首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Context

Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure.

Objectives

We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales.

Methods

We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models.

Results

Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes.

Conclusions

Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.
  相似文献   

2.

Context

Despite the key role of biological control in agricultural landscapes, we still poorly understand how landscape structure modulates pest control at different spatial scales.

Objectives

Here we take an experimental approach to explore whether bird and bat exclusion affects pest control in sun coffee plantations, and whether this service is consistent at different spatial scales.

Methods

We experimentally excluded flying vertebrates from coffee plants in 32 sites in the Brazilian Atlantic Forest, encompassing a gradient of forest cover at landscape (2 km radius) and local (300 m) spatial scales, and quantified coffee leaf loss, as an indicator of herbivory, and fruit set.

Results

Leaf loss decreased with higher landscape forest cover, but this relation was significantly different between treatment and control plants depending on local forest cover. On the other hand, fruit set responded to the interaction between treatment and local forest cover but was not affected by landscape forest cover. More specifically, fruit set increased significantly with local forest cover in exclusion treatments and showed a non-significant decrease in open controls.

Conclusions

These results suggest that services provided by flying vertebrates are modulated by processes occurring at different spatial scales. We posit that in areas with high local forest cover flying vertebrates may establish negative interactions with predaceous arthropods (i.e. intraguild predation), but this would not be the case in areas with low local forest cover. We highlight the importance of employing a multi-scale analysis in systems where multiple species, which perceive the landscape differently, are providing ecosystem services.
  相似文献   

3.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

4.

Context

Landscape modification is an important driver of biodiversity declines, yet we lack insight into how ongoing landscape change and legacies of historical land use together shape biodiversity.

Objectives

We examined how a history of agricultural land use and current forest fragmentation influence the abundance of red-backed salamanders (Plethodon cinereus). We hypothesized that historical agriculture and fragmentation cause changes in habitat quality and landscape structure that limit abundance.

Methods

We measured salamander abundance at 95 forested sites in New York, USA, and we determined whether sites were agricultural fields within the last five decades. We used a structural equation model to estimate relationships between historical agriculture and salamander abundance mediated by changes in forest vegetation, microclimate, and landscape structure.

Results

Historical agriculture affected salamander abundance by altering forest vegetation at a local scale and forest cover at a landscape scale. Abundance was lowest at post-agricultural sites with low woody vegetation, leaf litter depth, and canopy cover. Post-agricultural sites had limited forest cover in the surrounding landscape historically, and salamander abundance was positively related to historical forest cover, suggesting that connectivity to source populations affects colonization of regenerating forests. Abundance was also negatively related to current forest fragmentation.

Conclusions

Historical land use can have legacy effects on animal abundance on par with effects of ongoing landscape change. We showed that associations between animal abundance and historical land use can be driven by altered site conditions and surrounding habitat area, indicating that restoration efforts should consider local site conditions and landscape context.
  相似文献   

5.

Context

Barriers to dispersal influence the ability of individuals to expand into new areas and can ultimately define success of reintroduction programs. American marten (Martes americana) were reintroduced to the Upper Peninsula of Michigan, USA, from multiple, genetically differentiated source populations from 1955 to 1992. Previous research found multiple genetic clusters near release sites with little admixing, suggesting barriers to dispersal exist.

Objectives

We sought to identify whether the contact zones between genetic clusters coincided with landscape features hypothesized to influence M. americana dispersal. We also investigated whether the degree of landscape contiguity within each genetic cluster differed among clusters.

Methods

We mapped cluster boundaries in M. americana genetic assignment probabilities and used correlation length as a measure of landscape contiguity between genetic clusters. We then evaluated the effects of land cover and roads on spatial genetic structure using a spatial autoregressive model.

Results

We found that gene flow was facilitated by contiguous coniferous forest and low incidence of roads. However, the strength of those relationships varied by genetic cluster. Contact zones among some genetic clusters spatially coincided with areas of high road and low conifer contiguity, compared to within-clusters.

