首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The ability of Litopenaeus vannamei (initial mean weight: 0.96 ± 0.02 g) to utilize different levels of cornstarch was examined in terms of growth indices, body composition, digestibility and microscopic structure of the hepatopancreas. Six isonitrogenous semipurified diets were fed to satiation to shrimp for 8 weeks in triplicate tanks (30 shrimps per tank) connected to a natural brackish water (6–8 g L?1) recirculating system. Diets contained different levels of cornstarch (100, 150, 200, 250, 300 and 350 g kg?1) as the source of carbohydrate and were balanced using cellulose. Weight gain (WG), survival rate and feed conversion rate (FCR) were considerably affected by cornstarch levels of diets. The highest WG (453.6 g kg?1) and best FCR was observed in shrimp fed the 150 g kg?1 (cornstarch level) diet and was significantly (P < 0.05) higher than those fed diets containing 250–350 g kg?1 cornstarch. However, the survival rate reached maximum in shrimp fed the 100 g kg?1 diet (96.7), some 30% higher than the lowest rate, which was found in shrimp fed the 250 g kg?1 diet. Body lipid tended to be higher in shrimp fed diets with higher cornstarch levels. The apparent digestibility of dry matter and crude fat increased with increasing levels of cornstarch and, hence, decreasing levels of cellulose. In addition, histological study on shrimp fed 10–350 g kg?1 diets exhibited histological changes. The overall conclusion was that the optimum cornstarch level may be set at 100–200 g kg?1 when the diets contain 380 g kg?1 protein.  相似文献   

2.
A 6‐week feeding trial was carried out in glass tanks to determine the effects of partial replacement of fish meal (FM) with a combination of meat and bone meal (MBM), poultry by‐product meal (PBM), blood meal (BM) and corn gluten meal (CGM) in practical diets on the growth, nutrient digestibility and body composition of Pacific white shrimp. Six practical diets were formulated, containing two levels of crude protein (CP) (330 and 380 g kg?1) and similar crude lipid (CL) levels. For the 330 g kg?1 dietary protein level, 0, 357 and 714 g kg?1 FM were replaced by the mixture in Diets 1–3, respectively; while 0, 514 and 784 g kg?1 FM were replaced in Diets 4–6, respectively, for 380 g kg?1 dietary protein level. White shrimp‐fed diets containing 330 g kg?1 CP had significantly lower weight gain compared with white shrimp fed diets containing 380 g kg?1 CP. Increasing the mixture and dietary protein level significantly raised the body ash content of white shrimp. White shrimp fed a low‐protein diet obtained better nutrient digestibility compared with those fed a high‐protein diet.  相似文献   

3.
An experiment to determine the optimal protein requirement of grouper Epinephelus coioides juveniles was conducted in floating net cages (1.5 m × 1 m × 1.5 m). Six isoenergetic fishmeal–casein‐based experimental diets containing 350–600 g kg?1 crude protein (CP) were fed to triplicate groups of 20 fish (10.7 ± 0.2 g) for 56 days. Weight gain (WG) and specific growth rate (SGR) increased with increasing dietary protein level from 350 to 450 g kg?1 and then plateaued above these levels. Feed intake (FI) showed no significant difference among fish fed more than 350 g kg?1 CP. Lowest feed conversion ratio (FCR) was found for fish fed 500 g kg?1 CP but this was not significantly different from that of fish fed the 450 and 600 g kg?1 CP. Lowest protein efficiency ratio (PER) was found for fish fed 550 and 600 g kg?1 CP. Fish fed the 600 g kg?1 CP had the highest body protein and moisture contents but the lowest body lipid content. Body ash content was unaffected by protein level for fish fed >400 g kg?1 CP. Dietary protein level had no significant effect on hepatosomatic index (HSI). Fish fed the 350 g kg?1 CP had significantly lower condition factor (CF) and viscerosomatic index (VSI). Based on broken‐line regression analysis of SGR the optimal dietary protein requirement for E. coioides juveniles was determined to be close to 480 g kg?1.  相似文献   

