首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Methods for detecting contemporary, fine-scale population genetic structure in continuous populations are scarce. Yet such methods are vital for ecological and conservation studies, particularly under a changing landscape.

Objectives

Here we present a novel, spatially explicit method that we call landscape relatedness (LandRel). With this method, we aim to detect contemporary, fine-scale population structure that is sensitive to spatial and temporal changes in the landscape.

Methods

We interpolate spatially determined relatedness values based on SNP genotypes across the landscape. Interpolations are calculated using the Bayesian inference approach integrated nested Laplace approximation. We empirically tested this method on a continuous population of brown bears (Ursus arctos) spanning two counties in Sweden.

Results

Two areas were identified as differentiated from the remaining population. Further analysis suggests that inbreeding has occurred in at least one of these areas.

Conclusions

LandRel enabled us to identify previously unknown fine-scale structuring in the population. These results will help direct future research efforts, conservation action and aid in the management of the Scandinavian brown bear population. LandRel thus offers an approach for detecting subtle population structure with a focus on contemporary, fine-scale analysis of continuous populations.
  相似文献   

2.

Context

Playa wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.

Objective

To develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.

Methods

We examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.

Results

We identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).

Conclusions

Our findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.
  相似文献   

3.

Context

Species-specific models of landscape capability (LC) can inform landscape conservation design. Landscape capability is “the ability of the landscape to provide the environment […] and the local resources […] needed for survival and reproduction […] in sufficient quantity, quality and accessibility to meet the life history requirements of individuals and local populations.” Landscape capability incorporates species’ life histories, ecologies, and distributions to model habitat for current and future landscapes and climates as a proactive strategy for conservation planning.

Objectives

We tested the ability of a set of LC models to explain variation in point occupancy and abundance for seven bird species representative of spruce-fir, mixed conifer-hardwood, and riparian and wooded wetland macrohabitats.

Methods

We compiled point count data sets used for biological inventory, species monitoring, and field studies across the northeastern United States to create an independent validation data set. Our validation explicitly accounted for underestimation in validation data using joint distance and time removal sampling.

Results

Blackpoll warbler (Setophaga striata), wood thrush (Hylocichla mustelina), and Louisiana (Parkesia motacilla) and northern waterthrush (P. noveboracensis) models were validated as predicting variation in abundance, although this varied from not biologically meaningful (1%) to strongly meaningful (59%). We verified all seven species models [including ovenbird (Seiurus aurocapilla), blackburnian (Setophaga fusca) and cerulean warbler (Setophaga cerulea)], as all were positively related to occupancy data.

Conclusions

LC models represent a useful tool for conservation planning owing to their predictive ability over a regional extent. As improved remote-sensed data become available, LC layers are updated, which will improve predictions.
  相似文献   

4.

Context

Animal movements are inherently linked to landscape structure. Understanding this relationship for highly-mobile species requires documenting their responses to spatiotemporal variability of resources. To that end, characterizing movement behaviors and resource distributions using the principles of habitat connectivity facilitates coordinated landscape planning efforts within highly modified landscapes.

Objectives and methods

We tracked locations and movements for 156 dunlin (Calidris alpina) and 109 long-billed dowitchers (Limnodromus scolopaceus) overwintering in two regions with distinct water distributions in California’s Central Valley. We then compared residency rates, functional connectivity to other regions, and associations between movement distances and average habitat availability and structural connectivity of habitat at multiple temporal and spatial scales.

Results

A widespread yet highly variable regional water distribution was associated with lower residency rates and substantially higher functional connectivity to nearby regions when compared to a stable regional water distribution characterized by a large, contiguous wetland complex. Longer movements were associated with decreasing average availability and spatial aggregation of surface water. Movement models suggested shorebirds primarily responded to habitat availability at smaller scales (<?10 km) and structural connectivity at larger scales (≥?10 km).

