首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a transport study of nonequilibrium quasi-particles in a high-transition-temperature cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at a photon energy of 1.5 electron volts) was used to introduce a spatially periodic density of quasi-particles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasi-particle diffusion coefficient and the inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurements of quasi-particle dynamics not only in cuprate superconductors but in other electronic systems as well.  相似文献   

2.
Gupta A  Sun JZ  Tsuei CC 《Science (New York, N.Y.)》1994,265(5175):1075-1077
The superconducting transport characteristics of HgBa(2) CaCu(2)O(6+delta) (Hg-1212) films and grain-boundary junctions grown on (100)-oriented SrTiO(3) bicrystal substrates have been investigated. The films exhibit a zero-resistance temperature of approximately 120 kelvin and sustain large critical current densities, with values as high as 10(6) amperes per square centimeter at around 100 kelvin. On the other hand, the grain boundaries behave as weak links, with substantially lower critical currents, as is observed for other cuprate superconductors. A reduction of three orders of magnitude in critical current was observed for transport across a 36.8 degrees grain boundary. The current-voltage characteristics of bridges across such a grain boundary show weak-link behavior qualitatively resembling that of a resistively shunted junction. Single-level direct-current superconducting quantum interference devices (SQUIDs) have been fabricated with such bicrystal junctions. These SQUIDs show clear periodic voltage modulations when subjected to applied magnetic fields. The SQUIDs operate at temperatures as high as 111.8 kelvin, which makes them attractive for operation in portable sensors and devices that utilize nonconventional cooling methods.  相似文献   

3.
Little WA 《Science (New York, N.Y.)》1988,242(4884):1390-1395
Recent experiments have revealed several key features of the unique nature of the new, high-transition temperature cuprate superconductors. These results provide an easily understandable, physical picture of the structure and behavior of the charge carriers in these materials, and point to the mechanism responsible for their existence. These experiments are now placing strong constraints on possible theoretical models of the phenomenon.  相似文献   

4.
Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La(2-x)Sr(x)CuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, low-frequency spin fluctuations first disappear with the loss of vortex mobility, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces are magnetic.  相似文献   

5.
High-temperature superconductivity in doped Mott insulators such as the cuprates contradicts the conventional wisdom that electron repulsion is detrimental to superconductivity. Because doped fullerene conductors are also strongly correlated, the recent discovery of high-critical-temperature, presumably s-wave, superconductivity in C60 field effect devices is even more puzzling. We examine a dynamical mean-field solution of a model for electron-doped fullerenes that shows how strong correlations can indeed enhance superconductivity close to the Mott transition. We argue that the mechanism responsible for this enhancement could be common to a wider class of strongly correlated models, including those for cuprate superconductors.  相似文献   

6.
High-temperature cuprate superconductors display unexpected nanoscale inhomogeneity in essential properties such as pseudogap energy, Fermi surface, and even superconducting critical temperature. Theoretical explanations for this inhomogeneity have ranged from chemical disorder to spontaneous electronic phase separation. We extend the energy range of scanning tunneling spectroscopy on Bi(2+y)Sr(2-y)CaCu(2)O(8+x), allowing a complete mapping of two types of interstitial oxygen dopants and vacancies at the apical oxygen site. We show that the nanoscale spatial variations in the pseudogap states are correlated with disorder in these dopant concentrations, particularly that of apical oxygen vacancies.  相似文献   

7.
The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of ~3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba(2)Cu(3)O(6+)(x), with hole concentrations of 0.09 to 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature (T(c)); further cooling below T(c) abruptly reverses the divergence of the charge correlations. In combination with earlier observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge density wave instability that competes with superconductivity.  相似文献   

8.
The randomness of dopant atom distributions in cuprate high-critical temperature superconductors has long been suspected to cause nanoscale electronic disorder. In the superconductor Bi2Sr2CaCu2O8+delta, we identified populations of atomic-scale impurity states whose spatial densities follow closely those of the oxygen dopant atoms. We found that the impurity-state locations are strongly correlated with all manifestations of the nanoscale electronic disorder. This disorder occurs via an unanticipated mechanism exhibiting high-energy spectral weight shifts, with associated strong superconducting coherence peak suppression but very weak scattering of low-energy quasi-particles.  相似文献   

9.
Analysis of the interlayer infrared conductivity of cuprate high-transition temperature superconductors reveals an anomalously large energy scale extending up to midinfrared frequencies that can be attributed to formation of the superconducting condensate. This unusual effect is observed in a va- riety of materials, including Tl2Ba2CuO6+x, La2-xSrxCuO4, and YBa2Cu3O6.6, which show an incoherent interlayer response in the normal state. Midinfrared range condensation was examined in the context of sum rules that can be formulated for the complex conductivity. One possible interpretation of these experiments is in terms of a kinetic energy change associated with the superconducting transition.  相似文献   

10.
We used angle-resolved photoemission spectroscopy applied to deeply underdoped cuprate superconductors Bi2Sr2Ca(1-x)YxCu2O8 (Bi2212) to reveal the presence of two distinct energy gaps exhibiting different doping dependence. One gap, associated with the antinodal region where no coherent peak is observed, increased with underdoping, a behavior known for more than a decade and considered as the general gap behavior in the underdoped regime. The other gap, associated with the near-nodal regime where a coherent peak in the spectrum can be observed, did not increase with less doping, a behavior not previously observed in the single particle spectra. We propose a two-gap scenario in momentum space that is consistent with other experiments and may contain important information on the mechanism of high-transition temperature superconductivity.  相似文献   