4.
The comparative effect of reducing the protein content of formulated feed on the growth and survival of black tiger shrimp, Penaeus monodon, and on water quality was tested in outdoor tanks. Three diets, 300, 350 and 400 g kg?1 crude protein (CP), were fed to P. monodon (3.1 g animals, 25 animals per m2) in each of eight replicated outdoor 2500 L tanks in an 8‐week trial. There was no statistical difference (P > 0.05) in shrimp growth rate (1.34–1.50 g week?1), survival, or final biomass between the treatments. However, when tanks with lower survival were removed from the analysis (<60 and <80% were tested), shrimp growth rate was statistically higher (P < 0.05) in the 350 and 400 g kg?1 CP diets than in the 300 g kg?1 CP diet treatment. There were no differences in the nutritional condition of shrimp between treatments, as determined by moisture and protein content, and lipid content of the digestive gland. Using 15N‐nitrogen isotope tracers, it was determined that shrimp were consuming natural biota, although these were unlikely to have contributed substantially to their nutrition. Total nitrogen (TN) concentrations in the water column increased over the eight week experiment and were statistically different (P < 0.001) between treatments (3.60, 5.17 and 6.45 mg L?1 in the 300, 350 and 400 g kg?1 CP treatments, respectively). Concentrations of dissolved organic nitrogen (DON) were also statistically different between treatments and made up 35–40% of the TN in the water column. Concentrations of total ammoniacal nitrogen (TAN) and oxides of nitrogen, and fluorescence were not statistically different between treatments but there was a trend of higher concentrations in treatments with higher protein levels. There was no difference in sediment nutrients between treatments. This study has shown that there is scope to reduce the protein content of P. monodon diets but only by 5–10%. However, further validation of these results in commercial ponds is needed. Reducing the feed protein content may result in cost savings and also has the advantage of improving water quality and reducing nitrogen discharge.  相似文献   

5.
In this study, we replaced fish meal with peanut meal (PM) in isonitrogenous and isolipidic diets for Pacific white shrimp at inclusion levels of 0, 70, 140, 210, 280 and 350 g kg?1. The diets were hand‐fed to three independent groups of shrimp three times a day over a 6‐week period. Shrimp fed PM diets at a level of 280 g kg?1 or higher had lower per cent weight gain compared with those fed the basal diet, whereas shrimp fed PM diets at 140 g kg?1 or higher had a lower feed utilization and protein efficiency ratio compared with shrimp fed the basal diet. The feeding rate in shrimp fed PM diets at 350 g kg?1 and the survival and protease activity in shrimp fed PM diets at 210 g kg?1 or higher were lower than that in shrimp fed the basal diet. Diets containing 280 g kg?1 or higher of PM caused an increase in the whole‐body moisture content of the shrimp, but decreased whole‐body protein and ash contents compared with the basal diet. Nutrient digestibility was lower or tended to be lower in shrimp fed a PM diet compared with those fed the basal diet. The activities of peroxidase and acid and alkaline phosphatases in plasma decreased with increasing levels of PM inclusion up to 210 g kg?1. Superoxide dismutase activity decreased at dietary PM levels of 280 g kg?1 or higher. Aflatoxin B1 residue in the muscle was not affected by any of the treatments and remained low. The data suggest that up to 140 g kg?1 of PM could be included in practical diets for Pacific white shrimp.  相似文献   

6.
The objective of the present work was to determine the optimum dietary protein level for juvenile mullets. Five isocaloric diets were formulated to contain increasing levels (300, 350, 400, 450 and 500 g kg?1) of crude protein (CP) corresponding to 18.7 MJ metabolizable energy kg?1. All diets were tested in triplicate. Each experimental unit was composed of a 50 L tank with 50 juveniles (mean ± SE initial weight and length equal to 1.17 ± 0.02 g and 4.34 ± 0.03 cm respectively). Diets were offered five times a day until apparent satiation for 35 days. No significant difference (P>0.05) was observed in survival rate, feed efficiency and body composition between treatments. However, weight gain, feed consumption and specific growth rate were higher in fish fed the 350 g kg?1 CP level than those fed the highest protein content diet (500 g kg?1 CP). The amount of postprandial ammonia excreted by mullet was linearly related to protein intake. Intestinal tryptic activity was inversely proportional to the percentage of dietary CP. It is likely that diets containing <350 g kg?1 CP will be needed for on‐growing mullet, especially when reared in ponds with abundant natural food.  相似文献   