Conclusions

Differences in movement behaviors suggested that wintering shorebirds will avoid long distance movements and remain resident within a wetland region when possible. Conservation and management efforts should reliably flood individual wetlands and agricultural lands from November to April and prioritize locations that maximize structural wetland connectivity and limit spatiotemporal variability of surface water throughout the Central Valley.
  相似文献   

5.

Context

Forest insect outbreaks are influenced by ecological processes operating at multiple spatial scales, including host-insect interactions within stands and across landscapes that are modified by regional-scale variations in climate. These drivers of outbreak dynamics are not well understood for the western spruce budworm, a defoliator that is native to forests of western North America.

Objectives

Our aim was to assess how processes across multiple spatial scales drive western spruce budworm outbreak dynamics. Our objective was to assess the relative importance and influence of a set of factors covering the stand, landscape, and regional scales for explaining spatiotemporal outbreak patterns in British Columbia, Canada.

Methods

We used generalized linear mixed effect models within a multi-model interference framework to relate annual budworm infestation mapped from Landsat time series (1996–2012) to sets of stand-, landscape-, and regional-scale factors derived from forest inventory data, GIS analyses, and climate models.

Results

Outbreak patterns were explained well by our model (R 2 = 93%). The most important predictors of infestation probability were the proximity to infestations in the previous year, landscape-scale host abundance, and dry autumn conditions. While stand characteristics were overall less important predictors, we did find infestations were more likely amongst pure Douglas-fir stands with low site indices and high crown closure.

Conclusions

Our findings add to growing empirical evidence that insect outbreak dynamics are driven by multi-scaled processes. Forest management planning to mitigate the impacts of budworm outbreaks should thus consider landscape- and regional-scale factors in addition to stand-scale factors.
  相似文献   

6.

Context

Conservation planning is increasingly using “coarse filters” based on the idea of conserving “nature’s stage”. One such approach is based on ecosystems and the concept of ecological integrity, although myriad ways exist to measure ecological integrity.

Objectives

To describe our ecosystem-based index of ecological integrity (IEI) and its derivative index of ecological impact (ecoImpact), and illustrate their applications for conservation assessment and planning in the northeastern United States.

Methods

We characterized the biophysical setting of the landscape at the 30 m cell resolution using a parsimonious suite of settings variables. Based on these settings variables and mapped ecosystems, we computed a suite of anthropogenic stressor metrics reflecting intactness (i.e., freedom from anthropogenic stressors) and resiliency metrics (i.e., connectivity to similar neighboring ecological settings), quantile-rescaled them by ecosystem and geographic extent, and combined them in a weighted linear model to create IEI. We used the change in IEI over time under a land use scenario to compute ecoImpact.

Results

We illustrated the calculation of IEI and ecoImpact to compare the ecological integrity consequences of a 70-year projection of urban growth to an alternative scenario involving securing a network of conservation core areas (reserves) from future development.

Conclusions

IEI and ecoImpact offer an effective way to assess ecological integrity across the landscape and examine the potential ecological consequences of alternative land use and land cover scenarios to inform conservation decision making.
  相似文献   

7.

Context

Invasive Burmese pythons are altering the ecology of southern Florida and their distribution is expanding northward. Understanding their habitat use is an important step in understanding the pathways of the invasion.

Objectives

This study identifies key landscape variables in predicting relative habitat suitability for pythons at the present stage of invasion through presence-only ecological niche modeling using geographical sampling bias correction.

Methods

We used 2014 presence-only observations from the EDDMapS database and three landscape variables to model habitat suitability: fine-scale land cover, home range-level land cover, and distance to open freshwater or wetland. Ten geographical sampling bias correction scenarios based on road presence and sampling effort were evaluated to improve the efficacy of modeling.

Results

The best performing models treated road presence as a binary factor rather than a continuous decrease in sampling effort with distance from roads. Home range-level cover contributed the most to the final prediction, followed by proximity to water and fine-scale land cover. Estuarine habitat and freshwater wetlands were the most important variables to contribute to python habitat suitability at both the home range-level and fine-scale. Suitability was highest within 30 m of open freshwater and wetlands.