Conclusions

In contrast to landscape genetic analyses focused on identifying barriers to gene flow, we incorporated methods that are relatively novel in landscape genetics to quantify how landscape contiguity influences spatial genetic structure. Using this method we were able to identify landscape barriers to dispersal at the genetic cluster boundaries for a reintroduced species distributed continuously across the landscape.
  相似文献   

6.

Context

Forest cover change analyses have revealed net forest gain in many tropical regions. While most analyses have focused solely on forest cover, trees outside forests are vital components of landscape integrity. Quantifying regional-scale patterns of tree cover change, including non-forest trees, could benefit forest and landscape restoration (FLR) efforts.

Objectives

We analyzed tree cover change in Southwestern Panama to quantify: (1) patterns of change from 1998 to 2014, (2) differences in rates of change between forest and non-forest classes, and (3) the relative importance of social-ecological predictors of tree cover change between classes.

Methods

We digitized tree cover classes, including dispersed trees, live fences, riparian forest, and forest, in very high resolution images from 1998 to 2014. We then applied hurdle models to relate social-ecological predictors to the probability and amount of tree cover gain.

Results

All tree cover classes increased in extent, but gains were highly variable between classes. Non-forest tree cover accounted for 21% of tree cover gains, while riparian trees constituted 31% of forest cover gains. Drivers of tree cover change varied widely between classes, with opposite impacts of some social-ecological predictors on non-forest and forest cover.

Conclusions

We demonstrate that key drivers of forest cover change, including topography, road distance and historical forest cover, do not explain rates of non-forest tree cover change. Consequently, predictions from medium-resolution forest cover change analyses may not apply to finer-scale patterns of tree cover. We highlight the opportunity for FLR projects to target tree cover classes adapted to local social and ecological conditions.
  相似文献   

7.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

8.

Context

Golden-cheeked warblers (Setophaga chrysoparia), an endangered wood-warbler, breed exclusively in woodlands co-dominated by Ashe juniper (Juniperus ashei) in central Texas. Their breeding range is becoming increasingly urbanized and habitat loss and fragmentation are a main threat to the species’ viability.

Objectives

We investigated the effects of remotely sensed local habitat and landscape attributes on point occupancy and density of warblers in an urban preserve and produced a spatially explicit density map for the preserve using model-supported relationships.

Methods

We conducted 1507 point-count surveys during spring 2011–2014 across Balcones Canyonlands Preserve (BCP) to evaluate warbler habitat associations and predict density of males. We used hierarchical Bayesian models to estimate multiple components of detection probability and evaluate covariate effects on detection probability, point occupancy, and density.

Results

Point occupancy was positively related to landscape forest cover and local canopy cover; mean occupancy was 0.83. Density was influenced more by local than landscape factors. Density increased with greater amounts of juniper and mixed forest and decreased with more open edge. There was a weak negative relationship between density and landscape urban land cover.

Conclusions

Landscape composition and habitat structure were important determinants of warbler occupancy and density, and the large intact patches of juniper and mixed forest on BCP (>2100 ha) supported a high density of warblers. Increasing urbanization and fragmentation in the surrounding landscape will likely result in lower breeding density due to loss of juniper and mixed forest and increasing urban land cover and edge.
  相似文献   

9.

Context

Habitat loss and fragmentation may alter habitat occupancy patterns, for example through a reduction in regional abundance or in functional connectivity, which in turn may reduce the number of dispersers or their ability to prospect for territories. Yet, the relationship between landscape structure and habitat niche remains poorly known.

Objectives

We hypothesized that changes in landscape structure associated with habitat loss and fragmentation will reduce the habitat niche breadth of forest birds, either through a reduction in density-dependent spillover from optimal habitat or by impeding the colonization of patches.

Methods

We surveyed forest birds with point counts in eastern Ontario, Canada, and analyzed their response to loss and fragmentation of mature woodland. We selected 62 landscapes varying in both forest cover (15–45%) and its degree of fragmentation, and classified them into two categories (high versus low levels of loss and fragmentation). We determined the habitat niche breadth of 12 focal species as a function of 8 habitat structure variables for each landscape category.