7.
Critical to the development of a cost‐effective feed for the tropical spiny lobster Panulirus ornatus is knowledge of its response to the protein and lipid (or energy) content of the feed. An experiment of 12 weeks duration was carried out to examine growth responses of juvenile lobsters to pelleted diets that provided six crude protein (CP) levels [320–600 g kg?1 dry matter (DM)] and two lipid levels (nominally 60 and 100 g kg?1 DM). Lobsters (mean initial weight of 1.8 g) were held in groups of nine or 10 animals in 24 × 350 L tanks, fed twice daily at a restricted level, and maintained at 28 °C. Maximal growth responses occurred at dietary CP contents of 474 g kg?1 for the 60 g kg?1 lipid series and 533 g kg?1 for the 100 g kg?1 lipid series. A second experiment, of 4 weeks duration, compared two dietary treatments: a mixture of two of the best diets from the first experiment, and a commercial shrimp (Penaeus japonicus) feed. Lobsters were held under the same experimental conditions as in the first experiment, but were fed to excess twice daily. Their growth was significantly greater (P < 0.05) on the shrimp feed (0.68 g week?1) than on the laboratory‐pelleted diets used in the main study (0.32 g week?1). The results indicate that the optimal dietary protein and lipid content of the diet for P. ornatus is about 530 and 100 g kg?1, respectively.  相似文献   

8.
A 8‐week feeding experiment was conducted to evaluate the effect of different dietary protein and lipid levels on growth and energy productive value of juvenile Litopenaeus vannamei, at 30 and 2 ppt, respectively. Nine practical diets were formulated to contain three protein levels (380, 410 and 440 g kg?1) and three lipid levels (60, 80 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The effects of salinity and an interaction between dietary protein level and lipid level on growth and energy productive value of shrimp were observed under the experimental conditions of this study. At 30 ppt seawater, shrimp fed with 440 g kg?1protein diets had significantly higher weight gain (WG) than those fed with 380 g kg?1 protein diets at the same dietary lipid level, and the 60 g kg?1 lipid group showed higher growth than 80 g kg?1and 100 g kg?1 lipid groups at the same dietary protein level. At 2 ppt seawater, the growth of shrimp was little affected by dietary protein treatments when shrimp fed the 80 and 100 g kg?1 lipid, shrimp fed the 80 g kg?1 lipid diets had only slightly higher growth than that fed 60and 100 g kg?1 lipid diets when fed 380 and 410 g kg?1 dietary protein diets. A significant effect of salinity on growth of shrimp was detected with the growth responses at 30 ppt > 2ppt (P < 0.05). Final body lipid content, body protein content and energy productive value of shrimp was significantly higher in animals exposed to 30 ppt than in shrimp held at 2 ppt.  相似文献   

9.
A feeding trial was conducted to evaluate the efficacy of replacing fish meal (FM) with blood meal (BM), poultry by‐product meal (PBM), meat and bone meal (MBM) and shrimp head meal (SHM), rapeseed meal (RM) and peanut meal (PM) on a digestible basis of crude protein and lysine and methionine in five practical diets for the Pacific white shrimp at the FM levels of 300, 250, 200, 150 and 100 g kg?1 under laboratory conditions. Each of the five experimental diets was hand‐fed to four replicate tanks of shrimp with an average weight of 0.33 ± 0.03 g to satiation at each meal. The shrimp were fed three times a day over a six‐week period. The per cent weight gain of initial body weight (WG%) was significantly lower in shrimp fed 100 g kg?1 FM diet, but the value for hepatosomatic index (HSI) and the level of blood urea nitrogen (BUN) tended to be higher in shrimp fed 100 g kg?1 FM diet than those in shrimp fed other diets. The lowest value for feeding rate (FR) occurred for shrimp fed the basal diet and was significantly lower than that in shrimp fed the FM diets at 100–150 g kg?1. Shrimp fed diets containing 200 g kg?1 or lower FM had significantly lower feed utilization than those fed the 250 g kg?1 FM diet and the basal diet. The protein efficiency ratio (PER) in the shrimp fed the basal diet was significantly higher than in the other FM diets. Decreasing the FM replacement level significantly reduced nutrient digestibility except in the cases of ash and gross energy, but it did not affect the survival, condition factor (CF), body composition, digestive enzyme activity or plasma transaminase activity. The results of the study indicate that feeding a diet formulated on a digestible basis and involving FM replacement with other protein sources at a greater replacement proportion will not produce a level of shrimp growth equal to that achieved by feeding the basal diet.  相似文献   