Conclusions

This study provides quantifiable, predictive relationships between habitat types and python presence at the current stage of invasion. This knowledge can elucidate future targeted studies of python habitat use and behavior and help inform management efforts. Furthermore, it illustrates how estimates of relative habitat suitability derived from MaxEnt can be improved by both multi-scale perspectives on habitat and consideration of a variety of bias correction scenarios for selecting background points.
  相似文献   

8.
9.

Context

Various species of forest trees are commonly used for ornamental purposes and are therefore frequently found in nonforest ecosystems. They constitute an important component of the so-called trees outside forests (TOF). Not much is known, however, about the drivers of TOF spatial distribution either in urbanized or in agricultural landscapes since they are generally absent from forest inventories.

Objective

The present study focused on the spatial distribution of TOF across agricultural landscapes and their potential role in the dispersal of a forest pest insect, the pine processionary moth, Thaumetopoea pityocampa (PPM).

Methods

All the TOF belonging to the genera Pinus, Cedrus and Pseudotsuga were considered as potential hosts and inventoried within a 22 × 22 km study window. We fitted a nonstationary Poisson process to the empirical data and used the distance to the nearest building as a covariate.

Results

Both empirical and simulated data indicated that TOF associated to human artifacts/urbanized areas constituted the main source of landscape connectivity for the PPM in the open fields under study. Because they do not account for TOF, forest inventories dramatically underestimate landscape connectivity and provide an erroneous picture of the PPM habitat distribution.

Conclusions

We conclude that TOF, especially the ornamental component, must be taken into account when it comes to understanding forest insect landscape dynamics or genetics. The omnipresence of TOF also suggests a potentially huge role in pest dispersal and invasive species expansion.
  相似文献   

10.

Context

Connectivity is fundamental to understanding how landscape form influences ecological function. However, uncertainties persist due to the difficulty and expense of gathering empirical data to drive or to validate connectivity models, especially in urban areas, where relationships are multifaceted and the habitat matrix cannot be considered to be binary.

Objectives

This research used circuit theory to model urban bird flows (i.e. ‘current’), and compared results to observed abundance. The aims were to explore the ability of this approach to predict wildlife flows and to test relationships between modelled connectivity and variation in abundance.

Methods

Circuitscape was used to model functional connectivity in Bedford, Luton/Dunstable, and Milton Keynes, UK, for great tits (Parus major) and blue tits (Cyanistes caeruleus), drawing parameters from published studies of woodland bird flows in urban environments. Model performance was then tested against observed abundance data.

Results

Modelled current showed a weak yet positive agreement with combined abundance for P. major and C. caeruleus. Weaker correlations were found for other woodland species, suggesting the approach may be expandable if re-parameterised.

Conclusions

Trees provide suitable habitat for urban woodland bird species, but their location in large, contiguous patches and corridors along barriers also facilitates connectivity networks throughout the urban matrix. Urban connectivity studies are well-served by the advantages of circuit theory approaches, and benefit from the empirical study of wildlife flows in these landscapes to parameterise this type of modelling more explicitly. Such results can prove informative and beneficial in designing urban green space and new developments.
  相似文献   

11.

Context

Ecological impacts of past land use can persist for centuries. While present-day land use is relatively easy to quantify, characterizing historical land uses and their legacies on biodiversity remains challenging. Southern Transylvania in Romania is a biodiversity-rich area which has undergone major political and socio-economic changes, from the Austro-Hungarian Empire to two World Wars, communist dictatorship, capitalist democracy, and EU accession—all leading to widespread land-use changes.

Objectives

We investigated whether present-day community composition of birds, plants, and butterflies was associated with historical land use.

