首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVE: To determine the minimal infusion rate of propofol in combination with medetomidine for long-term anesthesia in ponies and the effects of atipamezole on recovery. ANIMALS: 12 ponies. PROCEDURE: Ponies were sedated with medetomidine (7 microg/kg of body weight, IV). Ten minutes later, anesthesia was induced with propofol (2 mg/kg, IV). Anesthesia was maintained for 4 hours, using an infusion of medetomidine (3.5 microg/kg per hour, IV) and propofol at a rate sufficient to prevent ponies from moving after electrical stimulation. Arterial blood pressures and blood gas analysis, heart rates, and respiratory rates were monitored. For recovery, 6 ponies were given atipamezole (60 microg/kg, IV). Induction and recovery were scored. RESULTS: Minimal propofol infusion rates ranged from 0.06 to 0.1 mg/kg per min. Mean arterial blood pressure was stable (range, 74 to 86 mm Hg), and heart rate (34 to 51 beats/min) had minimal variations. Variable breathing patterns were observed. Mean PaO2 (range, 116 to 146 mm Hg) and mean PaCO2 (range, 48 to 51 mm Hg) did not change significantly with time, but hypoxemia was evident in some ponies (minimal PaO2, 47 mm Hg). Recovery was fast and uneventful with and without atipamezole (completed in 20.2 and 20.9 minutes, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: Infusion of a combination of medetomidine and propofol was suitable for prolonged anesthesia in ponies. Recovery was rapid and uneventful. A combination of propofol and medetomidine may prove suitable for long-term anesthesia in horses. Monitoring of blood gases is essential because of potential hypoxemia.  相似文献   

2.
OBJECTIVE: To determine the cardiopulmonary and sedative effects of medetomidine hydrochloride in adult horses and to compare those effects with effects of an equipotent dose of xylazine hydrochloride. ANIMALS: 10 healthy adult female horses. PROCEDURE: 5 horses were given medetomidine (4 microg/kg of body weight, i.v.), and the other 5 were given xylazine (0.4 mg/kg, i.v.). Heart rate, respiratory rate, arterial blood pressures, pulmonary arterial blood pressures, and cardiac output were recorded, and sedation and ataxia scores were assigned before and every 5 minutes after drug administration for 60 minutes. Rectal temperature and blood gas partial pressures were measured every 15 minutes after drug administration. RESULTS: Arterial blood pressure was significantly decreased throughout the study among horses given medetomidine and was significantly decreased for 40 minutes among horses given xylazine. Compared with baseline values, cardiac output was significantly decreased 10, 20, and 40 minutes after administration of medetomidine and significantly increased 40 and 60 minutes after administration of xylazine. Despite the significant decrease in respiratory rate in both groups, results of blood gas analyses were not significantly changed over time. Ataxia and sedation scores were of similar magnitude for the 2 groups, but ataxia persisted slightly longer among horses given medetomidine. Horses resumed eating hay 10 to 55 minutes after drug administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that equipotent low doses of medetomidine and xylazine induce comparable levels of ataxia and sedation and similar cardiopulmonary changes in adult horses.  相似文献   