10.
A growth trial was conducted to determine the effects of inclusion of whole shrimp floc or floc fractions to a control diet on growth and survival of shrimp (Litopenaeus vannamei). The floc sample was collected from marine shrimp culture tanks and partially fractionated by extraction with water, acetone and hexane. A series of diets was manufactured by inclusion of whole floc (intact or ground), each of the fractions or their combination to a control diet. These diets were fed to shrimp (approximately 1.0 g) in an indoor laboratory under flow‐through conditions for 8 weeks. It was found that addition of whole floc (200 g kg?1) or floc fractions (24–200 g kg?1) to the control diet improved (P < 0.05) shrimp growth rate without affecting (P > 0.05) shrimp survival (>81.3%). Although inclusion of whole floc reduced the crude protein and crude fat contents and gross energy of the control diet, shrimp fed the whole floc‐supplemented diets obtained the highest (P < 0.05) growth rates (1.01 and 1.03 g week?1) among the shrimp fed the 11 tested diets including two control (0.81 and 0.85 g week?1), two commercial (0.45 and 0.71 g week?1) and five floc‐fraction‐added (0.91–1.00 g week?1) diets. Many bioactive compounds in the floc that possibly affected shrimp growth were also analysed and quantified.  相似文献   

11.
Four practical diets containing 2% of crude protein (CP) (180 and 280 g kg?1), with or without menhaden fish meal (FM), were fed to Australian red claw Cherax quadricarinatus during a 97‐day feeding trial. Growth, survival, body composition and processing traits of pond‐cultured red claw were determined. Juvenile red claw (mean individual weight of 5.75 ± 3.3 g) were randomly stocked into twelve 0.04‐ha ponds at a rate of 1000 per pond (25 000 ha?1), and each diet was fed to three ponds. At harvest, the final mean weight of red claw fed Diet 4 (0 g kg?1 FM and 280 g kg?1 CP) and Diet 3 (113 g kg?1 FM and 280 g kg?1 CP) was significantly (P < 0.05) higher (62.4 and 58.5 g, respectively) than red claw fed Diet 1 (73 g kg?1 FM and 180 g kg?1 CP; 51.7 g) and Diet 2 (0 g kg?1 FM and 180 g kg?1 CP; 53.0 g). Red claw fed diets containing 280 g kg?1 CP, with or without FM, had significantly higher percent weight gain (894 and 959%, respectively) compared to red claw fed 180 g kg?1 CP, with or without FM (778 and 799%, respectively). Feed conversion ratio, percent survival, and total yield among treatments, which averaged 3.55, 65.2%, and 724 kg ha?1 overall, were not significantly different. Results from this study indicate that pond‐cultured red claw stocked at 25 000 ha?1 can be fed a practical diet containing 280 g kg?1 CP with 0 g kg?1 FM if a combination of plant‐protein ingredients (soybean meal, distillers’ dried grains with solubles, and milo) is added; however, if the percentage of dietary protein level is 180 g kg?1, growth is reduced even if FM is added at 73 g kg?1 of the diet. Use of diets containing plant‐protein sources may help reduce diet costs to producers and thereby, increase profits.  相似文献   

