首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Aligned epoxy-matrix composites were made from hemp fibres defibrated with the fungi Phlebia radiata Cel 26 and Ceriporiopsis subvermispora previously used for biopulping of wood. The fibres produced by cultivation of P. radiata Cel 26 were more cellulose rich (78%, w/w) than water-retted hemp due to more degradation of pectin and lignin. The defibrated hemp fibres had higher fibre stiffness (88–94 GPa) than the hemp yarn (60 GPa), which the fibre twisting in hemp yarn might explain. Even though mild processing was applied, the obtained fibre strength (643 MPa) was similar to the strength of traditionally produced hemp yarn (677 MPa). The fibre strength and stiffness properties are derived from composite data using the rule of mixtures model. The fibre tensile strength increased linearly with cellulose content to 850 MPa for pure cellulose. The fibre stiffness increased also versus the cellulose content and cellulose crystallinity and reached a value of 125 GPa for pure crystalline cellulose.  相似文献   

2.
Aqueous dispersions of starch–soybean oil (SBO) and starch–jojoba oil (JO) composites, prepared by excess steam jet cooking, form effective dry film lubricants when applied as thick coatings to metal surfaces by a doctor blade. This application method necessitates long drying times, is wasteful, requires the addition of sucrose to promote composite adhesion to the metal surface, and restricts the substrate geometry to planar surfaces. These issues represent important barriers to the commercialization of this aqueous biobased dry film lubricant technology. We now report an air-assisted spray method that uses readily available spray equipment to apply aqueous starch–oil composite dispersions as thin coatings (0.15–2.0 mg/cm2) to metal surfaces quickly and efficiently. Aqueous dispersions of waxy maize starch–oil composites containing either SBO, JO or hexadecane (HD), having 0.020–31.7 wt% oil relative to starch, were applied by air-assisted spraying and could be dried to the touch in approximately 30 s. Additionally, sucrose was found unnecessary for adhesion of the sprayed coatings. Tribological ball-on-flat testing of metal specimens spray coated with starch–SBO, –JO, and –HD composites showed the thin films of starch–SBO and –JO performed better at reducing the coefficient of friction (COF) than the starch–hexadecane composites. A low COF ranging between 0.027 and 0.044 was obtained for the starch–SBO and –JO composites containing 4–5 wt% oil relative to starch. Above 4–5 wt% oil loadings, no further COF reductions were realized. Further results revealed that micrometer-sized oil droplets embedded within the dried starch matrix of the composite film are delivered “on demand”. It appears that when pressure is applied to the dry film lubricant, the starch matrix ruptures and releases the entrained oil to the friction surface.  相似文献   

3.
The Athel tree, Tamarix aphylla (L), can potentially be used as a biomass crop to help manage saline subsurface drainage water in arid land irrigated agriculture. In this study, Athel wood was used to manufacture medium-density particleboard with an aim of developing new applications for the saline wood. The research investigated the effects of different types of adhesives, particle sizes, bark content (BC), resin content (RC), and hot water pretreatment on the mechanical and water resistance properties of the Athel-derived, medium-density particleboards. The measured mechanical properties included tensile strength (TS), modulus of rupture (MOR), modulus of elasticity (MOE), and internal bond strength (IB) of the finished particleboards. Water absorption and thickness swell were used to evaluate the water resistance. Polymeric methane diphenyl diisocyanate (PMDI) resin made particleboard of better mechanical properties and water resistance than urea formaldehyde (UF). The medium size (20–40 mesh) particles gave the best mechanical properties and water resistance than of the particleboard when evaluated against the smaller size (40–60 mesh) and larger size (10–20 mesh) particles. The mechanical properties of particleboard were improved as the resin content of the UF-board increased from 7 to 16%, but deteriorated as the bark content increased from 0 to 16.2%. The particleboard made from the wood particles that had undergone hot water pretreatment had poor mechanical properties and water resistance compared with the particleboard made from the untreated particles. Saline Athel wood is an appropriate material for manufacturing particleboards.  相似文献   

