brassicae, the severity of disease reaction, root hair infection rates and the amount of P. brassicae DNA present in each canola genotype varied depending on the strain. In addition, the effect of inoculum density on disease severity and gall formation was recorded for one of these new strains on a universally susceptible Chinese cabbage cultivar and one susceptible and 10 resistant canola genotypes. Although root galls were observed at an inoculum density of 103 spores per mL of soil, clear differentiation of susceptible and resistant reactions among canola cultivars/lines was not observed until the inoculum density reached 105 spores mL?1. At a spore density of 106 spores mL?1 and above, all cultivars/lines developed susceptible reactions, although there was some differentiation in the degree of reaction. This study shows the potential to develop a unique disease profile for emergent clubroot pathotypes and shows a useful range of spore densities at which to study new P. brassicae strains.  相似文献   

2.
Genetic resistance is the main tool used to manage clubroot of canola (Brassica napus) in Canada. However, the emergence of new virulent strains of the clubroot pathogen, Plasmodiophora brassicae, has complicated canola breeding efforts. In this study, 386 Brassica accessions were screened against five single-spore isolates (represented by pathotypes 2F, 3H, 5I, 6M and 8N on the Canadian Clubroot Differential Set) and 17 field isolates (represented by 12 unique pathotypes: 2B, 3A, 3D, 3O, 5C, 5G, 5K, 5L, 5X, 8E, 8J and 8P) of P. brassicae to identify resistance sources effective against these strains. The results showed that one B. rapa accession (CDCNFG-046, mean index of disease (ID) = 3.3%) and two B. nigra accessions (CDCNFG-263, mean ID = 3.1%; and CDCNFG-262, mean ID = 4.7%) possessed excellent resistance to all 22 of the isolates evaluated. Fifty other accessions showed differential clubroot reactions (resistant, moderately resistant or susceptible), including 27 (one B. napus, two B. rapa, four B. oleracea and 20 B. nigra) accessions that were each resistant to 8–21 P. brassicae isolates, but developed mean IDs in the range of 5.3–29.6%. The remaining 23 accessions (two B. napus, one Brapa, five Boleracea and 15 B. nigra) were each resistant to 3–13 isolates, but developed mean IDs in the range of 30.3–47.0%. The three accessions that showed absolute resistance and the 50 accessions that showed differential clubroot reactions could be used to breed for resistance to the new P. brassicae strains.  相似文献   

3.
Plasmodiophora brassicae, causal agent of clubroot of crucifers, poses a serious threat to Canadian canola production. The effects of fallow (F) periods and bait crops (clubroot‐susceptible canola (B) and perennial ryegrass (R)) on clubroot severity and P. brassicae resting spore populations were evaluated in five sequences: R–B, B–R, R–F, B–F and F–F. Both host and non‐host bait crops reduced clubroot severity in a subsequent crop of a susceptible canola cultivar compared with fallow. Resting spore and P. brassicae DNA concentrations decreased in all treatments, but were lowest for the R–B and B–R bait crop sequences. In addition, two studies were conducted in mini‐plots under field conditions to assess the effect of rotation of susceptible or resistant canola cultivars on clubroot severity and P. brassicae resting spore populations. One study included three crops of susceptible canola compared with a 2‐year break of oat–pea, barley–pea, wheat–wheat or fallow–fallow. The other study assessed three crops of resistant canola, two crops of resistant canola with a 1‐year break, one crop of resistant canola and a 2‐year break, and a 3‐year break with barley followed by a susceptible canola. The rotations that included non‐host crops of barley, pea or oat reduced clubroot severity and resting spore concentrations, and increased yield, compared with continuous cropping of either resistant or susceptible canola. Growing of a susceptible canola cultivar contributed 23–250‐fold greater gall mass compared with resistant cultivars.  相似文献   

