首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
凋落物是森林生态系统的重要组成部分,其分解过程是森林生态系统养分循环的重要环节。准确测定凋落物的分解动态,对研究森林生态系统的格局和过程非常重要。本文的工作在贡嘎山高山生态系统观测试验站开展,对海拔3 000 m的峨眉冷杉(Abies fabri)林进行定位观测,并对峨眉冷杉林凋落物分解过程进行了长期测定。研究结果表明:(1)凋落物的分解速率是阔叶>针叶>枯枝,峨眉冷杉林的阔叶、针叶和枯枝等凋落物分解一半所需要的时间分别为6.8年、10.5年和14.5年,分解95%所需时间分别为29.3年、45.6年和63.1年;(2)无论阔叶还是针叶、枯枝,其有机碳含量均随着时间的推移而下降,而有机碳分解率均随着时间而增高;利用指数衰减模型,获得凋落物有机碳的分解系数是阔叶>针叶>枯枝;(3)在每年凋落物输入峨眉冷杉林林地时,其中的阔叶、针叶和枯枝已经开始分解,当年可释放的有机碳分别为52.18 kg·hm^-2、4.32 kg·hm^-2和0.67 kg·hm^-2,各类凋落物每年有机碳释放总量为61.13 kg·hm^-2,占凋落时有机碳量的6.58%。  相似文献   

2.
Stand structure of an old-growth forest was studied by tree (≥4.0 cm in DBH) census in a main plot of 1.3 ha and 8 additional plots (0.525 ha in total) located in the Mt. Moiwa Forest Reserve, central Hokkaido, northern Japan. Major tree species with ≥1.0% of the relative basal area and of relative number of trees (Acer mono, A. mono var.mayrii, Kalopanax pictus, Magnolia kobus var.borealis, M. obovata, Prunus ssiori, Tilia japonica, andUlmus laciniata) have positive values of skewness in DBH, which shows the abundance of smaller-sized stems. All stems over 1.3 m high in the main plot were mapped to clarify the relationship between stem densities and canopy states. Although advances from sapling (>1.3 m tall and <4.0 cm DBH) to small tree (10.0 cm ≤ DBH <25 cm) for all major component species, exceptP. ssiori andU. laciniata, were independent of canopy states, those ofP. ssiori andU. laciniata depended on canopy gaps.Betula spp. was the most abundant gap makers, butT. japonica andA. mono (including var.mayrii) were dominant species in the main plot. This suggests the shift of dominant species in the forest of the study site. Historical records of disturbance demonstrated that selective cuttings of conifers during the late 19th century were responsible for the dominance ofBetula spp. and the subsequent shift of dominant species. This fact suggests that artificial disturbance plays an important role in the establishment ofTilia japonica-Acer mono forest considered to be a climax of the mixed deciduous broadleaf/conifer forests.  相似文献   

3.
文峪河上游河岸林凋落物及其分解过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过凋落物定点收集调查和分解袋定点埋置实验,对文峪河上游山地溪流河岸带寒温性针阔叶混交林的年凋落量动态和凋落叶在不同环境中的分解进程进行了周年研究.结果表明,研究地区山地溪流河岸林在河岸带和溪流中的年凋落量分别为3.46和4.09 t·hm-2·a-1;河岸带和溪流凋落物中阔叶凋落量占优势,分别占40.55%和40.1...  相似文献   

4.
MILNE  R.; BROWN  T. A. W.; MURRAY  T. D. 《Forestry》1998,71(4):297-309
The planting rates from 1921 to 1996 of new coniferous and broadleavedforests for 11 regions of Great Britain were assembled for thestate and private sectors. Over that period new planting totalled231 kha of conifers and 132 kha of broadleaves in England, 141kha of conifers and 16 kha of broadleaves in Wales and 881 khaof conifers and 52 kha of broadleaves in Scotland. These time series and regional values of Yield Class were usedas input data for an accounting model of carbon in the trees,litter, soils and products to produce estimates of their netuptake of carbon by the forests from the atmosphere (i.e. increasein the carbon pools). On the assumption that conifer and broadleafplanting could be represented by Sitka spruce and beech treesrespectively, litter and forest soil in Great Britain were accumulatingcarbon at 2.42 Mt a–1 in 1995–96. Coniferous forestaccounted for 89 per cent of this uptake. Scottish conifer andbroadleaf forests took up 68 per cent and mapping the uptakeshowed that the greatest rate occurred in western Scotland.The pool of carbon in wood products increased in 1995–96by 0.31 Mt a–1. The estimated uptake rates were sensitive to the relative amountsof conifer and broadleaf forest planted (particularly in relationto increases in the pool of carbon in wood products) but notto regional differences in Yield Class. Use of any single YieldClass in the range 10–16 m3 ha–1 a–1 for allSitka spruce planting produced estimates of uptake rate in GreatBritain to trees, litter and soil within ±10 per centof that, assuming yield varied across the country. Lack of preciseknowledge on the parameters of the model was estimated to introducean uncertainty of ±30–70 per cent into estimatesof carbon uptake.  相似文献   

