首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.  相似文献   

2.
The origin of cosmic rays is one of the major unresolved questions in astrophysics. In particular, the highest energy cosmic rays observed have macroscopic energies up to several 10(20) electron volts and thus provide a probe of physics and astrophysics at energies unattained in laboratory experiments. Theoretical explanations range from astrophysical acceleration of charged particles, to particle physics beyond the established standard model, and processes taking place at the earliest moments of our universe. Distinguishing between these scenarios requires detectors with effective areas in the 1000-square-kilometer range, which are now under construction or in the planning stage. Close connections with gamma-ray and neutrino astrophysics add to the interdisciplinary character of this field.  相似文献   

3.
The signal strength, bandwidth, and detection range of acoustic pulses generated by cosmic-ray air showers striking a water surface are calculated. These signals are strong enough to be audible to a submerged swimmer. The phenomena may be useful for studying very-high-energy cosmic rays and may help answer the important question of whether the origin of cosmic rays is extragalactic or galactic.  相似文献   

4.
The Pioneer Venus orbiter gamma burst detector is an astrophysics experiment for monitoring cosmic gamma-ray bursts. It is included in this planetary mission to provide a long baseline for accurately locating the sources ofthese bursts in order to identify them with specific astronomical objects. Responses to 14 gammaray burst events were examined; these events were verified from data acquired by other systems. Preliminary locations are proposed for three events, based on data from the Pioneer Venus orbiter, ISEE C, and Vela spacecraft. These locations will be improved, and additional locations will be determined by including in the analyses data from Helios B and the Russian Venera 11, Venera 12, and Prognoz 7 spacecraft.  相似文献   

5.
P Hut  J Makino 《Science (New York, N.Y.)》1999,283(5401):501-505
The GRAPE-4, the world's fastest computer in 1995-1997, has produced some major scientific results through a wide diversity of large-scale simulations in astrophysics. Applications have included planetary formation, the evolution of star clusters and galactic nuclei, and the formation of galaxies and clusters of galaxies.  相似文献   

6.
It is proposed that high-velocity pulsars are produced in extended galactic halos, and possibly in extragalactic space, from primordial (population III) stars. Such a population of neutron stars could provide an explanation for the gamma-ray bursters and would then accommodate the possibility that most bursters are not in the visible parts of galaxies.  相似文献   

7.
Before the launch of the Compton Gamma Ray Observatory (CGRO), the only source of >100-megaelectron volt (MeV) gamma radiation known outside our galaxy was the quasar 3C 273. After less than a year of observing, 13 other extragalactic sources have been discovered with the Energetic Gamma Ray Experiment Telescope (EGRET) on CGRO, and it is expected that many more will be found before the full sky survey is complete. All 14 sources show evidence of blazar properties at other wavelengths; these properties include high optical polarization, extreme optical variability, flat-spectrum radio emission associated with a compact core, and apparent superluminal motion. Such properties are thought to be produced by those few, rare extragalactic radio galaxies and quasars that are favorably aligned to permit us to look almost directly down a relativistically outflowing jet of matter expelled from a supermassive black hole. Although the origin of the gamma rays from radio jets is a subject of much controversy, the gamma-ray window probed by CGRO is providing a wealth of knowledge about the central engines of active galactic nuclei and the most energetic processes occurring in nature.  相似文献   

8.
Harding AK 《Science (New York, N.Y.)》1991,251(4997):1033-1038
Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed 10(12) gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: Energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on Earth.  相似文献   

9.
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.  相似文献   

10.
X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and x-ray observations have led to the presumption that some x-ray binaries called microquasars behave as scaled-down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy gamma-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission of >100 gigaelectron volts from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.  相似文献   

11.
Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.  相似文献   

12.
The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.  相似文献   

13.
At least 30 discrete cosmic x-ray sources have been detected thus far. The distribution is concentrated toward the galactic plane, and most of the sources are believed to lie within 2 kiloparsecs of the sun. It is estimated that the average luminosity of the observed sources is about 5 x 10(36) ergs per second and that the entire galaxy contains about 1250 such sources. Comparisons of fluxes observed over the course of the past 2 years reveal that many sources are highly variable.  相似文献   

14.
Gamma-ray bursts (GRBs) are sudden, intense flashes of gamma rays that, for a few blinding seconds, light up in an otherwise fairly dark gamma-ray sky. They are detected at the rate of about once a day, and while they are on, they outshine every other gamma-ray source in the sky, including the sun. Major advances have been made in the last 3 or 4 years, including the discovery of slowly fading x-ray, optical, and radio afterglows of GRBs, the identification of host galaxies at cosmological distances, and evidence showing that many GRBs are associated with star-forming regions and possibly supernovae. Progress has been made in understanding how the GRB and afterglow radiation arises in terms of a relativistic fireball shock model. These advances have opened new vistas and questions on the nature of the central engine, the identity of their progenitors, the effects of the environment, and their possible gravitational wave, cosmic ray, and neutrino luminosity. The debates on these issues indicate that GRBs remain among the most mysterious puzzles in astrophysics.  相似文献   