3.
OBJECTIVE: To assess the sedative and cardiopulmonary effects of medetomidine and xylazine and their reversal with atipamezole in calves. ANIMALS: 25 calves. PROCEDURES: A 2-phase (7-day interval) study was performed. Sedative characteristics (phase I) and cardiopulmonary effects (phase II) of medetomidine hydrochloride and xylazine hydrochloride administration followed by atipamezole hydrochloride administration were evaluated. In both phases, calves were randomly allocated to receive 1 of 4 treatments IV: medetomidine (0.03 mg/kg) followed by atipamezole (0.1 mg/kg; n = 6), xylazine (0.3 mg/kg) followed by atipamezole (0.04 mg/kg; 7), medetomidine (0.03 mg/kg) followed by saline (0.9% NaCl; 6) solution (10 mL), and xylazine (0.3 mg/kg) followed by saline solution (10 mL; 6). Atipamezole or saline solution was administered 20 minutes after the first injection. Cardiopulmonary variables were recorded at intervals for 35 minutes after medetomidine or xylazine administration. RESULTS: At the doses evaluated, xylazine and medetomidine induced a similar degree of sedation in calves; however, the duration of medetomidine-associated sedation was longer. Compared with pretreatment values, heart rate, cardiac index, and PaO(2) decreased, whereas central venous pressure, PaCO(2), and pulmonary artery pressures increased with medetomidine or xylazine. Systemic arterial blood pressures and vascular resistance increased with medetomidine and decreased with xylazine. Atipamezole reversed the sedative and most of the cardiopulmonary effects of both drugs. CONCLUSIONS AND CLINICAL RELEVANCE: At these doses, xylazine and medetomidine induced similar degrees of sedation and cardiopulmonary depression in calves, although medetomidine administration resulted in increases in systemic arterial blood pressures. Atipamezole effectively reversed medetomidine- and xylazine-associated sedative and cardiopulmonary effects in calves.  相似文献   

4.
Medetomidine is the most potent and selective alpha2-agonist used in veterinary medicine and its effects can be antagonized by the alpha2-antagonist atipamezole. The pharmacokinetics of medetomidine and atipamezole were studied in a cross-over trial in eight lactating dairy cows. The animals were injected intravenously (i.v.) with medetomidine (40 microg/kg) followed by atipamezole i.v. (200 microg/kg) or saline i.v. after 60 min. Drug concentrations in plasma were measured by HPLC. After the injection of atipamezole, the concentration of medetomidine in plasma increased slightly, the mean increment being 2.7 ng/mL and the mean duration 12.1 min. However, atipamezole did not alter the pharmacokinetics of medetomidine. It is likely that the increase in medetomidine concentration is caused by displacement of medetomidine by atipamezole in highly perfused tissues. The volume of distribution at steady state (Vss) for medetomidine followed by saline and medetomidine followed by atipamezole was 1.21 and 1.32 L/kg, respectively, whereas the total clearance (Cl) values were 24.2 and 25.8 mL/min x kg. Vss and Cl values for atipamezole were 1.77 mL/kg and 48.1 mL/min x kg, respectively. Clinically, medetomidine significantly reduced heart rate and increased rectal temperature for 45 min. Atipamezole reversed the sedative effects of medetomidine. However, all the animals, except one, relapsed into sedation at an average of 80 min after injection of the antagonist.  相似文献   

5.
Ten desert tortoises (Gopherus agassizii) were given i.m. injections of 150 microg/kg of medetomidine. Sedation was achieved in all tortoises by 20 min postinjection and was accompanied by a significant decrease in mean heart and respiratory rates, systolic, diastolic, and mean ventricular pressures, and mean ventricular partial pressure of oxygen (PO2). There was no change in mean blood pH, HCO3, Na+, K+, ionized calcium values, and mean ventricular partial pressure of carbon dioxide (PCO2). There were statistically significant but clinically insignificant changes in mean base excess and pH-corrected ionized calcium values. Atipamezole given to five of the tortoises at 0.75 mg/kg i.m. significantly reversed the sedative effects of the medetomidine, with all tortoises returning to a normal state by 30 min after administration of the reversal agent. In comparison, the other five tortoises given an equal volume of physiologic saline in place of atipamezole (control group) remained significantly sedated for the duration of the study. In addition, the heart rate and ventricular PO2 returned to baseline, but the respiratory rate and ventricular blood pressures were not significantly altered by the atipamezole as compared with those of the control group. These cardiopulmonary and physiologic effects are similar to those seen in some domestic mammals. Medetomidine can be used to safely induce sedation in desert tortoises. For procedures lasting greater than 120 min, supplemental oxygen should be provided. Atipamezole will reverse the sedation but not all of the cardiopulmonary effects, thus necessitating continued monitoring after reversal. Future studies should address the anesthetic and cardiopulmonary effects of medetomidine in combination with other agents such as ketamine and/or butorphanol.  相似文献   