5.
To understand the decomposition characteristics of Pinus massoniana foliar litter and the degradation of its refractory compounds in plantations under five canopy densities,a litter bag experiment over a decomposition time of 392 days was carried out.The results show that canopy density significantly affected decomposition rates of litter and degradation rate of lignin and cellulose.Litter decomposition rates decreased significantly with decreasing canopy density.Both lignin and cellulose degradation rates were lower with canopy densities of 0.62 and 0.74 as compared with the three other densities.Lignin and cellulose losses were more rapid in the first 118 days.Soil fauna had significant impacts on litter decomposition and the degradation of refractory compounds.Canopy density had significant effects on factors such as soil properties and soil fauna community structure,which could be conducive to the decomposition of litter and the degradation of litter recalcitrant components.Canopy density between 0.6 and 0.7 might be a favorable management practice promoting litter decomposition and beneficial for the sustainable development of P.massoniana plantations.  相似文献   

6.
We assessed the vertical distribution of litter and its seasonal patterns in the canopy and on the forest floor (soil), as well as litterfall (the flux of litter from the canopy to the soil) in a 33-year-old plantation of Japanese cedar (Cryptomeria japonica D. Don). The masses of total litter, dead leaves, and dead branches in the canopy of C. japonica trees averaged 34.09, 19.53, and 14.56 t dry wt ha−1, respectively, and were almost constant during the study period. The total masses of the annual litterfall were 4.17 and 5.88 t dry wt ha−1 year−1 in the two consecutive years of the study. The mass of the soil litter averaged 7.95 t dry wt ha−1 during the same period. All relationships between the mass of canopy litter and tree-size parameters (diameters at breast height and at the lowest living branch) were linear in a log-linear regression. Compared with the results for this plantation at a younger stage (16 years old), our results suggest that the total mass of dead leaves attached to each tree increases markedly with increasing age, but that the trajectory of this increase as a function of tree size may change from an exponential to a saturation curve with increasing stand age.  相似文献   

7.
To document the spatial and temporal variation of environmental signals inducing seed germination in temperate forests, we measured temporal patterns of environmental signals and seed germination of six pioneer tree species in unthinned and thinned stands of conifer forests (Cryptomeria japonica plantations) and in the understory and gaps of hardwood forests in Japan. We also conducted germination experiment in laboratory for the six pioneer species to test the effects of red:far-red (R:FR) light ratio and temperature fluctuations on the seed germination. In conifer forests, the photosynthetic photon flux density (PPFD), the R:FR ratio, and the amplitude of temperature fluctuations in thinned stands were 2, 1.5, and 3 times higher, respectively, than those of unthinned stands. The PPFD and R:FR ratios just above forest floor also increased after the removal of thick litter accumulation. As a result, higher seed germination was observed in thinned compared to unthinned stands for three photoblastic species, whereas little differences were observed for three non-photoblastic species. These findings suggest that thinning, which frequently reduces litter accumulation, can substantially affect the regeneration of pioneer species and the resultant species diversity in conifer plantations. None of the measured environmental signals changed seasonally in unthinned stands of conifer forests, but they all changed remarkably in the understory of the hardwood forests. In this system, all signals were high and nearly identical to those in the gaps in early spring prior to canopy closure. Thus, the percent germination of the three photoblastic species was enhanced by high R:FR ratios and/or large temperature fluctuations even beneath the canopy and was nearly equal to that in the thinned conifer stands where the environmental conditions were nearly identical to those in the gaps. However, all of the environmental signals decreased with the expansion of canopy leaves and reached minimums at canopy closure. Even in the thinned stands and the gaps, the PPFD and magnitude of temperature fluctuations decreased over time due to shading by growing herbs and/or emerging canopy leaves. In these temporally changing environments, the germination of all photoblastic species ceased simultaneously. This study clearly demonstrated that the environmental signals inducing seed germination of photoblastic pioneer species spatially and temporally change in temperate forests, particularly in deciduous hardwood forests. Furthermore, these signals, PPFD, R:FR ratio, and the amplitude of temperature fluctuations, appear to play a very important role in tree regeneration and subsequent species diversity.  相似文献   