4.
Between 2012 and 2015, 49 new clubroot‐infested fields were identified in 12 German federal states. Clubroot disease incidence varied within these fields from 22% to 92%. Field information revealed that in 85% of fields, oilseed rape was grown in rotation once every 2 or 3 years. Frequency of OSR in the rotation was significantly correlated with the incidence and prevalence of clubroot disease. The disease was detected in fields with soil pH ranging from 5.1 to 8.3, and a significant negative correlation was found between soil pH and the disease incidence of infested fields. Furthermore, more cases of disease and severe incidences were observed in sandy loam and loamy sand as compared with other soil types. Pathotype classification of the 49 Plasmodiophora brassicae populations was conducted on two differential sets, the European Clubroot Differential set and the set of Somé (1996). Additionally, the degree of virulence of the collected isolates was analysed on the clubroot‐resistant oilseed rape cv. Mendel. The results showed variation in pathotype distribution in different regions in Germany. The majority of isolates according to Somé were pathotypes 1 and 3, respectively, with pathotypes 2 and 5 in the minority. Detailed classification according to Buczacki showed the dominance of 16/31/31, 16/14/30 and 16/14/31 populations among 20 distinct virulence patterns of collected isolates. From all populations tested for virulence on cv. Mendel, 15 isolates were found to be moderately or highly virulent. These virulent populations were not restricted to a small geographical area in the country.  相似文献   

5.
Growth room experiments were conducted to assess the interaction of soil type, biofungicides, soil compaction and pathotype/host on infection and symptom development caused by Plasmodiophora brassicae, the cause of clubroot on Brassica spp. In two initial experiments, four soil types (peat soil, mineral soil, non‐calcareous sand, soil‐less mix), two biofungicides (Bacillus subtilis, Clonostachys rosea), and two pathotypes (3 and 6, Williams’ differential set) were assessed. Differences in clubroot severity associated with soil type were unexpectedly small and variable. Prestop (C. rosea) was often more effective than Serenade (B. subtilis) at reducing clubroot levels on peat and mineral soils, but less effective than Serenade on sand. Inoculation with pathotype 3 often resulted in a slightly higher mean severity than pathotype 6. The interaction of soil type × biofungicide was similar on both canola (B. napus) and Shanghai pak choy (B. rapa subsp. chinensis), whether the soil was kept saturated or allowed to drain after inoculation. The impact of soil type on biofungicide efficacy might explain, in part, why biofungicides are more effective in one location than another. The observation that clubroot severity in soil‐less mix was affected by compaction led to an investigation of soil bulk density. Severity was higher in soil‐less mix that was more compacted than in the initial experiments, and was lower in peat and mineral soils when soil bulk density was reduced by adding soil‐less mix. In this study, soil bulk density had a larger impact on clubroot than soil type, organic matter or pathotype.  相似文献   

6.
Clubroot of crucifers, caused by Plasmodiophora brassicae, is managed in canola (Brassica napus) by the deployment of resistant cultivars. Recently, however, new strains of P. brassicae have been detected in Alberta, Canada, that can overcome this resistance. Some of these strains are classified as pathotype 5 on the differential system of Williams, but are distinguished by their ability to overcome host resistance. In order to expedite the identification of these new pathotype 5‐like strains, three primer sets were developed based on the 18S‐ITS region of the pathogen. With primers P5XF3 and P5XR3, a 127 bp product was amplified from all new pathotype 5‐like strains following optimized PCR analysis. A TaqMan probe‐based quantitative assay was also developed. These protocols could be used to detect as little as 0.5 pg P. brassicae DNA, and as few as 104 mL?1 pathogen resting spores; infection of host tissues could be detected as soon as 4 days after inoculation. The PCR and qPCR assays described in this study represent useful tools for the rapid and reliable diagnosis and quantification of new pathotype 5‐like strains of P. brassicae.  相似文献   

