首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
【目的】明确人参皂苷生物合成的生理生态机制,揭示生态因子和遗传因素与药材质量的关系。【方法】以4年生不同生长时期的人参叶为试验材料,用HPLC法测定人参叶中8种单体人参皂苷(Rg_1、Re、Rf、Rb_1、Rb_2、Rb_3、Rc和Rd)含量;实时荧光定量PCR法测定7个参与人参皂苷合成的关键酶基因(HMGR、FPS、SS、SE、DS、β-AS和CYP716A47)的表达量;通过相关性和灰色关联度分析生态因子和人参皂苷合成关键酶表达对人参叶中皂苷合成和积累的影响。【结果】7月13日—9月29日人参皂苷合成关键酶基因表达活跃,各个关键酶之间有协同增减的趋势;人参叶中单体皂苷含量最高的是Re和Rg_1,在果后参根生长期(8月31日—9月13日)分别达到最大值60.30和39.38 mg·g~(-1);温度、光合有效辐射、土壤水势、相对湿度与叶中人参皂苷含量显著相关(P0.05);人参叶中HMGR基因的表达与Rb_2含量显著负相关(P0.05),SS基因的表达与Rg_1、Re含量显著负相关(P0.05),β-AS基因的表达分别与Rc、Rb_2含量呈显著(P0.05)、极显著(P0.01)负相关;温度、光合有效辐射、土壤水势和相对湿度与人参皂苷含量灰色关联度较高,达到0.727 9~0.871 1。【结论】在生态因子调控下,人参皂苷合成关键酶基因的表达影响人参皂苷的合成与积累。  相似文献   

2.
以五年生人参根组织为试验材料,利用RT-PCR方法克隆人参DS基因序列;通过生物信息学技术对其核苷酸序列和氨基酸序列进行比对;运用实时荧光定量PCR技术检测DS基因在人参根、茎、叶、果各部位的表达量。结果表明:获得人参DS基因c DNA全长,其核苷酸序列长为2.385 kb,含有1个开放阅读框,编码769个氨基酸多肽。生物信息学分析显示DS编码蛋白质包含1个跨膜区域,具有3个保守结构域。人参DS编码蛋白质与西洋参的DS(AGK62449)和三七的DS(AGI19258)具有99%的序列相似性。实时荧光定量PCR显示,DS基因在人参根、茎、叶、果各部位均有表达,在叶中表达量最高,其次是在果中,在根和茎中表达量相近。  相似文献   

3.
[目的]建立适用于整参、须根、芦头中人参皂苷的超高效液相色谱(UPLC)检测方法,同时测定人参皂苷Rg_1、Re、Rf、Rg_2、Rb_1、Rc、Rb_2、Rd的含量。[方法]采用ACQUITY UPLC BEH C_(18)色谱柱(1.7μm,2.1 mm×50 mm)分离,流动相为乙腈-0.1 mol/L磷酸溶液,梯度洗脱,检测波长为203 nm,柱温35℃,流速0.3 m L/min。[结果]人参皂苷Rg_1、Re、Rf、Rg_2、Rb_1、RC、Rb_2、Rd线性关系良好,回收率在87.3%~98.6%。[结论]该方法准确、重复性好,适用于整参、须根、芦头中人参皂苷的定量分析。  相似文献   

4.
为探讨三七皂苷单体的化感自毒作用,将3种不同的皂苷单体(人参皂苷Rg_1、Rb_1、三七皂苷R_1)分别添加到灭菌和未灭菌的土壤中,研究其在不同土壤介质中对三七种子萌发及幼苗生长的影响及差异。结果表明:(1)灭菌后的土壤更有利于三七生长,发芽率、发芽势、茎粗、最长根长等指标均有显著提高。(2)人参皂苷Rg_1和Rb_1对三七的种子萌发和幼苗生长均有不同程度的抑制作用;三七皂苷R_1对三七种子萌发具有一定的抑制作用,但对三七幼苗生长表现为促进作用。3种皂苷单体的综合化感效应由强别弱依次为:人参皂苷Rb_1(-0.274)人参皂苷Rg_1(-0.112)三七皂苷R_1(0.004),人参皂苷Rb_1的化感抑制效应最强。(3)土壤灭菌状况和皂苷单体种类互作对三七幼苗茎粗、苗高、叶片数3个指标有显著影响。土壤微生物与皂苷协同互作,进而加剧了三七的自毒作用,是导致三七连作障碍的重要原因之一。  相似文献   