Results

Habitat niche breadth was narrower in landscapes with high versus low levels of loss and fragmentation of forest cover. The relative occupancy of marginal habitat appeared to drive this relationship. Species sensitivity to mature forest cover had no apparent influence on relative niche breadth.

Conclusions

Regional abundance and, in turn, density-dependent spillover into suboptimal habitat appeared to be determinants of habitat niche breadth. For a given proportion of forest cover, fragmentation also appeared to alter habitat use, which could exacerbate its other negative effects unless functional connectivity is high enough to allow individuals to saturate optimal habitat.
  相似文献   

10.

Context

Forest loss and fragmentation negatively affect biodiversity. However, disturbances in forest canopy resulting from repeated deforestation and reforestation are also likely important drivers of biodiversity, but are overlooked when forest cover change is assessed using a single time interval.

Objectives

We investigated two questions at the nexus of plant diversity and forest cover change dynamics: (1) Do multitemporal forest cover change trajectories explain patterns of plant diversity better than a simple measure of overall forest change? (2) Are specific types of forest cover change trajectories associated with significantly higher or lower levels of diversity?

Methods

We sampled plant biodiversity in forests spanning the Charlotte, NC, region. We derived forest cover change trajectories occurring within nested spatial extents per sample site using a time series of aerial photos from 1938 to 2009, then classified trajectories by spatio-temporal patterns of change. While accounting for landscape and environmental covariates, we assessed the effects of the trajectory classes as compared to net forest cover change on native plant diversity.

Results

Our results indicated that forest stand diversity is best explained by forest change trajectories, while the herb layer is better explained by net forest cover change. Three distinct forest change trajectory classes were found to influence the forest stand and herb layer.

Conclusions

The influence of forest dynamics on biodiversity can be overlooked in analyses that use only net forest cover change. Our results illustrate the utility of assessing how specific trajectories of past land cover change influence biodiversity patterns in the present.
  相似文献   

11.

Context

Habitat loss, fragmentation and degradation are widespread drivers of biodiversity decline. Understanding how habitat quality interacts with landscape context, and how they jointly affect species in human-modified landscapes, is of great importance for informing conservation and management.

Objectives

We used a whole-ecosystem manipulation experiment in the Brazilian Amazon to investigate the relative roles of local and landscape attributes in affecting bat assemblages at an interior-edge-matrix disturbance gradient.

Methods

We surveyed bats in 39 sites, comprising continuous forest (CF), fragments, forest edges and intervening secondary regrowth. For each site, we assessed vegetation structure (local-scale variable) and, for five focal scales, quantified habitat amount and four landscape configuration metrics.

Results

Smaller fragments, edges and regrowth sites had fewer species and higher levels of dominance than CF. Regardless of the landscape scale analysed, species richness and evenness were mostly related to the amount of forest cover. Vegetation structure and configurational metrics were important predictors of abundance, whereby the magnitude and direction of response to configurational metrics were scale-dependent. Responses were ensemble-specific with local-scale vegetation structure being more important for frugivorous than for gleaning animalivorous bats.

Conclusions

Our study indicates that scale-sensitive measures of landscape structure are needed for a more comprehensive understanding of the effects of fragmentation on tropical biota. Although forest fragments and regrowth habitats can be of conservation significance for tropical bats our results further emphasize that primary forest is of irreplaceable value, underlining that their conservation can only be achieved by the preservation of large expanses of pristine habitat.
  相似文献   

12.

Context

Landscape and habitat filters are major drivers of biodiversity of small habitat islands by influencing dispersal and extinction events in plant metapopulations.

Objectives

We assessed the effects of landscape and habitat filters on the species richness, abundance and trait composition of grassland specialist and generalist plants in small habitat islands. We studied traits related to functional spatial connectivity (dispersal ability by wind and animals) and temporal connectivity (clonality and seed bank persistence) using model selection.