8.
We examined needle-level light response of photosynthesis across a vertical light gradient within 45-55-m-tall western hemlock (Tsuga heterophylla (Raf.) Sarg.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees growing in a 400-500-year-old mixed species stand. We determined: (1) whether light-saturated photosynthetic rates, light compensation points, and respiration rates varied from the upper to the lower canopy, and (2) if light-saturated photosynthetic rates, light compensation points, and respiration rates varied between Douglas-fir and western hemlock. Over a 25-m gradient from the canopy top to the lower canopy, mean light-saturated photosynthetic rates, light compensation points, and respiration rates declined in overstory Douglas-fir and western hemlock needles, paralleling a 65% decline in the mean daily photosynthetic photon flux density (PPFD). At the canopy top, increasing light-saturated photosynthetic rates relative to lower canopy needles increased carbon uptake at high PPFD. In the lower canopy, reduced respiration rates relative to upper canopy needles increased carbon uptake at low PPFD by reducing the light compensation point. At all canopy positions, western hemlock had lower mean light-saturated photosynthetic rates, light compensation points and respiration rates than Douglas-fir. As a result, western hemlock had higher net photosynthetic rates at low PPFD, but lower net photosynthetic rates at high PPFD compared with Douglas-fir.  相似文献   

9.
To clarify the establishment pattern of Cryptomeria japonica seedlings, the demography of current-year seedlings was studied under various micro-environmental conditions for 2 years in a cool-temperate old-growth forest in the snowy region of Japan. In both years, more than 70% of seedlings that emerged died within a year, and differences in the survival rate of seedlings with respect to micro-environmental conditions were similar. While a number of seedlings survived at the sites on fallen logs and in mineral soil, almost no seedlings survived at the sites with either broad-leaved or coniferous litters at the end of the first growing season. The negative litter effect may kill most small seedlings of C. japonica. In addition, we found that survival rates of the seedlings were greater as the distance from the nearest adult and canopy openness increased. An analysis using Quantification Theory I showed that, of the possible micro-environmental factors, substrate conditions had the strongest effect on the survival of seedlings. The analysis also indicated that distance from the nearest adult and canopy openness also affected seedling survival significantly and to almost the same extent, although the effects were weaker than those for the substrate condition. Given the limited establishment sites for C. japonica seedlings, layering is suggested to be the main mode of regeneration in this forest.  相似文献   

10.
The aim of this study is to investigate the effects of forest conversion on forest floor vegetation. ‘Ecological’ forest conversion, as defined by an interdisciplinary southern Black Forest project group, describes the transformation of even-aged spruce (Picea abies L. H. Karst.) stands to structured continuous cover forests consisting of spruce (Picea abies), silver fir (Abies alba Mill.) and beech (Fagus sylvatica L.). In order to analyse the conversion process, four conversion stages were defined in a conceptual forest development model. Four forest districts deemed to be representative of the southern Black Forest region were selected for the study. The ground vegetation was initially classified independently from the stand structures. Subsequently, the relationship between stand structures, as determined by development stage, and ground vegetation was analysed. It was revealed that forest conversion modified the ground vegetation. The main factors influencing ground vegetation were the influence of broadleaves, predominately beech (F. sylvatica), on the canopy composition and litter coverage on the one hand; and the canopy coverage of spruce, the proportion of needle litter and the associated light penetration on the other. The prevalence of moss and vascular plant species preferring acidic sites found in spruce forests decreased during the transition process, whereas, species requiring a moderate base supply increased in abundance. The continuous cover forest representing the final stage of conversion increasingly contained a mixture of ground vegetation species normally associated exclusively with either conifer or deciduous forest. Due to the fact that there is an associated ground vegetation specific to the different stages of forest conversion in stands dominated by Norway spruce or European beech and a mixture in the latest conversion stages, large-scale forest conversion should be avoided in favour of management promoting a diversity of silvicultural goals and treatments in neighbouring stands. Only a variety of treatments ensures the maintenance of floristic diversity in the long-term.  相似文献   