5.
采用高效液相色谱法、苯酚-硫酸显色法、分光光度法、DPPH法对3种炮制品的单体皂苷、多糖、总黄酮和抗氧化活性进行了测定。结果表明:总皂苷含量大小顺序为白参黑参红参,红参和黑参生成了白参中不存在的稀有皂苷Rg_3和Rh_1,黑参的Rg_3和Rh_1含量是红参的24.8倍和4.8倍,红参和黑参的单体皂苷Rg_1、Re、Rb_1、Rc含量显著少于白参;黑参的多糖含量最高,白参和红参多糖含量无差异;白参和黑参的总黄酮含量无显著差异,但两者都高于红参;黑参的人参皂苷、多糖和总黄酮DPPH清除能力高于白参和红参。总之,黑参的稀有皂苷、多糖和总黄酮含量最高,其3种有效成分的DPPH清除能力最强,抗氧化能力最强,具有很高的开发和利用价值。  相似文献   

6.
MYB转录因子在植物生长发育和响应外界环境胁迫中发挥着重要的作用。为了分析小麦MYB基因在小麦不同组织中的表达特性,采用半定量RT-PCR方法研究了小麦MYB基因在根、茎和叶中的表达。结果表明:MYB的转录本在3个组织中均有表达,在根中MYB表达量最高,叶中表达量最低。  相似文献   

7.
研究人参皂苷生物合成途径中的影响因子。以五年生人参根组织为试验材料,提取总RNA,反转录合成c DNA的第1条链,利用PCR法对人参中的原人参三醇合成酶(CYP716A53v2)基因的c DNA进行克隆及序列分析。获得CYP716A53v2基因全长片段为1 506 bp,开放阅读框长1 410 bp,编码470个氨基酸多肽。生物信息学分析显示,CYP716A53v2基因编码蛋白质不含跨膜区域。说明CYP716A53v2基因与其他植物氨基酸序列具有较高同源性,其中与人参、西洋参、三七同源性分别为99%、98%、98%。  相似文献   

8.
测定林下山参滴丸的人参总皂苷及主要单体人参皂苷的含量,同时建立林下山参滴丸的指纹图谱。采用紫外-可见分光光度法测定林下山参滴丸中人参总皂苷的含量;采用高效液相色谱法(HPLC)测定林下山参滴丸中3种主要单体人参皂苷的含量;采用HPLC法对10批次林下山参滴丸进行标准指纹图谱分析,通过中药色谱指纹图谱相似度评价软件(2004 A版)进行评价,并建立林下山参滴丸的共有指纹图谱。林下山参滴丸中人参总皂苷的含量为16mg/g;人参皂苷Rg_1、Re和Rb_1的含量分别为2.667mg/g、0.433mg/g和5.100mg/g;指纹图谱有16个共有峰,稳定性、重复性、精密度考察中每个共有峰相对保留时间和相对峰面积的RSD均小于4%,10批次供试品相似度大于0.95。林下山参滴丸中富含人参总皂苷及单体人参皂苷营养成分;林下山参滴丸指纹图谱可有效控制其质量。  相似文献   

9.
采用比色法测定了以朱砂根(Ardisia crenata)胚、根、茎及叶等4种外植体诱导的愈伤组织中皂苷含量,筛选高皂苷含量的愈伤组织。结果表明,朱砂根的胚和根诱导出来的愈伤组织皂苷含量最高,达到24.07 mg/g和21.25 mg/g,茎和叶诱导的愈伤组织皂苷含量较低,根和茎诱导的愈伤组织生长较好。  相似文献   