12.
A 15‐week growth trial was conducted with juvenile, Pacific white shrimp Litopenaeus vannamei to study the efficacy of using algal meals as a source of highly unsaturated fatty acids in practical diets that are designed to contain no marine protein or oil sources. Based on previous study, a practical diet was designed containing co‐extruded soybean poultry by‐product meal with egg supplement and soybean meal as the primary protein sources for formulations containing 350 g kg?1 crude protein and 100 g kg?1 lipid. To further refine the diets, the fish oil in two of the diets was completely substituted with plant oils and oil originating from microbial fermentation products rich in docosahexanoic acid (DHA) and arachidonic acid (ArA). A commercial shrimp feed was also included in the trial for comparison. The mean values for shrimp final weight (17.8 g), yield (537.7 g m?2 or 703.2 g m?3), survival (98.5%) and feed conversion ratio (1.4 : 1) showed no statistically significant differences between diets. The results suggest that co‐extruded soybean poultry by‐product meal and oil from heterotrophic microalgal fermentation sources can be potential candidates for fish meal and marine oil replacement in shrimp diets.  相似文献   

13.
Two trials were conducted to evaluate the growth, survival and hepatopancreas histology of the Argentine red shrimp Pleoticus muelleri (Bate, 1888) fed different levels of vitamin E and butylated hydroxytoluene (BHT) in a semipurified diet. The diets contained 0, 100, 600 or 1500 mg vitamin E kg?1 and 16 mg BHT kg?1 diet (trial 1) and 0, 1250, 1500, 1750 or 2000 mg vitamin E kg?1 diet, squid mantle and vitamin‐free diet as a control (trial 2). After 30 days (trial 1), survival ranged between 43% and 64%, and the percentage weight gain of the shrimp varied from 22% to 31% with no significant differences among treatments (P<0.05). After 40 days (trial 2), survival of shrimp fed the diet with no vitamin E and squid mantle was significantly lower (62%) than the other treatment (86–90%). Shrimp fed diets containing vitamin E from 1250 to 1750 mg kg?1 exhibited increased weight gain (34–65%); however, a significant difference was observed for shrimp fed the diet containing 2000 mg kg?1. Histological results yielded differences among treatments. In shrimp fed 1750 mg kg?1 of vitamin E, the functional morphology of the organ was normal, with abundant secretion in the tubules. Signs of malnourishment such as cellular and nuclear retraction, desquamation of cells and hipertrofia, were evident in the hepatopancreas of shrimp fed the other diets. The results indicate that optimal vitamin E requirement for P. muelleri under the present experimental conditions appears to be approximately 1750 mg vitamin E kg?1 diet.  相似文献   

14.
The effect of chitosan, a polymer of glucosamine obtained by the deacetylation of chitin, on growth, survival and stress tolerance was studied in postlarval Litopenaeus vannamei. An experiment was performed with postlarval shrimp (mean initial wet weight 1.2 mg) fed five isoenergic and isonitrogenous diets containing five supplemented levels of chitosan (0, 0.5, 1, 2 and 4 g kg?1 diet, respectively). The five compound diets (C0, C0.5, C1, C2 and C4) sustained shrimp growth throughout the experiment. Growth performance (final body weights; weight gain; SGR: specific growth rate) in shrimp fed diet C2 was significantly higher than that in shrimp fed diets C0, C0.5 and C1 (P < 0.05), diet C4 treatment provided intermediate growth result. The survival in shrimp fed diet C1 was significantly higher than that in shrimp fed C0 diet (P < 0.05), other diets treatments gave the intermediate survival results. No significant differences were found in growth and survival between diet C2 and C4 treatments. After 9 days of a stress tolerance test, survival in shrimp fed diets C1, C2 and C4 was significantly higher than that in shrimp fed diets C0 and C0.5. We concluded from this experiment that the incorporation of a moderate dietary chitosan was beneficial to the development of postlarval L. vannamei. Considering the effect of chitosan on both growth and survival of postlarval L. vannamei, second‐degree polynomial regression of SGR and survival indicated optimum supplement of dietary chitosan at 2.67 and 2.13 g kg?1, respectively, so the level of chitosan supplemented in the diet should be between 2.13 and 2.67 g kg?1.  相似文献   