4.
Effect of pressing time on physical and mechanical properties of phenolic-impregnated bamboo strips was evaluated. Bamboo strips (Gigantochloa scortechinii) were impregnated with low molecular weight phenol formaldehyde (LMwPF) resin. Samples were submerged in LMwPF resin using a vacuum chamber of 750 mmHg for 1 h before it was released within 1.5 h. Treated strips were dried in an oven with a temperature of 60 °C within 6–9 h. It was hot pressed at 14 kg m?2 and a temperature of 140 °C for 5, 8, 11, 14 and 17 min. The physical and mechanical properties of the test indicated that the properties of phenolic-treated strips have significantly increased as compared to control samples. Dimensional stability (water absorption, thickness swelling and linear expansion) of the phenolic-treated properties were significantly lower than control after 5-min pressing time. The antishrink efficiency (ASE) of phenolic-treated strips increased when pressing time were extended from 5 to 17 min. The mean value of modulus of rupture (MOR) for the control samples (177 N mm?2) showed a significant difference with phenolic-treated strips after 17-min pressing time (224 N mm?2). However, there is no significant difference in compression parallel to grain. The MOE of phenolic-treated strips was 21,777 N mm?2 and for control was 18,249 N mm?2, whereas the compression parallel to grain values for phenolic-treated and control samples were 94 and at 77 N mm?2, respectively.  相似文献   

5.
Rice husk is a by-product of rice milling process, and a great resource as a raw biomass material for manufacturing value-added composite products. One of the potential applications is to use rice husk as filler for manufacturing gypsum–rice husk boards for wall and ceiling materials for construction. We investigated the effect of rice husk, addition on selected physico-mechanical properties, total volatile organic compound (TVOC), and incombustibility, on the gypsum board. With increasing rice husk contents, water and moisture absorption was decreased. Because of the replacement of pore between gypsum particles by rice husk, the moisture absorption was decreased as rice husk adding contents. By rice husk adding, MOR of the gypsum–rice husk boards were increased up to 9.8 MPa at 30 wt%. However, MOR was decreased more than 40 wt% of adding contents. The modulus of elasticity (MOE) showed similar behavior with MOR. However, internal bonding strength (IB) was slightly increased as rice husk adding contents up to 20 wt%, 0.5 MPa and decreased over 20 wt%. The incombustibility of the gypsum–rice husk boards decreased on increasing the rice husk adding content. However, up to 30 wt% of rice husk adding contents board samples was of incombustibility first class. Gypsum particle can be replaced up to 30 wt% by rice husk with incombustibility first class for housing materials. In all cases, TVOC emission factor and formaldehyde emission remained under the ‘Excellent’ grade as defined by Korean Air Clean Association (KACA).  相似文献   

6.
The impact of the oxidants potassium bromate and potassium iodate and the reducing agent dithiothreitol (DTT) on the rheological behaviour of 20% (w/v) gluten-in-water suspensions during thermal treatment was monitored with the rapid visco analyser (RVA). The suspensions were subjected to a linear temperature increase from 40 to 95 °C in 14 min, a holding step of 40 min at 95 °C, a cooling step (7 min) with a linear temperature decrease to 50 °C, and a final holding step at 50 °C (13 min). Potassium iodate (1.18 and 1.77 μmol/g protein) and potassium bromate (1.52 and 15.2 μmol/g protein) decreased RVA viscosities in the holding step and increased sodium dodecyl sulphate (SDS) protein extractabilities suggesting a greater heat resistance and decreased gliadin–glutenin cross-linking. In contrast, in the presence of DTT (1.65 and 3.30 μmol/g protein) RVA viscosity increased at lower temperatures and lowered SDS extractabilities. It is postulated that low concentrations of reducing agent facilitate gliadin–glutenin cross-linking during heating while oxidants hinder gluten polymerization due to decreased levels of free sulphydryl groups and less flexibility of the glutenin chains.  相似文献   