Methods

We surveyed birds, plants, and butterflies at 150 sites and classified those sites as forest, arable land, or managed grassland for six epochs using historical maps from the 1870s, 1930s, and 1970s, satellite imagery from 1985 to 2000, and field visits in 2012. Sites were labelled permanent if they had the same land use at all epochs and non-permanent otherwise. We used clustering and PERMANOVA based on community similarity to test for associations between community composition and land-use history.

Results

We found significant differences (p = 0.030) in bird communities between permanent and non-permanent forest sites, and permanent and non-permanent grassland sites (p = 0.051). No significant associations were found among plants or butterflies and land-use history.

Conclusions

Bird communities were associated with historical land use, though plants and butterflies were not. Historical land-use change in our study area was likely not sufficiently intense to cross relevant ecological thresholds that would lead to legacy effects in present-day plant and butterfly communities.
  相似文献   

12.

Context

In the ecology of Lyme disease emergence, it remains unclear to what extent spread of the tick vector (Ixodes scapularis) and the pathogen (Borrelia burgdorferi) are dependent upon the dispersal of vertebrate hosts in spatially heterogeneous landscapes. Yet, empirical measure of these complex ecologically driven spread processes present conceptual and methodological challenges despite important public health implications.

Objectives

To examine the relationship between landscape characteristics and tick-borne disease spread, we modeled the influence of landscape connectivity for a simplified vertebrate host community (white-footed mouse—Peromyscus leucopus, American robin—Turdus migratorius, white-tailed deer—Odocoileus virginianus) on the potential spread of the tick population compared to the pathogen in a spatially-structured landscape.

Methods

We parameterized a hybrid demographic-dispersal connectivity model by combining a series of reported host dispersal and tick burden estimates with empirically-measured tick abundance and pathogen prevalence sampled from a Lyme-endemic island landscape in Thousand Islands National Park (Ontario, Canada) and simulated several tick- and pathogen-spread scenarios.

Results

The extent of tick spread by mice [amount of reachable habitat (ARH)?=?18.0%] is considerably similar to that of robins (ARH?=?18.7%), while deer support the greatest tick spread extent (ARH?=?82.0%). Infected mice carrying ticks support the highest pathogen spread (ARH?=?19.8%). Short-distance pathogen spread and long-distance tick spread were facilitated by intermediate stepping stone habitat fragments.

Conclusions

We provide evidence that host functional connectivity mediates tick spread differently than pathogen spread, and depends strongly on landscape configuration. Our study therefore emphasizes the importance of landscape spatial heterogeneity on the ecological processes that influence regional tick-borne disease spread.
  相似文献   

13.

Context

Submersed aquatic vegetation (SAV) performs water quality enhancing functions that are critical to the overall health of estuaries such as the Chesapeake Bay. However, eutrophication and sedimentation have decimated the Bay’s SAV population to a fraction of its historical coverage. Understanding the spatial distribution of and connectedness among patches is important for assessing the dynamics and health of the remaining SAV population.

Objectives

We seek to explore the distribution of SAV patches and patterns of potential connectivity in the Chesapeake Bay through time.

Methods

We assess critical distances, from complete patch isolation to connection of all patches, in a merged composite coverage map that represents the sum of all probable Vallisneria americana containing patches between 1984 and 2010 and in coverage maps for individual years within that timeframe for which complete survey data are available.

Results

We have three key findings: First, the amount of SAV coverage in any given year is much smaller than the total recently occupied acreage. Second, the vast majority of patches of SAV that are within the tolerances of V. americana are ephemeral, being observed in only 1 or 2 years out of 26 years. Third, this high patch turnover results in highly variable connectivity from year to year, dependent on dispersal distance and patch arrangement.

Conclusions

Most of the connectivity thresholds are beyond reasonable dispersal distances for V. americana. If the high turnover in habitat occupancy is due to marginal water quality, relatively small improvements could greatly increase V. americana growth and persistence.
  相似文献   

14.