6.
The anesthetic and cardiopulmonary effects of midazolam, ketamine and medetomidine for total intravenous anesthesia (MKM-TIVA) were evaluated in 14 horses. Horses were administered medetomidine 5 microg/kg intravenously as pre-anesthetic medication and anesthetized with an intravenous injection of ketamine 2.5 mg/kg and midazolam 0.04 mg/kg followed by the infusion of MKM-drug combination (midazolam 0.8 mg/ml-ketamine 40 mg/ml-medetomidine 0.1 mg/ml). Nine stallions (3 thoroughbred and 6 draft horses) were castrated during infusion of MKM-drug combination. The average duration of anesthesia was 38 +/- 8 min and infusion rate of MKM-drug combination was 0.091 +/- 0.021 ml/kg/hr. Time to standing after discontinuing MKM-TIVA was 33 +/- 13 min. The quality of recovery from anesthesia was satisfactory in 3 horses and good in 6 horses. An additional 5 healthy thoroughbred horses were anesthetized with MKM- TIVA in order to assess cardiopulmonary effects. These 5 horses were anesthetized for 60 min and administered MKM-drug combination at 0.1 ml/kg/hr. Cardiac output and cardiac index decreased to 70-80%, stroke volume increased to 110% and systemic vascular resistance increased to 130% of baseline value. The partial pressure of arterial blood carbon dioxide was maintained at approximately 50 mmHg while the arterial partial pressure of oxygen pressure decreased to 50-60 mmHg. MKM-TIVA provides clinically acceptable general anesthesia with mild cardiopulmonary depression in horses. Inspired air should be supplemented with oxygen to prevent hypoxemia during MKM-TIVA.  相似文献   

7.
The combination of medetomidine-zolazepam-tiletamine with subsequent antagonism by atipamezole was evaluated for reversible anaesthesia of free-ranging lions (Panthera leo). Twenty-one anaesthetic events of 17 free-ranging lions (5 males and 12 females, body weight 105-211 kg) were studied in Zimbabwe. Medetomidine at 0.027-0.055 mg/kg (total dose 4-11 mg) and zolazepam-tiletamine at 0.38-1.32 mg/kg (total dose 50-275 mg) were administered i.m. by dart injection. The doses were gradually decreased to improve recovery. Respiratory and heart rates, rectal temperature and relative haemoglobin oxygen saturation (SpO2) were recorded every 15 min. Arterial blood samples were collected from 5 lions for analysis of blood gases and acid-base status. For anaesthetic reversal, atipamezole was administered i.m. at 2.5 or 5 times the medetomidine dose. Induction was smooth and all lions were anaesthetised with good muscle relaxation within 3.4-9.5 min after darting. The predictable working time was a minimum of 1 h and no additional drug doses were needed. Respiratory and heart rates and SpO2 were stable throughout anaesthesia, whereas rectal temperature changed significantly over time. Atipamezole at 2.5 times the medetomidine dose was sufficient for reversal and recoveries were smooth and calm in all lions independent of the atipamezole dose. First sign of recovery was observed 3-27 min after reversal. The animals were up walking 8-26 min after reversal when zolazepam-tiletamine doses < 1 mg/kg were used. In practice, a total dose of 6 mg medetomidine and 80 mg zolazepam-tiletamine and reversal with 15 mg atipamezole can be used for either sex of an adult or subadult lion. The drugs and doses used in this study provided a reliable, safe and reversible anaesthesia protocol for free-ranging lions.  相似文献   