11.
Stream macroinvertebrate assemblages are expected to be affected by the abundance and constitution of litter from surrounding forests. We compared forest floor cover, overland flow, stream environment, and stream macroinvertebrate assemblages between the catchments of a Japanese cedar plantation (CP) and a primary deciduous forest (DF). Both systems experience excessive deer browsing. Understory vegetation cover was higher in the DF than in the CP in summer, although cover was low (<20 %), possibly because of excessive deer browsing. Litter cover was much higher in the CP than in the DF in summer as a result of the long abscission period, slow breakdown, and low rate of dispersal of Japanese cedar litter compared to deciduous litter. Monthly overland flow was always lower in the CP than in the DF, and substrate size was smaller in the DF stream. In the CP, cedar litter accumulated in the stream, probably because of its low breakdown rate and morphology, and abundant shredder taxa characterized the macroinvertebrate assemblage. In contrast, abundant burrower taxa characterized the macroinvertebrate assemblage in the DF stream. These results imply that Japanese cedar litter functions in structuring the macroinvertebrate assemblage by supplying persistent food resources for detritivores, and by buffering fine sedimentation via overland flow under excessive deer browsing.  相似文献   

12.
The effects of clear-cutting on the decomposition rate of leaf litter and on nitrogen (N) and lignin dynamics were investigated in a temperate secondary forest. Decomposition processes were examined over an 18-month period by the litterbag method and compared between a clear-cut site and an adjacent uncut control site using leaf litter from five dominant tree species (Clethra barvinervis, Quercus serrata, Camellia japonica, Ilex pedunculosa and Pinus densiflora). The decomposition rate for litter from C. barvinervis, Q. serrata and I. pedunculosa was significantly greater in the clear-cut plot than in the control plot, and there was no significant difference between plots for C. japonica and P. densiflora. Water content of litter was consistently lower in the clear-cut plot than in the control plot. Nitrogen mass increased after 6 months in the control plot, whereas no net increase of N was observed in the clear-cut plot. Nitrogen concentration increased with respect to accumulated mass loss of litter and was consistently lower in the clear-cut plot for all five species. The mass of lignin remaining in decomposing litter was generally lower in the clear-cut plot, but lignin concentration in decomposing litter was not significantly different between the clear-cut and control plots.  相似文献   

13.
The hydrological characteristics of litter in four different forest succession stages, i.e., a Pinus massoniana forest, a mixed conifer and broad-leaved forest with conifer being the dominant species, a mixed conifer and broad-leaved forest with deciduous trees as dominant species, and an evergreen broad-leaved forest, have been studied by means of substituting space for time. The results show that while a community is developing to a zonal climax, the amount of litter becomes larger and its decomposition intensity becomes stronger; there is a positive relation between its water-holding capacity and velocity and its community maturity for the half-decomposed litter layer. __________ Translated from Journal of Central South University of Forestry and Technology, 2007, 27(6): 38–43 [译自: 中南林业科技大学学报]  相似文献   

14.
Investigations were made in korean pine, mongolian scots pine and dahurian larch plantations in Laoshan Plantation Experiment Station of Maoershan Experiment Forest Farm of Northeast Forestry University. Data are tabulated on the amount and seasonal and annual fluctuations of fractional composition of the litter (conifer needles, branches, cones, bark scales, broad leaves) in the three plantations. The accounts of conifer needle branch and bark scale litter are as follows: korean pine: 71.16%, 6.23% and 7.32%; mongolian scots pine: 43.65%, 18.52 % and 32.12%; dahurian larch: 90.30%, 7.83% and 1.85%. There are certain broadleaf litter in dahurian larch and mongolian scots pine plantations (account for 7.61% and 8.92% respectively). The litter wither and fall concent ratively in autumn in dahurian larch plantation and scattered all year long in korean pine and mongolian scots pine plantations. Along with the increase of stand age, the absolute amount of litter tend to increase, the relative amount of main fractional compositions (conifer needle, branch and bark scale) in korean pine and mongolian Scots pine plantations maintain stead, whereas in dahurian larch plantation, the relative amount of conifer needle is decreased gradually and the relative amount of other fractional compositions are increased gradually.  相似文献   