10.
采用杜马斯燃烧法,研究人参不同部位蛋白质含量的差异。用杜马斯定氮仪以EDTA作为标品测定6年生人参根、茎、叶中蛋白质含量。结果发现,人参根、茎、叶中蛋白质含量的平均值分别为14.600%、6.549%、12.339%,人参不同部位的蛋白质含量存在显著差异,表现为根叶茎。本研究为人参根、茎、叶产品的开发提供理论依据。  相似文献   

11.
为探究生态因子对三七[Panax notoginseng(Burk.)F.H.Chen]主根皂苷组分的影响,明确影响三七皂苷组分的主导因子,采用相关、逐步回归、通径和决策等分析方法逐层剖析,阐明三七主根皂苷组分含量与生态因子的数量关系。结果表明:三七主根三七皂苷R1含量与土壤pH、纬度、7月均温呈显著负相关,其中土壤pH、纬度是其主要决定性因子,7月平均温是其主要限制因子;三七主根人参皂苷Rg1含量主要受1月最低温、7月最高温和纬度的制约,其中以1月最低温影响最大;三七主根人参皂苷Rb1含量主要受大气湿度和主根钙含量的影响,这两者均为其决定性因子;三七主根总皂苷含量主要受1月最低温、纬度、主根钙含量、主根铜含量的影响。研究表明,三七主根总皂苷含量以及各皂苷组分含量具有明显的地域特征,较高的1月低温、大气湿度、土壤钙含量,较低的纬度、7月平均温是获得三七主根高皂苷含量的关键。  相似文献   

12.
试验结果表明,稀土对人参碳代谢和根外磷的吸收有促进作用。稀土处理后人参光合速率捉高了10.58%,参根皂甙含量增加8.32%,红果期稀土处理,人参叶面涂布磷吸收率比对照提高10.51%,参根中磷的积累增加19.58%。  相似文献   

13.
以五年生人参茎叶为材料,提取总皂苷,用30%、50%、80%乙醇洗脱人参茎叶总皂苷获取不同种类和含量人参皂苷,测定不同浓度乙醇洗脱人参茎叶皂苷对醛糖还原酶(AR)抑制作用。结果表明:不同浓度乙醇洗脱人参茎叶皂对AR都有一定的抑制作用,其中对AR抑制作用最强的是80%乙醇洗脱人参茎叶皂苷对AR抑制作用超过阳性对照依帕司他(EPS)(P0.01),30%乙醇洗脱人参茎叶皂苷和50%乙醇洗脱人参茎叶皂苷对AR抑制作用有一定的抑制,但没有超过EPS。醛糖还原酶抑制剂对糖尿病并发症,尤其是对糖尿病微血管并发症有很好的治疗效果。综上所述,人参茎叶提取总皂苷在糖尿病微血管并发症治疗方面有一定的应用价值。  相似文献   

14.
以人参皂苷提取率为响应值,考察乙醇体积分数、提取温度、提取时间对人参皂苷提取率的影响。在单因素试验基础上,通过Box-Behnken试验设计,对人参皂苷的提取工艺进行优化。结果表明:原人参二醇型皂苷最佳提取工艺为76%乙醇,提取温度85℃,提取时间5 h,提取率为0.93%;原人参三醇型皂苷最佳提取工艺为77%乙醇,提取温度71℃,提取时间5 h,提取率为0.56%;齐墩果烷型皂苷最佳提取工艺为79%乙醇,提取温度72℃,提取时间5 h,提取率为0.40%;人参总皂苷最佳提供工艺为77%乙醇,提取温度80℃,提取时间5 h,提取率为1.81%。提取温度对3种类型皂苷提取率具有显著影响。原人参三醇型皂苷和齐墩果烷型皂苷比原人参二醇型皂苷对温度更为敏感,但原人参三醇型和齐墩果烷型皂苷两者之间的差异不显著。  相似文献   