Methods

We sampled herbaceous plants, landscape (local and regional isolation) and habitat filters (inclination, woody encroachment and disturbance) in 82 grassland islands in Hungary.

Results

Isolation decreased the abundance of good disperser specialist plants due to the lack of directional vectors transferring seeds between suitable habitat patches. Clonality was an effective strategy, but persistent seed bank did not support the survival of specialist plants in isolated habitats. Generalist plants were unaffected by landscape filters due to their wide habitat breadth and high propagule availability. Clonal specialist plants could cope with increasing woody encroachment due to their high resistance against environmental changes; however, they could not cope with intensive disturbance. Steep slopes providing environmental heterogeneity had an overall positive effect on species richness.

Conclusions

Specialist plants were influenced by the interplay of landscape filters influencing their abundance and habitat filters affecting species richness. Landscape filtering by isolation influenced the abundance of specialist plants by regulating seed dispersal. Habitat filters sorted species that could establish and persist at a site by influencing microsite availability and quality.
  相似文献   

13.

Context

Landscape-scale population dynamics are driven in part by movement within and dispersal among habitat patches. Predicting these processes requires information about how movement behavior varies among land cover types.

Objectives

We investigated how butterfly movement in a heterogeneous landscape varies within and between habitat and matrix land cover types, and the implications of these differences for within-patch residence times and among-patch connectivity.

Methods

We empirically measured movement behavior in the Baltimore checkerspot butterfly (Euphydryas phaeton) in three land cover classes that broadly constitute habitat and two classes that constitute matrix. We also measured habitat preference at boundaries. We predicted patch residence times and interpatch dispersal using movement parameters estimated separately for each habitat and matrix land cover subclass (5 categories), or for combined habitat and combined matrix land cover classes (2 categories). We evaluated the effects of including edge behavior on all metrics.

Results

Overall, movement was slower within habitat land cover types, and faster in matrix cover types. Butterflies at forest edges were biased to remain in open areas, and connectivity and patch residence times were most affected by behavior at structural edges. Differences in movement between matrix subclasses had a greater effect on predictions about connectivity than differences between habitat subclasses. Differences in movement among habitat subclasses had a greater effect on residence times.

Conclusions

Our findings highlight the importance of careful classification of movement and land cover in heterogeneous landscapes, and reveal how subtle differences in behavioral responses to land cover can affect landscape-scale outcomes.
  相似文献   

14.

Context

In heterogeneous landscapes, habitat complementation is a key process underlying the distribution of mobile species able to exploit non-substitutable resources over large home ranges. For instance, insectivorous bats need to forage in a diversity of habitat patches offering varied compositions and structures within forest landscape mosaics to fulfill their life cycle requirements.

Objectives

We aimed at analyzing the effects of forest structure and composition measured at the stand and landscape scales on bat species richness, abundance and community composition in pine plantation forests of south-western France.

Methods

We sampled bat communities at different periods of the summer season using automatic ultrasound recorders along a tree composition gradient from pine monocultures to pure oak stands. We analyzed bat species activity (as a proxy for bat abundance) and species richness with linear mixed models. Distance-based constrained ordinations were used to partition the spatio-temporal variation in bat communities.

Results

Deciduous tree cover increased bat activity and modified community composition at both stand and landscape scales. Changes in bat communities were mostly driven by landscape-scale variables while bat activity responded more to stand-scale predictors.

Conclusions

The maintenance of deciduous trees at both stand and landscape scales is likely critical for bat communities living in fast-growing conifer plantations, by increasing the availability and diversity of prey and roosting sites. Our study suggests that bats respond to forest composition at both stand and landscape scales in mosaic plantation landscapes, mainly through a resource complementation process.
  相似文献   

15.

Context

Connectivity models for animal movement frequently use resistance surfaces, but rarely incorporate actual movement data and multiple scale drivers of landscape resistance.

Objectives

Using GPS data, we developed a multi-scale model of landscape resistance for tiger (Panthera tigris) dispersal in central India and evaluated the performance, interpretation and predictions against single scale models.