7.
An efficient and economical oil expression system that can operate on solar power in rural areas of underdeveloped and developing countries is needed. Recent improvements in both oil extraction and solar energy technologies have indicated the possibilities for fabricating oil extraction equipment. Thus, the objective of our study was to develop a simple oil expression unit capable of producing high quality oil based on solar energy in remote rural areas. A photovoltaic (PV), batch operated, low-pressure oil press, using a 190 W, 12 V dc motor, was designed, fabricated, and tested using coconut and groundnut as the raw material. Samples used in the study were ground to particle size between 500 μm and 2 mm and were pressed at 12 ± 1% moisture content. The press was evaluated based on the oil extraction efficiency (OEE), power consumption, and oil quality. The press had an average OEE of 73% for coconuts and 70% for groundnuts after 12 min of pressing. The oil expression efficiency was characterized by three main stages namely delayed, rapid, and retarded. The power consumption was affected greatly by the pressing time, with power consumption increasing with an increase in the pressing time. The specific energy consumption was found to increase significantly after 8 min of pressing and correlated with the compaction of the cake, which resulted in more power being required to express the entrapped oil. The expressed oil was fresh, free from foots, and of high quality with an average moisture content of 0.015% for coconut oil and 0.019% for groundnut. Analyses showed that the viscosities were 42.1 MPa s (coconut oil) and 59.1 MPa s (groundnut oil), at 25 °C. Overall, the press performed well and was comparable in performance to other types of presses.  相似文献   

8.
《Field Crops Research》2001,70(2):127-137
Shallow saline water tables, naturally saline soils and variations in climatic conditions over the two growing seasons, create a harsh environment for irrigated rice production in the Senegal River Delta. At the onset of the growing season, salts accumulated by capillary rise in the topsoil are released into the soil solution and floodwater. Rice fields often lack drainage facilities, or drain from one field to the other, thus building up salt levels during the season. Salt stress may, therefore, occur throughout the growing season and may coincide with susceptible growth stages of the rice crop. The objectives of the present study were to (i) determine varietal responses to seasonal salinity in both the hot dry season (HDS) and the wet season (WS) and (ii) derive guidelines for surface water drainage at critical growth stages. We evaluated responses of three rice cultivars grown in the region to floodwater salinity (0–2, 4, 6, 8 mS cm−1), applied either at germination, during 2 weeks at crop establishment, during 2 weeks around panicle initiation (PI), or during 2 weeks around flowering. Floodwater electrical conductivity (EC) reduced germination rate for the most susceptible cultivar by as much as 50% and yield by 80% for the highest salinity level imposed. Salinity strongly reduced spikelet number per panicle, 1000 grain weight and increased sterility, regardless of season and development stage. The strongest salinity effects on yield were observed around PI, whereas plants recovered best from stress at seedling stage. Floodwater EC <2 mS cm−1 hardly affected rice yield. For floodwater EC levels >2 mS cm−1, a yield loss of up to 1 t ha−1 per unit EC (mS cm−1) was observed for salinity stress around PI (at fresh water yields of about 8 t ha−1). Use of a salinity tolerant cultivar reduced maximum yield losses to about 0.6 t ha−1 per unit EC. It is concluded that use of salinity tolerant cultivars, drainage if floodwater EC >2 mS cm−1 at critical growth stages, and early sowing in the WS to avoid periods of low air humidity during the crop cycle, are ways to increase rice productivity in the Senegal River Delta.  相似文献   

9.
Coconut husks, residues generated during coconut processing, are available in abundant quantities in many parts of the tropics but are often treated as a waste material. This study investigated the effects of particle size and calcium chloride (CaCl2) on strength and sorption properties of cement-bonded composites produced from coconut (Cocos nucifera) husk. Particle size, CaCl2 and the interaction of both variables had significant effects (p < 0.05) on the density and the Modulus of Elasticity (MOE), while only particle size had significant effects (p < 0.05) on the Modulus of Rupture (MOR) of the composites. MOE, MOR, Water Absorption and Thickness Swelling (at 24 h) compare favourably with values reported for cement-bonded composites produced from similar lignocellulosics. These properties can be exploited in many applications where lightweight concretes are required.  相似文献   