Context

Beyond the recognized importance of protecting large areas of contiguous habitat, conservation efforts for many species are complicated by the fact that patch suitability may also be affected by characteristics of the landscape within which the patch is located. Currently, little is known about the spatial scales at which species respond to different aspects of the landscape surrounding an occupied patch.

Objectives

Using grassland bird point count data, we describe an approach to evaluating scale-specific effects of landscape composition on patch occupancy.

Methods

We used data from 793 point count surveys conducted in idle and grazed grasslands across Wisconsin, USA from 2012 to 2014 to evaluate scale-dependencies in the response of grassland birds to landscape composition. Patch occupancy models were used to evaluate the relationship between occupancy and landscape composition at scales from 100 to 3000 m.

Results

Bobolink (Dolichonyx oryzivorus) exhibited a pattern indicating selection for grassland habitats in the surrounding landscape at all spatial scales while selecting against other habitats. Eastern Meadowlark (Sturnella magna) displayed evidence of scale sensitivity for all habitat types. Grasshopper Sparrow (Ammodramus savannarum) showed a strong positive response to pasture and idle grass at all scales and negatively to cropland at large scales. Unlike other species, patch occupancy by Henslow’s Sparrow (A. henslowii) was primarily influenced by patch area.

Conclusions

Our results suggest that both working grasslands (pasture) and idle conservation grasslands can play an important role in grassland bird conservation but also highlight the importance of considering species-specific patch and landscape characteristics for effective conservation.
  相似文献   

15.

Context

Abundance and diversity of bumblebees have been declining over the past decades. To successfully conserve bumblebee populations, we need to understand how landscape characteristics affect the quantity and quality of floral resources collected by colonies and subsequently colony performance.

Objectives

We therefore investigated how amount and composition of pollen collected by buff-tailed bumblebee Bombus terrestris colonies was affected by the surrounding landscape (i.e. the proportion of forest, urban, semi-natural habitats) and how they were related to colony growth.

Methods

Thirty B. terrestris colonies were placed at grassland sites differing in surrounding landscape. Colonies were established in spring when availability of flowering plants was highest, and their weight gain was monitored for 1 month. We additionally recorded the quantity and compared plant taxonomic composition and nutritional quality (i.e. amino acid composition) of pollen stored.

Results

Bumblebee colonies varied little in the pollen spectra collected despite differences in surrounding landscape composition. They collected on average 80 % of pollen from woody plants, with 34 % belonging to the genus Acer. Early colony growth positively correlated with total amount of woody pollen and protein collected and decreased with increasing proportions of semi-natural habitats and total amino acid concentrations.

Conclusions

Our results suggest that woody plant species represent highly important pollen sources for the generalist forager B. terrestris early in the season. We further show that colony growth of B. terrestris is predominantly affected by the quantity, not quality, of forage, indicating that several abundant plant species flowering throughout the bumblebees’ foraging season may cover the colonies’ nutritional needs.
  相似文献   

16.

Context

With global change, microclimates become important refuges for temperature-sensitive, range-restricted organisms. In African savannas, woody vegetation on Macrotermes mounds create widely-dispersed microclimates significantly cooler than the surrounding matrix, which buffer against elevated temperatures at the finer scale of mounds, allowing species to persist at the landscape scale. Termite colonies cultivate symbiotic fungi to digest lignin, but the fungi require temperatures between 29 and 32 °C, which termites strive to maintain. Mound-associated vegetation is a hot-spot for elephant herbivory, so removal of woody species cover by elephants could influence mound-associated microclimates, impacting temperature regulation by termites.

Objectives

We explored the interaction between two prominent ecosystem engineers (termites and elephants) to ascertain whether elephant removal of mound woody cover affects (1) external mound-associated microclimate and (2) internal mound temperature.

Methods

We surveyed 44 mounds from three sites in Kruger National Park, South Africa, during an El Niño/Southern Oscillation-induced drought and heatwave, recording whether sub-canopy, external, mound-surface and internal mound temperatures varied with vegetation removal by elephant.