7.
The soilborne pathogen Plasmodiophora brassicae, causal agent of clubroot of canola (Brassica napus), is difficult to manage due to the longevity of its resting spores, ability to produce large amounts of inoculum, and the lack of effective fungicides. The cropping of clubroot resistant (CR) canola cultivars is one of the few effective strategies for clubroot management. This study evaluated the impact of the cultivation of CR canola on P. brassicae resting spore concentrations in commercial cropping systems in Alberta, Canada. Soil was sampled pre-seeding and post-harvest at multiple georeferenced locations within 17 P. brassicae-infested fields over periods of up to 4 years in length. Resting spore concentrations were measured by quantitative PCR analysis, with a subset of samples also evaluated in greenhouse bioassays with a susceptible host. The cultivation of CR canola in soil with quantifiable levels of P. brassicae DNA resulted in increased inoculum loads. There was a notable lag in the release of inoculum after harvest, and quantifiable P. brassicae inoculum peaked in the year following cultivation of CR canola. Rotations that included a ≥2-year break from P. brassicae hosts resulted in significant declines in soil resting spore concentrations. A strong positive relationship was found between the bioassays and qPCR-based estimates of soil infestation. Results suggest that CR canola should not be used to reduce soil inoculum loads, and crop rotations in P. brassicae infested fields should include breaks of at least 2 years away from B. napus, otherwise the risk of selecting for virulent pathotypes may increase.  相似文献   

8.
The impact on clubroot severity of growing susceptible canola or mixtures of resistant and susceptible canola genotypes was examined. Bioassays revealed greater clubroot severity and incidence, and reduced plant height, where 100% of a susceptible cultivar had been grown. A higher proportion of susceptible plants within a resistant canola crop increased root hair and secondary infections. Regression analysis of root hair infection and the amount of Plasmodiophora brassicae DNA (as determined by quantitative PCR) revealed strong linear relationships between the two parameters. The linear relationships between root hair infection and P. brassicae DNA were stronger for the resistant cultivar than for the susceptible cultivar when regression analysis was conducted by cultivar over the sampling dates. In conclusion, the cropping of a resistant cultivar reduced clubroot severity, while the presence of susceptible volunteer canola increased inoculum potential. Quantitative PCR was a reliable tool for the quantification of root hair infection.  相似文献   

9.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted to assess the effect of growing resistant and susceptible canola genotypes on P. brassicae soil resting spore populations under greenhouse, mini‐plot and field conditions. One crop of susceptible canola contributed 1·4 × 108 spores mL?1 soil in mini‐plot experiments, and 1 × 1010 spores g?1 gall under field conditions. Repeated cropping of susceptible canola resulted in greater gall mass compared to resistant canola lines. It also resulted in reduced plant height, increased clubroot severity in susceptible canola, and increased numbers of resting spores in the soil mix.  相似文献   

10.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted under greenhouse and field conditions to assess the effect of Vapam fumigant (dithiocarbamate; sodium N‐methyldithiocarbamate) on primary and secondary infection by P. brassicae, clubroot severity, and growth parameters in canola. Preliminary trials showed a 12–16‐fold reduction in primary and secondary infection and clubroot severity at all of the Vapam application rates (0·4–1·6 mL L?1 soil) assessed. Vapam was also found to be effective in reducing clubroot severity and improving seed yield of canola under field conditions. Application of Vapam at soil moisture levels in the range of 10–30% (v:v) had a large effect on both disease severity and infection rates and plant growth parameters. The results suggest that Vapam can effectively reduce clubroot severity and may be useful for the treatment of transplant propagation beds in brassica vegetable production, and for the containment of small, localized clubroot infestations in commercial canola crops.  相似文献   

11.
Plasmodiophora brassicae is an obligate biotroph that causes clubroot, one of the most damaging diseases of crucifers. Breeding of clubroot-resistant plants has been hampered by the large variation of pathogenicity in P. brassicae and by the lack of an efficient means for detecting specific isolates. To improve the practicality of P. brassicae pathotype-identification, a molecular approach was developed. RAPD profiles of 37 single-spore-derived isolates belonging to seven different pathotypes were compared. A RAPD marker, OPL141200, was found in the molecular pattern of all the isolates belonging to one particular pathotype (P1), pathogenic on all differential hosts tested. The DNA band corresponding to this marker was cloned and sequenced. No significant homology to previously characterised nucleotide sequences was found. Primers were designed to specifically amplify the OPL141200 band. The SCAR marker was observed in all isolates belonging to pathotype P1 and was absent in isolates belonging to other pathotypes and in the different plant hosts analysed. The SCAR marker was also generated from direct amplification of DNA from clubs (mixture of host and pathogen DNA) developed after infection by P1 isolates. This molecular marker may be a valuable tool for rapid and reliable identification of P. brassicae P1 isolates in areas where resistant varieties are cultivated.  相似文献   