8.
Effects of intravenous yohimbine and atipamezole on haemodynamics and electrocardiogram (ECG) were studied after lumbosacral subarachnoid administration of medetomidine in eight goats. All goats received lumbosacral subarachnoid medetomidine at a dosage of 0.01 mg/kg followed by yohimbine (0.25 mg/kg) or atipamezole (0.005 mg/kg) intravenously 45 min after administration of medetomidine, in a randomized crossover design, in right lateral recumbency keeping a gap of 1 week between each trial. Heart rate, respiratory rate, rectal temperature, mean arterial pressure (MAP), mean central venous pressure (MCVP) and ECG were determined. Goats were observed for sedation and urination. All goats showed sedation and depression after medetomidine administration became alert within 2-5 min after reversal. Bradycardia and bradypnoea were the consistent findings after medetomidine injection. Tachycardia and tachypnoea were recorded within 2-5 min after reversal in both groups. A decrease in MAP and an increase in MCVP were seen after medetomidine administration in both groups. Effects of yohimbine and atipamezole on the reversal of MAP and MCVP were more or less the same and statistically non-significant (P > 0.05) in all animals. The ECG changes were non-significant (P > 0.05) in both groups. It is concluded that in the given dose rates both yohimbine (0.25 mg/kg) and atipamezole (0.005 mg/kg) produced equal reversal of the sedation, CNS depression, cardiopulmonary and ECG changes induced by subarachnoid administration of medetomidine in goats indicating that most of the actions of medetomidine were mediated via activation of alpha2-adrenergic receptors.  相似文献   

9.
Seven Thoroughbred horses were castrated under total intravenous anesthesia (TIVA) using propofol and medetomidine. After premedication with medetomidine (5.0 μg/kg, intravenously), anesthesia was induced with guaifenesin (100 mg/kg, intravenously) and propofol (3.0 mg/kg, intravenously) and maintained with constant rate infusions of medetomidine (0.05 μg/kg/min) and propofol (0.1 mg/kg/min). Quality of induction was judged excellent to good. Three horses showed insufficient anesthesia and received additional anesthetic. Arterial blood pressure changed within an acceptable range in all horses. Decreases in respiratory rate and hypercapnia were observed in all horses. Three horses showed apnea within a short period of time. Recovery from anesthesia was calm and smooth in all horses. The TIVA-regimen used in this study provides clinically effective anesthesia for castration in horses. However, assisted ventilation should be considered to minimize respiratory depression.  相似文献   

10.
The reversal of the cardiovascular effects of the α2-adrenoceptor agonist detomidine by the α2-antagonist atipamezole was studied. Nine horses were given detomidine 20 μg/kg iv. On a separate occasion they were given atipamezole 100 μg/kg iv 15 mins after the detomidine injection. Blood gas tensions were measured and clinical signs of sedation were also observed. Bradycardia and the frequency of heart blocks induced by detomidine were reduced after atipamezole and blood pressure decreased. These reversal effects of atipamezole were of short duration (a few minutes) at the dose level tested. Two of the nine horses exhibited premature depolarisations after administration of detomidine, but not after atipamezole injection. PaO2 decreased and PaCO2 increased slightly after detomidine injection, but the arterial pH was within reference values or slightly elevated. Administration of atipamezole did not alter these values. Base excess rose after detomidine, and it decreased more quickly towards the baseline level, when the horses were given detomidine alone. No clinical adverse effects were seen from the administration of atipamezole. Atipamezole may be beneficial, if detomidine-induced bradycardia needs to be reversed in horses.  相似文献   

11.
The pharmacokinetics of two potent α2-adrenoceptor agents that can be used for immobilization (medetomidine) and reversal (atipamezole) of the sedation in mammals, were studied in three reindeer ( Rangifer tarandus tarandus) in winter and again in summer. Medetomidine (60 μg/kg) was injected intravenously (i.v.), followed by atipamezole (300 μg/kg) intravenously 60 min later. Drug concentrations in plasma were measured by HPLC. The administration of atipamezole resulted in an immediate 2.5–3.5 fold increase in the medetomidine concentration in plasma. Clearance for medetomidine (median 19.3 mL/min·kg) was lower than clearance for atipamezole (median 31.0 mL/min·kg). The median elimination half-lives of medetomidine and atipamezole in plasma were 76.1 and 59.9 min, respectively. The animals became resedated 0.5–1 h after the reversal with atipamezole. Resedation may be explained by the longer elimination half-life of medetomidine compared to atipamezole.  相似文献   