Methods

Six dispersing tiger paths were subjected to a path level analysis with conditional logistic regression to parameterize a resistance surface. We evaluated for 21 scales of available habitat and selected the best scale for each variable. We derived a scale-optimized multivariate path selection function and predicted landscape resistance across the landscape.

Results

The tigers preferred to move along areas with forest cover at relatively high elevations along the ridges with rugged topography at broad scale, while avoiding areas with agriculture-village matrix at fine scale. We found that the scale that was most supported by Akaike’s information criterion was not always the scale that maximized the magnitude (effect size) of the relationship. Further, the multi-scale optimized model differed substantially from the single scale models in terms of variable importance, magnitude of coefficients and predictions of connectivity.

Conclusions

Our results demonstrate that the variables in landscape resistance models produce markedly different predictions of population connectivity depending on the scales of analyses and interpretation. Thus, scale optimization in parameterization is critical for appropriate inferences and sound management strategies.
  相似文献   

16.

Context

Interactions between landscape-scale processes and fine-grained habitat heterogeneity are usually invoked to explain species occupancy in fragmented landscapes. In variegated landscapes, however, organisms face continuous variation in micro-habitat features, which makes necessary to consider ecologically meaningful estimates of habitat quality at different spatial scales.

Objectives

We evaluated the spatial scales at which forest cover and tree quality make the greatest contribution to the occupancy of the long-horned beetle Microplophorus magellanicus (Coleoptera: Cerambycidae) in a variegated forest landscape.

Methods

We used averaged data of tree quality (as derived from remote sensing estimates of the decay stage of single trees) and spatially independent pheromone-baited traps to model the occurrence probability as a function of multiple cross-scale combinations between forest cover and tree quality (with scales ranging between 50 and 400 m).

Results

Model support and performance increased monotonically with the increasing scale at which tree quality was measured. Forest cover was not significant, and did not exhibit scale-specific effects on the occurrence probability of M. magellanicus. The interactive effect between tree quality and forest cover was stronger than the independent (additive) effects of tree quality and particularly forest cover. Significant interactions included tree quality measured at spatial scales ≥200 m, but cross-scale interactions occurred only in four of the seven best-supported models.

Conclusions

M. magellanicus respond to the high-quality trees available in the landscape rather than to the amount of forest per se. Conservation of viable metapopulations of M. magellanicus should consider the quality of trees at spatial scales >200 m.
  相似文献   

17.

Context

The pasture-woodlands of Central Europe are low-intensity grazing systems in which the structural richness of dynamic forest-grassland mosaics is causal for their high biodiversity. Distinct mosaic patterns in Picea abies- and Fagus sylvatica-dominated pasture-woodlands in the Swiss Jura Mountains suggest a strong influence of tree species regeneration ecology on landscape structural properties. At the landscape scale, however, cause-effect relationships are complicated by habitat selectivity of livestock.

Objectives

We asked which tree species regeneration traits and what kind of feedbacks among local-scale vegetation dynamics and landscape-scale herbivore behavior are causal for the contrasted landscape structural characteristics of Picea- and Fagus-dominated pasture-woodlands.

Methods

We performed simulation experiments of mosaic pattern formation in both pasture-woodland types. The regeneration traits, namely dispersal distance, resistance to browsing and tolerance to shade, and the rules for habitat selection of cattle were modified and the corresponding shifts in landscape structure were analyzed.

Results

Dispersal distance showed a significant, but only local, effect promoting forest fringe formation. Saplings’ resistance to browsing mainly determined overall tree cover, but did not influence landscape structure. At the landscape scale, both shade tolerance of saplings and selective habitat use by cattle were responsible for forest-grassland segregation: high shade tolerance triggered segregation, whereas non-selective habitat use hindered it.