12.
Clubroot caused by Plasmodiophora brassicae is an emerging threat to canola (Brassica napus) production in western Canada, and a serious disease on crucifer vegetable crops in eastern Canada. In this study, seven biological control agents and two fungicides were evaluated as soil drenches or seed treatments for control of clubroot. Under growth cabinet conditions, a soil‐drench application of formulated biocontrol agents Bacillus subtilis and Gliocladium catenulatum reduced clubroot severity by more than 80% relative to pathogen‐inoculated controls on a highly susceptible canola cultivar. This efficacy was similar to that of the fungicides fluazinam and cyazofamid. Under high disease pressure in greenhouse conditions, the biocontrol agents were less effective than the fungicides. Additionally, all of the treatments delivered as a seed coating were less effective than the soil drench. In field trials conducted in 2009, different treatments consisting of a commercial formulation of B. subtilis, G. catenulatum, fluazinam or cyazofamid were applied as an in‐furrow drench at 500 L ha?1 water volume to one susceptible and one resistant cultivar at two sites seeded to canola in Alberta and one site of Chinese cabbage in Ontario. There was no substantial impact on the susceptible canola cultivar, but all of the treatments reduced clubroot on the susceptible cultivar of Chinese cabbage, lowering disease severity by 54–84%. There was a period of 4 weeks without rain after the canola was seeded, which likely contributed to the low treatment efficacy on canola. Under growth cabinet conditions, fluazinam and B. subtilis products became substantially less effective after 2 weeks in a dry soil, but cyazofamid retained its efficacy for at least 4 weeks.  相似文献   

13.
四川省根肿菌的分布和生理小种及品种抗性评估   总被引:2,自引:0,他引:2  
为探究四川省根肿菌Plasmodiophora brassicae分布、生理小种及品种抗性,于2014-2016年向各县(区、市)植保站问卷调研了解四川省根肿病分布,并利用Williams体系对采自四川省不同病田的22个根肿菌样进行生理小种鉴定,利用其中18个对9个普通十字花科作物品种进行室内抗性评估。结果表明,根肿病分布于四川省19市(州)89个县(区、市),占总调查数的50%。按照极高、高、中等、低、极低、无分布6个根肿病分布密度等级依次划分为23、7、11、16、32和0个县(区、市),其中11个县(区、市)根肿病病史较长,大部分根肿病极高和高密度分布以及长病史县(区、市)都在地理位置上相对集中。22个根肿菌样共鉴定出2、4、7和11号4个生理小种,其中4号为优势生理小种,占77%。四川省表现出明显生理小种地域分布差异。抗性评估发现供试品种对绝大多数供试菌都表现感病,且73%的供试组合病情指数在75以上。  相似文献   

14.
Clubroot disease, caused by Plasmodiophora brassicae, has become a major problem in the production of cruciferous crops worldwide. In this study, a population of 121 doubled haploid (DH) lines derived from a crossing between a resistant and a susceptible canola (Brassica napus) genotype was subjected to phenotypic and genotypic studies to determine the inheritance and location of the resistance gene(s). After inoculation with pathotype 3 of P. brassicae, the lines showed a 1:1 segregation ratio for resistance, indicating that resistance in this population is controlled by a single gene. Fifteen PCR‐based markers that were known to be linked to clubroot resistance (CR) genes were screened against genomic DNA from parents and resistant and susceptible bulks. Marker GC1680, linked to the CR gene CRa, exhibited polymorphism between the parents and between the resistant and susceptible bulks. CRa target primers were used to amplify fragments from the two parents and the resultant sequences were compared. A high degree of sequence similarity was found between the parents in the nucleotide binding site domain of CRa. In contrast, sequence polymorphisms were detected in the leucine‐rich repeat (LRR) domain. One pair of primers that amplify a band from the LRR region of the resistant parent but not the susceptible parent was used to screen the DH population. Amplicons were obtained from 60 of the 61 resistant lines and two of the 60 susceptible lines; thus, three recombinants were found. Based on these results, a resistance locus linked to CRa was found.  相似文献   