15.
A net pen experiment was carried out to examine the effect of dietary protein level on the potential of land animal protein ingredients as fish meal substitutes in practical diets for cuneate drum Nibea miichthioides. Two isocaloric basal (control) diets were formulated to contain 400 g kg?1 herring meal but two different digestible protein (DP) levels (400 versus 350 g kg?1). At each DP level, dietary fish meal level was reduced from 400 to 280, 200, 80 and 0 g kg?1 by incorporating a blend that comprised of 600 g kg?1 poultry by‐products meal (PBM), 200 g kg?1 meat and bone meal (MBM), 100 g kg?1 feather meal (FEM) and 100 g kg?1 blood meal (BLM). Cuneate drum fingerling (initial weight 42 g fish?1) were fed the test diets for 8 weeks. Fish fed the test diets exhibited similar feed intake. Final body weight, feed conversion ratio and nitrogen retention efficiency was not significantly different between fish fed the basal diets containing 350 and 400 g kg?1 DP. Weight gain decreased linearly with the reduction of dietary fish meal level at the 350 g kg?1 DP level, but did not decrease with the reduction of dietary fish meal level at the 400 g kg?1 DP level. Results of the present study suggest that fish meal in cuneate drum diets can be completely replaced with the blend of PBM, MBM, FEM and BLM at the 400 g kg?1 DP level, based on a mechanism that excessive dietary protein compensate lower contents of bio‐available essential amino acid in the land animal protein ingredients relative to fish meal.  相似文献   

16.
This study investigates the effect of digestible protein levels in experimental diets for meagre (Argyrosomus regius). A group of 253 fish, 52 g of mean weight, was distributed in 12 tanks, three replicates per treatment. Four isolipidic diets (170 g kg?1 crude lipid) with different digestible protein levels (350 g kg?1, 430 g kg?1, 490 g kg?1 and 530 g kg?1) were formulated using commercial ingredients. The trial lasted 62 days. Meagre fed diets 430, 490 and 530 g kg?1 obtained higher TGC (2.47, 2.57, 2.69 × 10?3, respectively) than fish fed diet 350 g kg?1 (2.14 × 10?3). Group of fish fed diet with 350 g kg?1 DP showed the lowest ammonia excretion level. According to the in vitro digestibility trial diets with 350 and 430 g kg?1 DP released less amino acids in comparison with diet with 49% DP, although in vivo digestibility test did not show significant differences among diets 430, 490 and 530 g kg?1 DP. Using the quadratic regression, optimal digestible protein intake according to the ECR for rearing juvenile meagre was recorded in 0.8 g DP/100 g fish and day.  相似文献   

17.
Juvenile barramundi (~220–280 g start weight) were fed extruded dry‐pelleted diets containing varying amounts of fish meal and meat meal in three experiments (E). E1 and E2 were each 66‐day farm studies utilizing 16 floating cages (400 fish per cage) in an aerated freshwater pond. E3 examined the same diets as fed in E2 but under controlled water temperature (28 ± 0.7 °C) and photoperiod (12:12) laboratory conditions in a 42‐day study involving 24 aquaria (eight fish per aquarium). In all studies, the same 430 g kg?1 crude protein (CP), 15 kJ g?1 digestible energy (DE) control (Ctl) diet (containing 35% Chilean anchovy fish meal) was compared with two high‐inclusion meat meal diets and a proprietary diet. The meat meal diets evaluated in E1 were a high‐ash (260 g kg?1) meat meal that contained 520 g kg?1 CP and a low‐ash (140 g kg?1) meat meal that contained 600 g kg?1 CP when included at either 450 or 400 g kg?1, respectively, in combination with 100 g kg?1 Chilean fish meal in diets that were isonitrogenous and isoenergetic with the Ctl diet. Growth rates and feed conversions were similar (P > 0.05) for all diets. In E2 and E3, the 520 g kg?1 CP meat meal was included at 500 g kg?1 without any marine protein source in diets formulated to provide either 15 or 16.2 kJ g?1 DE and the same CP/DE ratio (29 mg kJ?1) as the Ctl diet. Fish performance ranking of diets was similar in both experiments, with the 16.2 kJ g?1 DE diet supporting better (P < 0.05) growth rates than the Ctl diet and feed conversion ratios equivalent to the Ctl diet but better (P < 0.05) than all other diets.  相似文献   