12.
Propofol infusion anaesthesia in dogs pre-medicated with medetomidine   总被引:2,自引:0,他引:2  
Ten laboratory beagles pre-medicated with medetomidine (40 μg/kg bodyweight [bwt]) were anaesthetised using a rapid injection of propofol, followed by propofol infusion. A loading dose of 4 mg/kg bwt of propofol was administered intravenously (iv) as a bolus and, immediately after, a 60 min iv propofol infusion (150 μg/kg bwt/min) was initiated. After a transient increase, mean arterial blood pressure decreased significantly below the pre-propofol level. However, the lowest values recorded (115 ± 11 mmHg) remained within the physiological limits. Heart rate increased significantly (from 41 ± 7.3 to 58 ± 11 beats/min) after initiation of the propofol infusion. No significant changes were seen in respiratory frequency; pO2 decreased transiently; minimum values (10 ± 2.3 kPa) recorded 5 mins after initiation of the propofol infusion differed significantly from the starting level. pCO2 increased significantly and the highest values recorded were 6.1 ± 0.35 kPa. Accordingly, pH decreased reaching the lowest level (pH 7.29) 15 mins after initiation of the propofol infusion. The analgesic effect of the present combination was not studied, but the absence of the palpebral and pedal reflexes suggested a surgical stage of anaesthesia. Therefore, propofol infusion in beagles pre-medicated with medetomidine proved to be a promising anaesthetic regimen but, if used clinically, oxygen-enriched inspired air should be used.  相似文献   

13.
Observations of cardiovascular and respiratory parameters were made on six dogs anaesthetized on two separate occasions for 120 minutes with a propofol infusion, once without premedication and once following premedication with 10 μg kg-1 of intramuscular medetomidine. During anaesthesia the heart rate and cardiac index tended to be lower following medetomidine premedication, while the mean arterial pressure was significantly greater (p<0.05). Although the differences were not statistically significant, the systemic vascular resistance, pulmonary vascular resistance and stroke volume index were also greater in dogs given medetomidine. The mean arterial oxygen and carbon dioxide tensions were similar under both regimens, but in 2 dogs supplementary oxygen had to be administered during anaesthesia to alleviate severe hypoxaemia on both occasions they were anaesthetized. Minute and tidal volumes of respiration tended to be greater in dogs not given medetomidine but medetomidine premedication appeared to have no effect on venous admixture. Dogs given medetomidine received intramuscular atipamezole at the end of the 120 min. propofol infusion; the mean time from induction of anaesthesia to walking without ataxia was 174. min in the unpremedicated dogs and 160 min. in the dogs given atipamezole. The mean blood propofol concentration at which the dogs walked without ataxia was higher in the unpremedicated animals (2.12 ± 0.077 μg. ml-1 compared with 1.27 ± 0.518 μg. ml-1 in the premedicated dogs). The oxygen delivery to the tissues was lower after medetomidine premedication (p = 0.03) and the oxygen consumption was generally lower after medetomidine premedication but the difference did not achieve statistical significance. No correlation could be demonstrated between blood propofol concentration and cardiac index, systemic or pulmonary vascular resistance indices, systolic, diastolic or mean arterial blood pressures.  相似文献   

14.
The sedative and physiological effects of intramuscular medetomidine (20 and 40 μg/kg) in dogs were compared with those of xylazine (2 mg/kg). The efficacy of atipamezole (200 μg/kg), as an antagonist given 15 or 45 minutes after medetomidine (40 μg/kg) was studied. Following medetomidine, onset of sedation was rapid, and depth and duration of sedation were dose dependent. The higher dose produced jaw relaxation, depression of the pedal reflex, downward rotation of the eye and dogs could be positioned for radiography of the hips. Side effects were similar after either medetomidine or xylazine, and included bradycardia, a fall in respiratory rate and muscle tremor. Vomiting during induction was less frequent after medetomidine than after xylazine. Intramuscular administration of atipamezole rapidly reversed the sedative effects of medetomidine. Signs of arousal were seen within three minutes; all dogs could stand within 10 minutes and appeared clinically normal. Heart and respiratory rates rose, but did not return to presedation values. Relapse to sedation was not noted.  相似文献   