15.
Using quantitative PCR, DNA of Plasmodiophora brassicae, the causal agent of clubroot, was detected and quantified on canola, pea and wheat seeds, as well as on potato tubers, all harvested from clubroot‐infested fields in Alberta, Canada. Quantifiable levels of infestation were found on seven of the 46 samples analysed, and ranged from <1·0 × 103 to 3·4 × 104 resting spores per 10 g seeds; the vast majority (80–100%) of resting spores on these samples were viable, as determined by Evan’s blue vital staining. However, the levels of infestation found were generally lower than that required to cause consistent clubroot symptoms in greenhouse plant bioassays. While the occurrence of P. brassicae resting spores on seeds and tubers harvested from clubroot‐infested fields suggests that seedborne dissemination of this pathogen is possible, practices such as commercial seed cleaning may be sufficient to effectively mitigate this risk.  相似文献   

16.
The impact of cultivar resistance and inoculum density on the incidence of primary infection of canola root hairs by Plasmodiophora brassicae, the causal agent of clubroot, was assessed by microscopy. The incidence of root hair infection in both a resistant and a susceptible cultivar increased with increasing inoculum density, but was two‐ to threefold higher in the susceptible cultivar; the relationship between root hair infection and inoculum density was also substantially stronger and more consistent in the susceptible cultivar. In the susceptible cultivar, the root hair infection rate peaked between 6 and 8 days after sowing and then declined. In the resistant cultivar, it increased over the 14‐day duration of each study. It appears that examination of root hair infection by microscopy in a bait crop of susceptible canola could serve as a useful tool for estimating P. brassicae inoculum levels in soil. In a separate trial, the relationship between inoculum density and clubroot severity, plant growth parameters, and seed yield was assessed under greenhouse conditions. Inoculum density in the susceptible genotype was strongly and positively correlated with clubroot severity and negatively correlated with plant height and seed yield. In addition, a single cropping cycle of the susceptible cultivar contributed significantly higher levels of resting spores to the soil in a greenhouse test than did a cycle of the resistant cultivar, as assessed by quantitative PCR and microscope analysis.  相似文献   

17.
Clubroot disease caused by Plasmodiophora brassicae is one of the most serious diseases in cruciferous crops. To classify isolates, we developed simple sequence repeat (SSR) markers for P. brassicae. Twenty-four Japanese isolates were used in this study: 12 isolates of an unknown pathotype from the Kyoto Prefecture, as well as 12 isolates of known pathotypes, including three single-spore lines. From the 12 isolates from Kyoto Prefecture, 11 were classified into either pathotype 2 (three isolates) or 4 (eight isolates). We designed 23 SSR markers based on the P. brassicae genome, of which 11 markers from intergenic regions showed polymorphisms in the 24 isolates. Many haploid isolates belonging to pathotypes 2 and 4 were monomorphic, and typical alleles were detected in some isolates not belonging to pathotype 4. Two bands were detected for eight SSR loci in five isolates, indicating that different genotypes were mixed in these isolates. We constructed a phylogram based on the 11 polymorphic SSRs. Pathotypes 2 and 4 formed a cluster, from which pathotypes 3 and 1 were successively placed. These results strongly suggest a close genetic relationship between isolates in pathotypes 2 and 4, consistent with our finding that isolates in these two pathotypes were found at one collection site. In combination with pathotype classification and other marker systems, the SSR markers can be used for more detailed analyses to improve the control of clubroot disease.  相似文献   