11.
For some time now, there has been considerable experimental and theoretical effort to understand the role of the normal-state "pseudogap" phase in underdoped high-temperature cuprate superconductors. Recent debate has centered on the question of whether the pseudogap is independent of superconductivity. We provide evidence from zero-field muon spin relaxation measurements in YBa2Cu3O6+x for the presence of small spontaneous static magnetic fields of electronic origin intimately related to the pseudogap transition. Our most significant finding is that, for optimal doping, these weak static magnetic fields appear well below the superconducting transition temperature. The two compositions measured suggest the existence of a quantum critical point somewhat above optimal doping.  相似文献   

12.
A bond valence sum (BVS) analysis was performed for the p-type cuprate superconductors. The superconducting critical temperature T(c) versus in-plane Cu-O BVS correlation for copper is grouped into classes and subclasses. Only within a class or subclass for which the nonelectronic effect is constant does the variation of the in-plane Cu-O BVS reflect the corresponding change in the hole density n(H) of the CuO(2) layers. This study strongly suggests that the T(c) for every class or subclass of the superconductors is an inverted parabolic function of n(H), and so is the coupling constant lambda for Cooper pair formation.  相似文献   

13.
One of the most intriguing features of some high-temperature cuprate superconductors is the interplay between one-dimensional "striped" spin order and charge order, and superconductivity. We used mid-infrared femtosecond pulses to transform one such stripe-ordered compound, nonsuperconducting La(1.675)Eu(0.2)Sr(0.125)CuO(4), into a transient three-dimensional superconductor. The emergence of coherent interlayer transport was evidenced by the prompt appearance of a Josephson plasma resonance in the c-axis optical properties. An upper limit for the time scale needed to form the superconducting phase is estimated to be 1 to 2 picoseconds, which is significantly faster than expected. This places stringent new constraints on our understanding of stripe order and its relation to superconductivity.  相似文献   

14.
Identifying the mechanism of superconductivity in the high-temperature cuprate superconductors is one of the major outstanding problems in physics. We report local measurements of the onset of superconducting pairing in the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+delta using a lattice-tracking spectroscopy technique with a scanning tunneling microscope. We can determine the temperature dependence of the pairing energy gaps, the electronic excitations in the absence of pairing, and the effect of the local coupling of electrons to bosonic excitations. Our measurements reveal that the strength of pairing is determined by the unusual electronic excitations of the normal state, suggesting that strong electron-electron interactions rather than low-energy (<0.1 volts) electron-boson interactions are responsible for superconductivity in the cuprates.  相似文献   

15.
We study the coexisting smectic modulations and intra-unit-cell nematicity in the pseudogap states of underdoped Bi(2)Sr(2)CaCu(2)O(8+δ). By visualizing their spatial components separately, we identified 2π topological defects throughout the phase-fluctuating smectic states. Imaging the locations of large numbers of these topological defects simultaneously with the fluctuations in the intra-unit-cell nematicity revealed strong empirical evidence for a coupling between them. From these observations, we propose a Ginzburg-Landau functional describing this coupling and demonstrate how it can explain the coexistence of the smectic and intra-unit-cell broken symmetries and also correctly predict their interplay at the atomic scale. This theoretical perspective can lead to unraveling the complexities of the phase diagram of cuprate high-critical-temperature superconductors.  相似文献   

16.
The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T(c)), entangled in an energy-momentum-dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.  相似文献   

17.
Spin manipulation using electric currents is one of the most promising directions in the field of spintronics. We used neutron scattering to observe the influence of an electric current on the magnetic structure in a bulk material. In the skyrmion lattice of manganese silicon, where the spins form a lattice of magnetic vortices similar to the vortex lattice in type II superconductors, we observe the rotation of the diffraction pattern in response to currents that are over five orders of magnitude smaller than those typically applied in experimental studies on current-driven magnetization dynamics in nanostructures. We attribute our observations to an extremely efficient coupling of inhomogeneous spin currents to topologically stable knots in spin structures.  相似文献   

18.
Columnar defects generated by heavy-ion irradiation are promising structures for pinning magnetic flux lines and enhancing critical currents in superconductors with high transition temperatures. An approach that combines chemical etching and magnetic decoration was used to highlight simultaneously the distributions of columnar defects and magnetic flux lines in Bi(2)Sr(2)CaCu(2)O(8) superconductors. Analyses of images of the columnar defects and flux-line positions provide insight into flux-line pinning by elucidating (i) the occupancy of columnar defects by flux lines, (ii) the nature of topological defects in the flux-line lattice, and (iii) the translational and orientational order in this lattice.  相似文献   

19.
An unresolved issue concerning cuprate superconductors is whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. Because the carriers comprise a small fraction of the total charge density and may be rapidly fluctuating, modulations are difficult to detect directly. We demonstrate that in anomalous x-ray scattering at the oxygen K edge of the cuprates, the contribution of carriers to the scattering amplitude is selectively magnified 82 times. This enhances diffraction from the doped holes by more than 10(3), permitting direct structural analysis of the superconducting ground state. Scattering from thin films of La2CuO4+delta (superconducting transition temperature = 39 K) at temperature = 50 +/- 5 kelvin on the reciprocal space intervals (0,0,0.21) --> (0,0,1.21) and (0,0,0.6) --> (0.3,0,0.6) shows a rounding of the carrier density near the substrate suggestive of a depletion zone or similar effect. The structure factor for off-specular scattering was less than 3 x 10(-7) electrons, suggesting an absence of in-plane hole ordering in this material.  相似文献   

20.
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O(2) environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa(2)CaCu(2)O(6+delta) films has been achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号