15.
Medetomidine/ketamine sedation in calves and its reversal with atipamezole   总被引:1,自引:0,他引:1  
Atipamezole was used to reverse the sedation induced in calves by medetomidine/ketamine. Thirteen claves subjected to umbilical surgery received medetomidine 20 μg/kg bodyweight (bwt) and ketamine 0.5 mg/kg bwt intravenously (iv) from a mixture of the drugs in one syringe. Atipamezole was given at doses of 20 to 60 μg/kg iv and intramuscularly (im) to the calves at the end of the operation. Following the administration of medetomidine and ketamine, PaCO2 increased whereas pH, PaO2 and heart rate decreased. Reversing the effects of medetomidine with atipamezole did not cause undesirable effects; recovery was rapid and smooth, most of the animals reached a standing position within 1 to 3 mins after the atipamezole injection.  相似文献   

16.
The purpose of this study was to assess the cardiorespiratory and behavioral responses to the combination of medetomidine and tramadol (M-T) or butorphanol (M-B) in standing laparoscopic ovariectomy in horses. One ovary was removed under M-T and the contralateral ovary was removed under M-B with at least 4 weeks between operations at random. Horses were sedated using intravenous medetomidine (5 µg/kg) followed by tramadol (1 mg/kg) or butorphanol (10 µg/kg) after 5 min. Sedation was maintained through the repeated injection of medetomidine (1 µg/kg) and tramadol (0.4 mg/kg) or medetomidine (1 µg/kg) and butorphanol (4 µg/kg) every 15 min. Cardiorespiratory function and behavioral responses, including, sedation, ataxia, and analgesia, were assessed during the surgery. There were no significant differences in cardiorespiratory values and sedation and analgesia scores between M-T and M-B. Ataxia scores were significantly lower in M-T than in M-B. This result suggests that M-T could maintain smooth and stable standing surgery with minimal cardiorespiratory changes in horses.  相似文献   

17.
The purpose of this study was to evaluate the cardio-respiratory effects of the combination of medetomidine and thiopentone followed by reversal with atipamezole as a combination for anaesthesia in 10 healthy German Shepherd dogs breathing spontaneously in a room at an altitude of 1486 m above sea level with an ambient air pressure of 651 mmHg. After the placement of intravenous and intra-arterial catheters, baseline samples were collected. Medetomidine (0.010 mg/kg) was administered intravenously and blood pressure and heart rate were recorded every minute for 5 minutes. Thiopentone was then slowly administered until intubation conditions were ideal. An endotracheal tube was placed and the dogs breathed room air spontaneously. Blood pressure, pulse oximetry, respiratory and heart rate, capnography, blood gas analysis and arterial lactate were performed or recorded every 10 minutes for the duration of the trial. Thiopentone was administered to maintain anaesthesia. After 60 minutes, atipamezole (0.025 mg/kg) was given intramuscularly. Data were recorded for the next 30 minutes. A dose of 8.7 mg/kg of thiopentone was required to anaesthetise the dogs after the administration of 0.010 mg/kg of medetomidine. Heart rate decreased from 96.7 at baseline to 38.5 5 minutes after the administration of medetomidine (P < 0.05). Heart rate then increased with the administration of thiopentone to 103.2 (P < 0.05). Blood pressure increased from 169.4/86.2 mmHg to 253.2/143.0 mmHg 5 minutes after the administration of medetomidine (P < 0.05). Blood pressure then slowly returned towards normal. Heart rate and blood pressure returned to baseline values after the administration of atipamezole. Arterial oxygen tension decreased from baseline levels (84.1 mmHg) to 57.8 mmHg after the administration of medetomidine and thiopentone (P < 0.05). This was accompanied by arterial desaturation from 94.7 to 79.7% (P < 0.05). A decrease in respiratory rate from 71.8 bpm to 12.2 bpm was seen during the same period. Respiratory rates slowly increased over the next hour to 27.0 bpm and a further increases 51.4 bpm after the administration of atipamezole was seen (P < 0.05). This was maintained until the end of the observation period. Arterial oxygen tension slowly returned towards normal over the observation period. No significant changes in blood lactate were seen. No correlation was found between arterial saturation as determined by blood gas analysis and pulse oximetry. Recovery after the administration of atipamezole was rapid (5.9 minutes). In healthy dogs, anaesthesia can be maintained with a combination of medetomidine and thiopentone, significant anaesthetic sparing effects have been noted and recovery from anaesthesia is not unduly delayed. Hypoxaemia may be problematic. Appropriate monitoring should be done and oxygen supplementation and ventilatory support should be available. A poor correlation between SpO2 and SaO2 and ETCO2 and PaCO2 was found.  相似文献   