15.
Abstract

There is a growing interest in the effects of deciduous trees on biodiversity, soil processes and long-term productivity in boreal, conifer-dominated forests. This study investigated whether individual birch trees allowed to grow to maturity in the coniferous forest can have a local effect on floristic richness and regeneration of tree saplings. The ground vegetation was compared in 2?m radius plots around the stem under the canopies of matched conifer–deciduous trees in a mature, conifer-dominated forest, and included in the analysis variables that could potentially mediate the tree effect (soil pH, cover of lichens, bryophytes, leaf and needle litter). The field layer vegetation was more species rich under birch (Betula pendula and B. pubescens) than under conifers (Picea abies and Pinus sylvestris), and several vascular plant species (including saplings of tree species) occurred more often under birch than under conifers. However, when the effect of the number of subordinate trees was taken into account the difference between birch and pine was not significant. The number of tree regenerations (saplings) was lowest under pines, but did not differ between spruce and birch. There were no effects of the canopy species on soil pH or on cover of lichens and bryophytes. The difference in diversity may be caused by the different effects of leaf and needle litter, and it is also likely that canopy structure has an influence via interception and throughfall and by affecting the light and microclimate.  相似文献   

16.
Seed viability of selected tree,shrub, and vine species stored in the field   总被引:3,自引:0,他引:3  
Seeds from 10 species were collected, sealed in fiberglass screen pouches, and stored under hardware-cloth cages on both a forest and cleared site for up to five years. At each site, half of the pouches were placed under leaf litter and the other half were planted in mineral soil. Liquidambar styraciflua and Callicarpa americana seeds had high germination rates under all conditions. Quercus falcata, Sassafras albidum, Rhus copallina, and Vaccinium arboreum required planting in mineral soil to ensure germination. Planted Myrica cerifera and Vitis aestivalis seeds germinated well on both sites. Myrica cerifera also germinated well if placed under litter on the forest floor and Vitis aestivalis if placed under litter on the cleared site. Germination of Crataegus uniflora seeds was erratic. Most Lonicera japonica were unsound when collected. Germination rates generally decreased over time, but some Sassafras albidum, Myrica cerifera, and Vaccinium arboreum seed germinated after four years, and Rhus coppalina, Callicarpa americana, Crataegus uniflora, and Vitis aestivalis seeds germinated after five years in the field.  相似文献   

17.
We compared the efficiency of washing versus the Tullgren method for extracting microarthropods from dead leaves and branches in the canopy of Cryptomeria japonica trees. Oribatida and Collembola were consistently the numerically dominant taxa of microarthropods, but the relative abundance differed between the two extraction methods. Oribatida accounted for more than 70% of all the microarthropods collected by the washing method but less than 30% by the Tullgren method. Collembola accounted for less than 10% collected by the washing method but about 60% by the Tullgren method. The density of Oribatida was higher when collected by the washing method than by the Tullgren method, and vice versa for the density of Collembola. Our results suggest that the washing method is appropriate for collecting Oribatida and other microarthropods, whereas the Tullgren method is better for collecting Collembola from the canopy litter of C. japonica trees.  相似文献   