15.
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 x 10(19) electron volts and the positions of active galactic nuclei (AGN) lying within approximately 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest-energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.  相似文献   

16.
Galactic sources of x-rays fluctuating in intensity are explained as being small regions, of enhanced gas density and temperature, emitting thermal Coulomb bremsstrahlung of kiloelectron-volt energies. Hydromagnetic wave motions, of the magnetic fields in the galactic spiral arms, produce the enhanced regions by compressing the clouds of ionized gas to which they are tied by their high electrical conductivity. From the observed periods of fluctuation of a few months, together with the hydromagnetic velocity, it is estimated that the average size of sources does not exceed 10(16) centimeters. By using the formula for Coulomb bremsstrahlung and requiring that the sources shall produce the observed x-ray fluxes, one finds a second estimate of size of sources in agreement at about 1016 centimeters. Such regions are too small to be observable radio sources with current radio telescopes.  相似文献   

17.
Gamma rays at energies of 0.3 to 8 megaelectron volts (MeV) were detected on 15 April 1988 from four nuclear-powered satellites including Cosmos 1900 and Cosmos 1932 as they flew over a double Compton gamma-ray telescope. The observations occurred as the telescope, flown from a balloon at an altitude of 35 kilometers from Alice Springs, Australia, searched for celestial gamma-ray sources. The four transient signals were detected in 30 hours of data. Their time profiles show maxima with durations of (21 +/- 1) and (27 +/- 1) seconds (half-width at half maximum) for the lower two satellites and (85 +/- 5) and (113 +/- 7) seconds for the remaining two. Their durations place the origin of the two shorter signals at orbital radii of 260(+40)(-60) and 260 +/- 60 km above the earth and the two longer at 800(+100)(-300) and 800(+250)(-300) kilometers. Their luminosities for energies >0.3 MeV are then (6.1 +/- 1.5) x 10(15), (3.9 +/- 1.0) x 10(15), (1.10 +/- 0.28) x 10(16), and (1.30 +/- 0.32) x 10(16) photons per second. The imaging of the strongest signal indicates a southeastern direction passing nearly overhead. The energy spectrum can be fit to an exponential with index 2.4 +/- 1.4. These transient events add to the already large backgrounds for celestial gamma ray sources.  相似文献   

18.
Since launch in early 1980 the Gamma-Ray Spectrometer (GRS) onboard the Solar Maximum Mission (SMM) satellite has monitored the sun at gamma-ray energies. In addition to observations of solar flares, cosmic gamma-ray bursts, and precipitating radiation belt electrons, the instrument has detected a new class of high-energy transient events that cannot be attributed to any of these phenomena. The duration of these transients can range from 1 second to more than 10 minutes. The average event rate between 1980 and 1986 was about five per month. However, in February 1987 this rate increased by more than a factor of 25 and continued at this high level until June 1988. These transients can be subdivided into three classes: (i) 0.511-megaelectron volt annihilation line events, (ii) particle events, and (iii) broad-band photon continuum-like events. Evidence is presented that these transients are not of natural origin. It is found that the most likely sources of these events are reactors in earth orbiting satellites. Apart from the threat these reactors pose upon accidental reentry, the reactor-generated transients may have a deleterious effect on cosmic observations obtained with gamma-ray detectors in low earth orbit.  相似文献   

19.
Wang ZR 《Science (New York, N.Y.)》1987,235(4795):1485-1486
On the basis of the fact that the youngest neutron stars such as the Crab pulsar and the Vela pulsar emit strong gamma-ray radiation, it is suggested that a few gamma-ray sources may be identified with young compact sources formed in the events of guest stars. Two such sources, 2CG 353+16 and 2CG 054+01, are identified with guest stars observed in the 14th century B.C. and A.D. 1230, respectively.  相似文献   

20.
Lamb RC  Weekes TC 《Science (New York, N.Y.)》1987,238(4833):1528-1534
One of the major astronomical discoveries of the last two decades was the detection of luminous x-ray binary star systems in which gravitational energy from accretion is released by the emission of x-ray photons, which have energies in the range of 0.1 to 10 kiloelectron volts. Recent observations have shown that some of these binary sources also emit photons in the energy range of 10(12) electron volts and above. Such sources contain a rotating neutron star that is accreting matter from a companion. Techniques to detect such radiation are ground-based, simple, and inexpensive. Four binary sources (Hercules X-1, 4U0115+63, Vela X-1, and Cygnus X-3) have been observed by at least two independent groups. Although the discovery of such very high energy "gamma-ray binaries" was not theoretically anticipated, models have now been proposed that attempt to explain the behavior of one or more of the sources. The implications of these observations is that a significant portion of the more energetic cosmic rays observed on Earth may arise from the action of similar sources within the galaxy during the past few million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号