10.
In the past, pressing fluids from ground plant matter has typically been accomplished with a hand press. Fluids must be separated from dry matter as part of the methodology for various applications in plant species including latex quantification. This article describes the design and construction of a hydraulic press used for extracting fluids from plant tissue samples, the accompanying press plates, sieve vessels, and collection pan, and the process we use for pressing plant fluids from sunflower (Helianthus annuus) homogenate. The overall height of the press is 205.7 cm (81 in.) and the width is 94.0 cm (37 in.). We have used the press for several years and have not identified any flaws in its design and performance. While designed and constructed for use in latex extraction we envision the press and associated press plates, sieve vessels, and collection pan could be used in a variety of other applications.  相似文献   

11.
12.
Evening primrose (Oenothera biennis) is increasingly cultivated for medicinal use of the γ-linolenic acid rich oil. The seed cake (EPSC) – the remaining industrial residue from cold pressing – was extracted with polar solvents in order to investigate a profitable polyphenolic recovery. The extractable matter and the total phenolic content (Folin-Ciocalteu) have been compared to a black currant residue from juice production (Ribes nigrum) and seed cakes from sesame, woad (Isatis tinctoria) and burdock (Arctium lappa). The EPSC crude extracts yielded the high total phenolic content (min 228.2 ± 11.6 to max 696.4 ± 29.0 mg GAE g−1 dry extract) within the range of already commercialized antioxidant extracts from rosemary (RO, 142.1 ± 1.9 mg g−1), green tea (GT, 446.8 ± 27.4 mg g−1) and grape seed (GS 790.0 ± 53.1 mg g−1). All extracts exhibited free radical scavenging activity (DPPH assay) with the order of potency: EPSC > GS > GT  burdock = black currant > RO > butylated hydroxytoluene (BHT)  woad > sesame. Accordingly EPSC extracts where very effective in scavenging superoxide anion radicals (neotetrazolium assay: GS > EPSC > GT  BHT > burdock > woad > sesame) and inhibition of lipid oxidation (Rancimat assay: BHT  GT > EPSC  burdock > woad > RO > sesame > GS). Decreasing Rancimat activity from 80 °C upwards might indicate heat sensitiveness and limited usability. However, an efficient exploitation of polyphenols from evening primrose seed cakes in terms of an uncomplicated extraction procedure, the yield and the competitive profile as a strong radical scavenger can be concluded.  相似文献   

13.
Guayule (Parthenium argentatum Gray) is a source of high quality rubber and low-allergenic latex as well as resin for use as a wood preservative. Demand for high value latex products has increased with the advent of deadly diseases such as AIDS. The objective of this study was to evaluate the performance of six improved guayule lines (AZ-1 to AZ-6) in south-east Queensland: released jointly by the Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA) and The University of Arizona. Trials were conducted at two sites, Chinchilla and Gatton. Overall performance of improved lines for plant growth and yield of dry matter, rubber and resin was better at both Gatton and Chinchilla than the standard check lines (N 565 and 11591). AZ-1 and AZ-2 maintained the best combinations of desirable traits, including plant uniformity, early vigorous growth, increased dry matter, and increased rubber and resin yields. Of these two, AZ-2 had more uniform plant growth and has commercial potential for Queensland production areas. In the summer harvest at Gatton, 32-month-old AZ-1 and AZ-2 produced rubber yields of 789 kg/ha and 771 kg/ha, respectively, while controls, N 565 and 11591 produced 675 kg/ha and 618 kg/ha, respectively. At Chinchilla, at 33 months, spring harvested AZ-1 and AZ-2 produced rubber yields of 717 kg/ha and 787 kg/ha; these yields were significantly higher than N 565 and 11591 which produced 385 kg/ha and 380 kg/ha, respectively. Thus, rubber yields of AZ-1 and AZ-2 were consistently high across sites. AZ-1 and AZ-2 produced resin yields of 1158 kg/ha and 1115 kg/ha at Gatton and 1318 kg/ha and 1476 kg/ha at Chinchilla. This compared with a mean of 612 kg/ha and 352 kg/ha for the standard check lines at Gatton and Chinchilla. Thus resin yields of AZ-1 and AZ-2 were consistently high across sites. Rubber content appeared to be influenced by time of harvest although this effect is compounded with plant age. At Gatton, in spring, 17-month-old plants produced a mean rubber content of 7.7% (all lines), while, in summer, when the plants were 32-month-olds, rubber content dropped to 6.4%. At Chinchilla, 33-month-old plants harvested in spring produced a mean rubber content of 7.4%, similar to the spring value at Gatton. By contrast, resin content appeared to be little affected by season.  相似文献   