15.
孙成贺  王英平 《特产研究》2009,31(4):54-55,60
目的建立适合于人参茎、叶、根皂苷的高效液相色谱-蒸发光散射检测方法(HPLC-ELSD),同时测定人参茎、叶、根中人参皂苷Rg1、Re、Rf、Rb1、Rc、Rb2、Rd的含量。方法HPLC-ELSD方法,色谱柱:SHIMADZUC185μm(4.6×250mm),流动相:乙腈-水,梯度洗脱。漂移管温度70℃,载气流速350mi/min。结果人参皂苷Rg1、Re、Rf、Rb1、Rc、Rb2、Rd分别在0.462~6.48μg、0.678~4.068μg、0.627~6.144μg、0.247~5.48μg、0.378~6.068μg、0.227~6.844μg、0.561~6.88μg呈良好的线性关系。结论该法准确、重现性好,适于人参茎、叶、根皂苷的定量分析。  相似文献   

16.
曹豪杰  安岩  孟洋  赵寿经 《安徽农业科学》2012,(19):10020-10021,10042
人参皂苷是药用植物人参的主要生物活性成分,其具有抗疲劳、提高免疫力等滋补效果,已得到十分广泛的应用;由于人参栽培的困难和人参细胞、组织培养的低生产效率,利用代谢工程手段来提高人参皂苷生物合成能力成为近年来人参研究的热点之一。因此,文中综述了人参皂苷生物合成方面国内外的最新进展,为人参皂苷的进一步研究奠定基础。  相似文献   

17.
林下参人参皂苷分析   总被引:9,自引:0,他引:9  
不同的提取方法对皂苷含量影响显著,热回流法与超声波法和微波法相比对人参皂苷的提取率最高,而且在加热过程中丙二酰基人参皂苷分别转化成相应的中性皂苷.对生长在吉林省的栽培参和林下参的6种主要皂苷(Rg1Re,Rb1Re,Rb2Rd)进行高效液相色谱(HPLC)分析,结果显示不同地区栽培的人参主根中皂苷含量存在显著差别,且人参皂苷Rg1和Re的化学型组成比例差异较大.吉林人参明显存在3种化学型,分别为高Rg1低Re化学型,低Rg1高Re化学型,Rg1、Re几乎相等化学型.人参不同种群、不同生长年限、不同栽培方式对人参皂苷含量及组成比例都会产生影响.  相似文献   

18.
诱导子是调控植物次生代谢产物合成的一种重要手段,将其用于人参细胞培养,对于人参皂苷的生物合成效果显著。本文分别就诱导子的分类及其在人参细胞培养研究中的应用进行了综述。  相似文献   

19.
采用新的提取、分离方法 ,自国产西洋参花蕾中首次分得 8种皂苷 ,经电喷雾质谱、核磁共振与标品3种不同展开剂条件下共层析及对水解产物的鉴定 ,确定 8种皂苷分别为人参皂苷 Rb1、 Rb2 、 Rb3、 Rc、 Rd、 Re、 Rg1和P F11;又用双波长薄层扫描法对花蕾中的 4个单体皂苷、1组皂苷 ,与其它生长部位———根、茎叶、果进行了对比测定 ,找出了各部位在总皂苷组成比例上的明显差异。  相似文献   

20.
为了评价3种生长模式人参土壤养分供应能力及影响人参皂苷积累的主要养分因子,运用常规农化分析方法和超声提取-高效液相法分别测定土壤养分含量和人参中9种单体皂苷含量.结果表明,人参土壤有机质和速效氮磷钾含量为野山参>林下参>园参,土壤有机质含量变异系数为85.6%,属中等变异,土壤全量氮、磷、钾变异系数大于1009,为强变异,结合国家第2次土壤普查养分分级标准可知,人参土壤碱解氮含量为国家5级水平,速效磷为国家2级水平,有效钾含量为641.4 mg/kg,远大于国家1级水平(200mg/kg);野山参和林下参中9种单体皂苷中以单体皂苷Rb1、Rc、Rb2、Rd和Rg1含量较高,5种单体皂苷显著高于园参(P<0.05),林下参中单体皂苷含量以15 a生含量最高,其中Rb1、Rc、Rb2、Rd和Rg1分别为20.207、22.865、12.435、17.201和7.770 mg/g,为制定林下参适宜采收参龄提供参考;土壤中有机质、全氮和全磷含量直接影响人参皂苷的积累.不同生长模式下人参土壤养分含量差异较大,以野山参和林下参土壤为参考,科学施加氮、磷肥有助于提高园参品质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号