18.
This study was undertaken to determine the replacement value of Cassia fistula seed meal (CFM) for soybean meal (SBM) in practical diets of Oreochromis niloticus fingerlings. Five practical diets (350 g kg?1 crude protein) containing 0 g kg?1 (control), 170 g kg?1 (diet II), 340 g kg?1 (diet III), 509 g kg?1 (diet IV) and 670 g kg?1 (diet V) substitution levels of CFM for SBM were formulated and fed to triplicate groups of O. niloticus fingerlings (mean initial weight of 10.22 ± 0.03 g) for 70 days. Fish mortality increased linearly with increase in inclusion levels of CFM in the diet. Growth and diet utilization efficiency were depressed in fish fed diets containing CFM at varying inclusion levels. Feed conversion ratio, specific growth rate and protein efficiency ratio of O. niloticus fed on diet containing 170 g kg?1 substitution level of CFM were similar (P > 0.05) to the control diet. Digestibility of the different diets decreased with increase in inclusion levels of CFM. Fish fed diet containing 670 g kg?1 CFM had significantly lower carcass protein. However, no significant differences were observed in carcass protein and lipid contents between fish fed the control diets and diet containing 170 g kg?1 CFM. The most efficient diet in terms of cost per unit weight gain of fish was obtained in 170 g kg?1 CFM dietary substitution.  相似文献   

19.
Two experiments were conducted to examine the influence of dietary protein levels on growth and carcass proximate composition of Heterotis fingerlings. Four isoenergetic practical diets were formulated to contain dietary protein levels from 250 to 400 g kg?1 diet. Replicate groups of young Heterotis (initial live weight 3.96 and 26.40 g in experiments 1 and 2 respectively) were handfed twice daily to apparent satiation for a period of 42 and 28 days respectively. Statistical analysis revealed that growth rate was significantly affected by dietary protein level (P < 0.01). The highest weight gain was observed in fingerlings fed with 300 and 350 g protein kg?1 diet for fish size ranging between 3–15 and 26–62 g respectively. There was no significant difference between groups fed with 300, 350 and 400 g protein kg?1 diet for Heterotis fingerlings (3–15 g) in the one hand; in the other hand, significant differences were found between fish (26–62 g) fed with 350 g protein kg?1 diet and those receiving 300 and 400 g protein kg?1 diet, with no significant difference between each other. The specific growth rate varied from 2.4% to 3.1% day?1. The whole‐body protein, lipid, moisture and ash contents were not significantly affected by dietary protein levels (P > 0.05). The relationships between percentage weight gain and dietary protein levels suggested very similar dietary protein requirement (about 310 g crude protein kg?1 diet) for Heterotis ranging from 3 to 62 g. The maximum growth occurred at about 345 g protein kg?1 diet.  相似文献   

20.
A 60‐day feeding trial to determine the nutritional value of marine by‐product meals in diets for longfin yellowtail Seriola rivoliana juveniles (48.1 ± 0.6 g initial weight) was conducted. Five diets were evaluated: a reference diet (RD; 500 g kg?1 CP, 130 g kg?1 L), containing 500 g kg?1 of fish meal (FM); three experimental diets with 125 g kg?1 of shrimp head (SM), Catarina scallop viscera (CM) or Pen shell viscera (PM) meals; and one diet (SCP) containing 125 g kg?1 of each of the experimental meals, to partially replace FM. Survival was not significantly affected by any treatment. Individual weight gain per day was high for the PM (5.3 ± 0.51 g d?1) and SM (4.7 ± 0.32 g d?1) diets, being significantly higher than the RD (3.5 ± 0.23 g d?1) and the other treatments (<1.2 g d?1). Feed intake was high in PM and SM diets, and very low in SCP and CM diets. Biochemical and haematological parameters were similar among treatments RD, PM and SM, while fish fed CM and SCP exhibited lower levels of total protein, cholesterol, haematocrit and haemoglobin. The results indicate that SM or PM can be used to partially replace FM in diets for yellowtail juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号