14.
Modelling of the Acetosolv treatment of the cardoon bark (Cynara cardunculus) was accomplished using a second-order face-centred factorial design. We considered as independent (experimental) variables: cooking time (60–180 min), acetic acid concentration in the cooking liquor (60–90%) and hydrochloric acid concentration in the cooking liquor (0.20–0.80%); as well as dependent variables: pulp yield, kappa number and viscosity.Empirical models were deduced to satisfactorily fit experimental data with the values of the independent variables and allow quantifying the effects of each variable.An optimisation with constraints led to the calculation of the region of the experimental domain (time = 180 min, acetic acid concentration  71.3% and HCl concentration > 0.41%) leading to pulps with kappa numbers < 25 at a maximal pulp yield and viscosity, giving us maximum possible values for pulp yield (46.3%) and viscosity (557 mL/g).  相似文献   

15.
In addition to being consumed as food, starch is considered for replacement of petroleum-based plastics, but imparts negative effect like water absorption and solubilization in water. In this study, the effects of sodium hydroxide and sodium trimetaphosphate concentrations on the water absorption and solubility indices of starch cross-linked by sodium hydroxide and sodium were evaluated. Starch was granulated, and 0.3 kg granulated starch was mixed with 65 ml sodium hydroxide at three concentrations (0.2, 0.6, and 1.0 M), sodium trimetaphosphate at two levels (0.015 and 0.045 kg sodium trimetaphosphate corresponding to 5 and 15% of starch), and water to adjust moisture content to 40% (dry basis). The samples were extruded in a single-screw extruder at a barrel temperature of 130 °C and screw speed of 140 rpm. Phosphorus content and pasting viscosity of starch extrudates showed that starch was cross-linked with phosphorus that was incorporated into starch during extrusion. The extrusion and cross-linking of starch with 5% sodium trimetaphosphate reduced water absorption index, and increasing sodium trimetaphosphate percentage reduced water absorption index further at high levels of sodium hydroxide. On the other hand, the reduction in water solubility of starch extrudates required the extrusion of starch with more than 5% sodium trimetaphosphate, but increasing the sodium hydroxide level increased the water solubility index of extrudates.  相似文献   