18.
Reasons for performing study: The effects of lidocaine combined with medetomidine or lidocaine alone on cardiovascular function during anaesthesia and their effects on recovery have not been thoroughly investigated in isoflurane‐anaesthetised horses. Objectives: To determine the effects of an intraoperative i.v. constant rate infusion of lidocaine combined with medetomidine (Group 1) or lidocaine (Group 2) alone on cardiovascular function and on the quality of recovery in 12 isoflurane‐anaesthetised horses undergoing arthroscopy. Hypothesis: The combination would depress cardiovascular function but improve the quality of recovery when compared to lidocaine alone in isoflurane‐anaesthetised horses. Methods: Lidocaine (2 mg/kg bwt i.v. bolus followed by 50 µg/kg bwt/min i.v.) or lidocaine (same dose) and medetomidine (5 µg/kg bwt/h i.v.) was started 30 min after induction of anaesthesia. Lidocaine administration was discontinued 30 min before the end of surgery in both groups, whereas medetomidine administration was continued until the end of surgery. Cardiovascular function and quality of recovery were assessed. Results: Horses in Group 1 had longer recoveries, which were of better quality due to better strength and overall attitude during the recovery phase than those in Group 2. Arterial blood pressure was significantly higher in Group 1 than in Group 2 and this effect was associated with medetomidine. No significant differences in cardiac output, arterial blood gases, electrolytes and acid‐base status were detected between the 2 groups. Conclusions and potential relevance: The combination of an intraoperative constant rate infusion of lidocaine and medetomidine did not adversely affect cardiovascular function in isoflurane‐anaesthetised horses and improved the quality of recovery when compared to an intraoperative infusion of lidocaine alone.  相似文献   

19.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

20.
In the present study, we report the effect of medetomidine followed by atipamezole on plasma glucose, cortisol and noradrenaline in calves, cows and sheep. Eight calves, eight lactating dairy cows and eight adult female sheep were included in a crossover trial. The animals were injected i.v. with medetomidine (40 microg/kg), followed 60 min later by atipamezole i.v. (200 microg/kg) or saline. The wash-out period between experiments was 1 or 2 weeks. In every animal, medetomidine induced a marked hyperglycaemia, which was reversed by atipamezole. Cortisol levels increased significantly in cows and sheep, reaching levels 4-8-fold higher than the baseline levels 25-45 min after injection of medetomidine. Atipamezole did not affect the cortisol levels, except in sheep where an increase was observed. Plasma levels of noradrenaline decreased in cows and sheep after medetomidine injection, reflecting the inhibition of sympathetic activity by the drug. After injection of the antagonist, there was a large increase in noradrenaline levels. In conclusion, a high dose of medetomidine does not seem to reduce the overall endocrine stress response in cattle and sheep, which has previously been reported in other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号