Conclusions

Existing local-scale theory on pasture-woodland dynamics is complemented by an herbivore-vegetation feedback among spatial scales. In low-intensity pastures, where large herbivores are preferentially “grazers” and trees form dense canopies, an intrinsic trend towards forest-grassland segregation at the expense of forest-grassland ecotones is predicted.
  相似文献   

18.

Context

With accelerated land-use change throughout the world, increased understanding of the relative effects of landscape composition and configuration on biological system and bioinvasion in particular, is needed to design effective management strategies. However, this topic is poorly understood in part because empirical studies often fail to account for large gradients of habitat complexity and offer insufficient or even no replication across habitats.

Objectives

The aim of this study was to disentangle the independent and interactive effects of landscape composition and landscape configuration on the establishment and spread of invasive insect species.

Methods

We explore a spatially-explicit, mechanistic modeling framework that allows for systematic investigation of the impact of changes in landscape composition and landscape configuration on establishment and spread of invasive insect species. Landscape metrics are used as an indicators of invasive insect establishment and spread.

Results

We showed that the presence of an Allee effect leads to a balance between the effectiveness of spread and invasion success. Spread is maximized at an intermediate dispersal level and inhibited at both low and high levels of dispersal. The landscape, by either increasing or mitigating the dispersal abilities of a species, can lead to a rate of spread under a dispersal threshold for which density and spread is at the highest.

Conclusion

Our study proposes that change in landscape structure is an additional explanation of the highly variable spread dynamics observed in natural and anthropogenic landscapes. Consequently, a landscape-scale perspective could significantly improve spread risk assessment and the design of control or containment strategies.
  相似文献   

19.

Context

Climate change is not occurring over a homogeneous landscape and the quantity and quality of available land cover will likely affect the way species respond to climate change. The influence of land cover on species’ responses to climate change, however, is likely to differ depending on habitat type and composition.

Objectives

Our goal was to investigate responses of forest and grassland breeding birds to over 20 years of climate change across varying gradients of forest and grassland habitat. Specifically, we investigated whether (i) increasing amounts of available land cover modify responses of forest and grassland-dependent birds to changing climate and (ii) the effect of increasing land cover amount differs for forest and grassland birds.

Methods

We used Bayesian spatially-varying intercept models to evaluate species- and community-level responses of 30 forest and 10 grassland birds to climate change across varying amounts of their associated land cover types.

Results

Responses of forest birds to climate change were weak and constant across a gradient of forest cover. Conversely, grassland birds responded strongly to changing climatic conditions. Specifically, increasing temperatures led to higher probabilities of localized extinctions for grassland birds, and this effect was intensified in regions with low amounts of grassland cover.

Conclusions

Within the context of northeastern forests and grasslands, we conclude that forests serve as a possible buffer to the impacts of climate change on birds. Conversely, species occupying open, fragmented grassland areas might be particularly at risk of a changing climate due to the diminished buffering capacity of these ecosystems.
  相似文献   

20.

Context

Quantitative models of forest dynamics have followed a progression toward methods with increased detail, complexity, and spatial extent.

Objectives

We highlight milestones in the development of forest dynamics models and identify future research and application opportunities.

Methods

We reviewed milestones in the evolution of forest dynamics models from the 1930s to the present with emphasis on forest growth and yield models and forest landscape models We combined past trends with emerging issues to identify future needs.

Results

Historically, capacity to model forest dynamics at tree, stand, and landscape scales was constrained by available data for model calibration and validation; computing capacity; model applicability to real-world problems; and ability to integrate biological, social, and economic drivers of change. As computing and data resources improved, a new class of spatially explicit forest landscape models emerged.

Conclusions

We are at a point of great opportunity in development and application of forest dynamics models. Past limitations in computing capacity and in data suitable for model calibration or evaluation are becoming less restrictive. Forest landscape models, in particular, are ready to transition to a central role supporting forest management, planning, and policy decisions.

Recommendations

Transitioning forest landscape models to a central role in applied decision making will require greater attention to evaluating performance; building application support staffs; expanding the included drivers of change, and incorporating metrics for social and economic inputs and outputs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号