16.
Biodegradable, vegetable oil-based lubricants must have better low temperature properties as well as comparable cost to petroleum oils before they can become widely acceptable in the marketplace. The low temperature property usually measured is the pour point (pp), the minimum temperature at which the material will still pour. Viscosity and viscosity index also provide information about a fluid's properties where a high viscosity index denotes that a fluid has little viscosity change over a wide temperature range. Lesquerella oil is a good candidate for its development into a biodegradable lubricant as it is being developed as an alternative crop for the southwestern U.S. The hydroxy site on the fatty acid (FA) makes it a suitable site for esterification to yield estolides. Castor and lesquerella FA esters were combined with different types of saturated, unsaturated, and branched FAs to produce estolides. Castor and lesquerella estolide esters had the best cold temperature properties when capped with oleic (pp = −54 °C for castor and pp = −48 °C for lesquerella) or capped with a branched material, 2-ethylhexanoic acid (pp = −51 °C for castor and pp = −54 °C for lesquerella). As the saturation was increased in the estolide, pour and cloud points also increased. The increased saturation such as in stearic capped estolides allowed for sufficient alkyl stacking of these long saturated chains producing higher pour points. Oxidative stability of the estolides was compared between the oleic-castor estolide 2-ethylhexyl ester and the coco-castor estolide 2-ethylhexyl ester by the rotating bomb oxidation test (RBOT). The RBOT times for both estolides were low with a similar time of about 15 min. However, when the antioxidant package (3.5 wt.%) was added, the RBOT times increased to 403 min for the coco-castor estolide 2-ethylhexyl ester while still retaining its outstanding cold temperature properties, (pp = −36 °C and cp = −30 °C). The viscosity index ranged from 164 to 200 for these new hydroxy FA derived estolide 2-ethylhexyl esters. These oleic-castor and lesquerella estolide esters have displayed far superior low temperature properties (pp = −54 °C) than any other estolides reported to date. Due to the lack of solvent and catalysts, the cost of these estolides should be reasonable and more suitable as a base stock for biodegradable lubricants and functional fluids than current commercial materials.  相似文献   

17.
《Field Crops Research》1998,58(1):55-67
The current nitrogen (N) use in silage maize production can lead to considerable N losses to the environment. Maize growers fear that a reduction of N inputs needed to minimize N losses might depress yields. The objective of this study was therefore to quantify: (1) the response of silage maize dry matter (DM) yields to N, (2) the economically optimal N reserve, and (3) the trade-off between silage maize DM yield and N losses. The indicators of N losses used in this study were the difference between N input and N uptake and the post-harvest residual soil mineral N. Regression models were used to fit DM yields and N uptakes of silage maize measured in 25 experiments on sandy soils in the Netherlands to the sum (SUMN) of the soil mineral N reserve (SMNearly) in March–April, plus mineral N in fertilizer, plus ammonium N in spring-applied slurry. The values obtained for the economically optimal SUMN in the upper 30 and 60 cm of soil were, respectively, 173 and 195 kg N ha−1, when we assumed that the value of 1 kg fertilizer N equals the value of 5 kg silage DM. The economically optimal SUMN was not significantly related to the attainable DM yield. The apparent N recovery (ANR) of maize averaged 53% at the economically optimal SUMN. The ANR rose considerably, however, when N was applied at lower rates, indicating that N losses may be considerably smaller in less intensive maize cropping. When maize was fertilized at 100 kg N ha−1 below the economic optimum, the ANR was 73%, the difference between the mineral N input and the N crop uptake decreased by 57 kg N ha−1 and the soil mineral N residue at the end of the growing season (0–60 cm) decreased by 24 kg N ha−1. The associated reduction in DM yield averaged 16%. Fertilizer prices would have to be as much as four times higher to make maize growers spontaneously reduce the application rates by a 100 kg N ha−1, however. It is concluded that adjusting the N input to a level below the economically optimal rate can reduce the risks for N losses to the environment associated with conventional maize production, with a limited effect on silage yields.  相似文献   