18.
In mixed angiosperm–conifer forests worldwide, infrequent landscape-level catastrophic disturbances create a mosaic of persistent and different aged forest stands in the landscape with varying levels of dominance by the conifer component. In the ‘temporal stand replacement model’ (TSRM), disturbance creates conditions favouring a colonising cohort that is replaced by a suite of relatively shade-tolerant canopy species, which establish following the synchronous senescence of the pioneer canopy. In most southern hemisphere mixed angiosperm–conifer forests, with the exception of those in southern Africa, the establishing cohort is usually a large and very long-lived (550–650 years) conifer that is gradually replaced by angiosperms. As an explanation of the apparent dominance of the conifer Podocarpus latifolius, we examine the efficacy of the TSRM in mixed Afrotemperate forests where the establishing cohort is not a conifer. Forest succession in Afrotemperate forests was deterministic with the successive replacement of species determined first by their establishment success in shaded environments, and second, by their relative longevity. Several angiosperm species that were common canopy dominants established a pioneer cohort but were gradually replaced by P. latifolius, a shade-tolerant species. Continuous regeneration beneath the angiosperm canopy by P. latifolius eliminates synchronous canopy senescence, a key feature of the TSRM, as a mechanism driving the temporal replacement of canopy species. Senescing angiosperms created canopy gaps that were colonised by grasses and ferns, which suppressed canopy tree regeneration. In contrast, with continuous regeneration beneath the shaded canopy, P. latifolius gains a critical advantage over angiosperms at gap formation. Thus, in the absence of fairly large-scale natural disturbances, conifers come to dominate Afrotemperate forests. Commensurate with the latter, conifers in Podocarpus-forest were dated to approximately 320 years, more than 100 years older than the oldest P. latifolius in angiosperm-dominated forest. Tree life-history differences (shade tolerance, longevity) and the time since disturbance drive successional change from an angiosperm-dominated system to a stage dominated by P. latifolius. In general, the TSRM is a plausible explanation for the observed canopy tree structure and dynamics in mixed Afrotemperate forests. South African Afrotemperate forest is unusual among other southern hemisphere mixed angiosperm–conifer forests in that a suite of angiosperm canopy species, rather than a single conifer species, forms the colonising cohort.  相似文献   

19.
Species-rich old-growth forests dominated by Quercus wereextensive in the highlands of Chiapas until a few decades ago. Current land-use is resulting in replacement of Quercus by Pinusspp. in the canopy of the remaining forest fragments, which areless diverse, drier, and more exposed to freezing temperatures.Forest floor and soil are also modified and may limit theregeneration of many woody species. We studied the influence oflitter type (pine needles vs. oak leaves), litter depth (0, 3, 6and 14 cm), and litter cover (3 cm vs. 0 cm of loose litter ontop of sowed acorns) on the emergence and growth of seedlings ofQuercus rugosa, a dominant tree in pine-oak forests. Seedlingemergence and establishment were affected by the interaction ofexperimental factors. Uncovered acorns on pine litter were moreexposed to desiccation; this effect was more evident with deeperlitter. Acorns sowed on oak litter were not affected by levels oflitter cover and litter depth. The results can be of use indefining further field studies, and practices of direct seedingfor restoration of pine-dominated stands.  相似文献   

20.

Foliar responses of subalpine fir [Abies lasiocarpa (Hook.) Nutt.] to thinning were studied in a 35-yr-old mixed stand of paper birch (Betula papyrifera Marsh.) and conifers. The stand regenerated naturally after a wildfire with a canopy dominated by paper birch (average height 9.8 m) and an understorey dominated by subalpine fir (average height 1.6 m). The stand was thinned to four densities of birch: 0, 600 and 1200 stems ha-1 and control (unthinned at 2300-6400 stems ha-1) in the autumn of 1995. The understorey conifers, mainly subalpine fir, were thinned to 1200 stems ha-1. The study used a completely randomized split-plot design. Three sample trees were systematically selected from each treatment replicate and each tree stratum (upper, intermediate and lower understorey). One-year-old and older age class needles were collected from one south-facing branch within the fifth whorl from the tree top. Thinning of paper birch significantly (p <0.001) increased leaf area and dry weight per 100 needles for intermediate and short trees except in the 0 birch treatment. Understorey subalpine fir trees in 600 stems ha1 birch (T3) had the largest leaf area and leaf dry weight per 100 1-yr-old needles. Specific leaf area (SLA) decreased from unthinned (T1) to 0 birch (T4). Lower understorey trees had the largest SLA. One-year-old needles had significantly higher N, P and K concentrations in all the thinning treatments. These responses are consistent with the shade tolerance of subalpine fir. The results suggest that when managing a paper birch-conifers mixed-wood forest it may be of benefit to understorey conifers to leave a birch canopy as a nursing crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号