18.
Winter oilseed rape (Brassica napus) is an important crop in the Czech Republic and Poland. Clubroot disease caused by the pathogen Plasmodiophora brassicae is a serious and still-growing problem for oilseed rape growers in both countries. The aim of this study was to evaluate the pathotype composition of P. brassicae populations from the Czech Republic and Poland, according to the three evaluation systems, and to determine soil inoculum loads for representative fields via traditional end-point PCR as well as quantitative PCR analysis. There were considerable differences between the populations of P. brassicae from both countries, and the number of pathotypes varied depending on the evaluation system and the threshold used to distinguish susceptible vs. resistant plant reactions. This is the first study comparing the effect of different thresholds. Using an index of disease (ID) of 25 % to distinguish susceptible vs. resistant reactions, there was a total of seven pathotypes identified based on the differentials of Williams, five with the system of Somé et al., and 18 with the European Clubroot Differential (ECD) set. However, based on a threshold of 50 %, there were nine pathotypes according to the evaluation system by Williams, four based on the differentials of Somé et al., and 15 with the ECD set. Changing of the thresholds led to the reclassification of some pathotypes. Several pathotypes were common in both countries. High amounts of pathogen DNA were found in many of the field soils analysed by quantitative PCR. There was a weak correlation between soil pH and infestation of P. brassicae for the Polish soils.  相似文献   

19.
The mechanism of the biofungicide Prestop® (Clonostachys rosea) was investigated for control of clubroot (Plasmodiophora brassicae) on canola. The key product components were partitioned and assessed for their effect on pathogen resting spores, root hair infection (RHI) and disease development using light microscopy, quantitative PCR and different application treatments during infection. The whole product of Prestop was consistently more effective than the C. rosea conidial suspension or product filtrate alone in reducing RHI and clubroot development. This biofungicide showed little effect on germination or viability of resting spores. Two‐application treatments at seeding and 7–14 days after seeding achieved greater clubroot control than a single application of the biofungicide at either seeding or post‐seeding stage. This may indicate the need to maintain a high biofungicide dose in the soil during primary and secondary infection. This biocontrol fungus colonized the rhizosphere and interior of canola roots extensively, and possibly induced plant resistance based on up‐regulation of the genes that are involved in jasmonic acid (BnOPR2), ethylene (BnACO) and phenylpropanoid (BnOPCL, BnCCR) biosynthetic pathways. It is concluded that the biofungicide Prestop suppressed clubroot on canola at least via root colonization and induced systemic resistance (ISR), and the latter may be through the modulation of phenylpropanoid and jasmonic acid/ethylene metabolic pathways elicited by the fungus.  相似文献   

20.
Controlled‐environment studies were conducted on two Brassica crops (canola, Brassica napus; and Shanghai pak choi, B. rapa subsp. chinensis var. communis) to examine the effects of temperature on infection and subsequent development of clubroot caused by Plasmodiophora brassicae. In the first experiment, canola seedlings were grown in infested soil for 3 weeks at 14–26°C to assess the impact on primary and secondary infection and transferred to 20°C for 3 weeks to assess symptom development under uniform conditions, or started at 20°C for 3 weeks and then placed at the treatment temperatures for the final 3 weeks to assess the impact of temperature on symptom development. A second experiment examined a wider range of temperatures (10–30°C). Similar experiments were also conducted on Shanghai pak choi. The studies demonstrated that clubroot severity was affected by temperature during both infection and vegetative development of the crop. Both early and late in crop development, little or no clubroot developed at temperatures at or below 17°C, and development was slower above 26°C than at 23–26°C for both crops throughout the study. In canola, the high levels of inoculum used in the study resulted in a high incidence of clubroot irrespective of temperature, but in pak choi incidence showed the same pattern as severity. This is the first study to demonstrate under controlled conditions that temperature during vegetative growth of the crop affects symptom development of clubroot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号