18.
《Field Crops Research》2005,91(2-3):251-261
Winter rainfall in a Mediterranean region varies from year to year. Both release of inorganic N from soil organic matter (SOM) or a legume cover crop (LCC) and subsequent nitrate movement in the soil profile are strongly affected by winter rainfall, through its effects on soil water status and on vertical flux. N accumulation of a LCC also varies over years due to weather effects on growth. Thus, these two factors need to be taken into account for efficient use of SOM-N and LCC-N in a wheat (Triticum aestivum L.) rotation. To determine how winter weather might affect the performance of wheat-fallow rotations that include an LCC grown and incorporated during the fallow year, we used the CERES-wheat model and a 46-season weather record to simulate N dynamics of 2-year unfertilized and irrigated winter-LCC wheat systems with high LCC (236 kg N ha−1) or low LCC (118 kg N ha−1) inputs. Unfertilized and fertilized fallow-wheat controls were also simulated. Within a given LCC input value, coefficients of variation for total seasonal N supply (the sum of predicted wheat N uptake, N leaching and inorganic soil N at wheat maturity) over years were <15%, despite the fluctuating winter rainfall (CV 48%). Average N leaching was predicted to be highest in the high LCC input system (108 kg N ha−1), followed by the low LCC input system (86 kg N ha−1) and midseason-intensive and planting-intensive fertilized wheat-fallow systems (82 and 72 kg N ha−1, respectively), and least in the unfertilized wheat-fallow system (54 kg N ha−1). N leaching exceeded 100 kg N ha−1 in 4, 20, 16, 18, and 29 seasons out of 46 seasons, respectively, in the unfertilized and planting-intensive and midseason-intensive fertilized wheat-fallow rotations and in wheat rotations with low and high LCC inputs. There was no difference in predicted wheat yield among the four systems with N inputs from fertilizer or LCC, but yield was lower in the unfertilized wheat-fallow rotation. If the goal of use of LCC was to attain the same yield level as high LCC input or fertilized wheat system while diminishing the risk of N leaching, the low LCC input case met this goal in the short term. However, a simple balance sheet using the model showed that the N balance of the low LCC input system was −147 kg N ha−1 season−1, if we assumed 50% of LCC-N was derived from atmospheric fixation. The low-LCC-input system could therefore fail to maintain inherent soil N fertility in the long term unless nearly 100% LCC-N was derived from fixation.  相似文献   

19.
This study identified the role of milling and parboiling on arsenic (As) content and its species in large numbers of rice samples. Total As contents were 108 ± 33 μg/kg in polished rice grains (PR), 159 ± 46 μg/kg in unpolished rice grains (UR), 145 ± 42 μg/kg in parboiled polished rice grains (PPR) and 145 ± 44 μg/kg in parboiled unpolished rice grains (PUR). The percentages of inorganic As (iAs) were 66% ± 8% in PR and from 72% to 77% in other grain categories. The polishing process reduced the As content in the rice grains, removing outer part of the UR with high amount of As, whereas the parboiling technique transferred the semimetal content within the grain. Total As and iAs contents were not significantly different in UR, PPR and PUR, homogenizing its distribution inside the grains. The results allowed to understand how different operations affect As fate and its chemical forms in grains.  相似文献   

20.
The compositions of essential oils of 19 accessions belonging to six different Achillea species, transferred from the natural habitats in 10 provinces of Iran to the field conditions, were assessed. The relationship between the leaf areas of selected accessions with their essential oil content was also investigated. Essential oil yield of dried plants obtained by hydro-distillation ranged from 0.1 to 2.7% in leaves. Results indicated a significant variation in oil composition among and within species. Total of 94 compounds were identified in 19 accessions belonging to the six species of A. millefolium, A. filipendulina, A. tenuifolia, A. santolina, A. biebersteinii and A. eriophora. The major constituents of the leaves in the tested genotypes were determined as germacrene-D, bicyclogermacrene, camphor, borneol, 1,8-cineole, spathulenol and bornyl acetate. According to the major compounds, four chemotypes were defined as: (I) spathulenol (1.64–34.31%) + camphor (0.2–15.61%) (7 accessions); (II1) germacrene-D (18.78–23.93%) + borneol (7.93–8.26%) + bornyl acetate (11.56–14.66%) (5 accessions); (II2) germacrene-D (13.28–36.28%) + bicyclogermacrene (5.93–8.4%) + 1,8-cineole (15.26–19.41%) + camphor (14.95–23.32%) (2 accessions); (III) borneol + camphor (52.04–63.27) (2 accessions); (IV) germacrene-D (45.86–69.64%) (3 accessions). The relationships of chemotypes with soil type and climatic conditions of collected regions were assessed, as probable reasons of high variations in essential oil components, and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号