Results

Elephant damage to mound-associated vegetation reduces the fine-scale microclimate effect provided by vegetation on Macrotermes mounds. Despite this, termites were able to regulate internal mound temperatures, whereas internal temperatures of abandoned mounds increased with elevated surface temperatures.

Conclusions

Termites can persist despite loss of mound-associated microclimates, but the loss likely increases energetic costs of mound thermoregulation. Since mound vegetation buffers against drought, loss of widely-dispersed, fine-scale microclimates could increase as megaherbivores remain constrained to protected areas, impacting climate-sensitive organisms and ecosystem function at a range of scales.
  相似文献   

17.

Context

Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.

Objectives

We used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.

Methods

We assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.

Results

Interacting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.

Conclusions

Understanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.
  相似文献   

18.

Context

Increased edge density is among the main negative effects of habitat loss and fragmentation. Roads are linear infrastructures that may promote barrier effects due to disturbance and mortality effects. We hypothesized that edges of habitat patches bordered by roads are less permeable than roadless edges.

Objectives

We tested whether edge permeability and avoidance are influenced by the presence of paved and dirt roads bordering habitat patches, relatively to roadless edges.

Methods

We translocated 55 montane akodonts (Akodon montensis) from the interior of vegetation remnants to their edges, and tracked fine-scale movements using spool-and-line devices. Edges were bordered by dirt roads (n = 12 mice), paved roads (n = 21) or were not bordered by roads (n = 22). We assessed edge permeability by comparing the number of tracks with crossings, and by comparing the empirical data to simulated correlated random walks. We also assessed edge avoidance by comparing the net direction travelled and net displacement from edge.

Results

No edge crossings were recorded in roaded edges, whereas 36% of tracks in roadless edges crossed the edge at least once. Simulations indicated a significantly lower permeability of roaded edges, while the observed number of crossings in roadless edges was within the expected range. We found no evidence of higher avoidance of roaded edges, as both net direction travelled and displacement were similar across edge types.

Conclusions

Roads decreased edge permeability for the montane akodont. This is likely to increase population isolation among vegetation remnants by reducing the structural connectivity in the already fragmented landscape.
  相似文献   

19.

Context

Spatial scale is an important consideration for understanding how animals select habitat, and multi-scalar designs in resource selection studies have become increasingly common. Despite this, examination of functional responses in habitat selection at multiple scales is rare. The perceptual range of an animal changes as a function of vegetation association, suggesting that use, selection and functional responses may all be habitat- and scale-dependent.

Objectives

Our objective was to determine how varying grain size affects our interpretation of functional response in habitat selection and to elucidate scalar and landscape effects on habitat selection.

Methods

We quantified the functional response of GPS-collared, female white-tailed deer (Odocoileus virginianus, n = 18) in Riding Mountain National Park, Canada, to different habitat types. Functional responses were quantified at multiple spatial scales by regressing proportion of habitat used against proportion of habitat available at different buffer radii (ranging from 75–1000 m radius) surrounding used (telemetry) locations and available points within the individual’s seasonal home range. We examined how functional responses changed as a function of grain by plotting grain size against the slope of the functional response.

Results

We detected functional responses in most habitat types. As expected, functional responses tended to converge towards 1 (use proportional to availability) at large buffer sizes; however, the relationship between scale and functional response was typically non-linear and depended on habitat type.

Conclusions

We conclude that a multi-scalar approach to modelling animal functional responses in habitat selection is important for understanding patterns in animal behaviour and resource use.
  相似文献   

20.

Context

Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways.

Objectives

We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region.

Methods

Wetland extent was derived over a time series (1990–2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected.

Results

Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland–wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density.

Conclusions

Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of (1) climate-driven variation in wetness conditions and (2) within-region variation in wetland and stream spatial arrangements.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号