首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on water uptake in the crust and on crispness retention. To achieve this objective, we increased the permeability of the control bread crust by creating small channels through the crust. The water vapour permeability of the crust with and without channels was measured using a newly developed method for brittle materials. Two further properties were measured over time: crispness of bread by analysing acoustic properties and water content of the crust. Control bread crust had low water vapour permeability and functioned as a barrier, leading to increased uptake of water in the crust. Water uptake was halved, however, if the water vapour permeability of the crust was doubled. As a consequence, crispness retention increased eight-fold; breads stored for four hours were as crispy as control breads stored for 30 min. We can conclude, therefore, that permeability of crust is key to crispness retention.  相似文献   

2.
Crispness is among the most important factors that the consumer uses to assess the quality of crispy bread. However, this quality attribute is rapidly lost after baking. It is known that crispness retention can be increased more than eight times by enhancing the water vapor permeability of the crust. Current methods to achieve this, i.e., puncturing the bread before baking, require an extra process step. We hypothesize that cracks that appear spontaneously on the crust surface after baking can also enhance water vapor permeability and therefore improve crispness retention. We were able to confirm this hypothesis by preparing composite breads containing the same crumb but different crusts, with crust recipes of varying starch/protein ratios. Crusts systems that were generally high in gelatinized starch content and poor in evenly distributed gluten were more prone to crack after the whole process of part-baking, freezing, and baking off. These cracks led to an increased water vapor permeability of the crust and an eight times longer instrumental crispness retention compared to standard bread. In this paper we also discuss possible causes for crack formation in the crust. We hypothesize that effective cracks are caused by thermal shock in materials with a low ability to dissipate energy.  相似文献   

3.
The effect of different breadmaking processes (conventional, frozen dough, frozen partially baked bread) and the effect of the storage period on the technological quality of fresh wholemeal wheat breads are investigated. In addition, the impact of the exogenous fungal phytase on the phytate content was also determined. Results showed that breadmaking technology significantly affected the quality parameters of wholemeal breads (specific volume, moisture content, crumb and crust colour, crumb texture profile analysis and crust flaking) and frozen storage affected to a different extent the quality of the loaves obtained from partially baked breads and those obtained from frozen dough, particularly crust flaking. Freezing and frozen storage of wholemeal bread in the presence of fungal phytase decreased significantly the phytate content in whole wheat breads. The combination of fungal phytase addition, breadmaking process and frozen storage could be advisable for overcoming the detrimental effect of bran on the mineral bioavailability.  相似文献   

4.
The influence of the formulation on the crispness of bread crust was studied. Crispness is a relevant sensory attribute that depends on several factors particularly the plasticizer content (water), the mechanical properties of the solid matrix and the morphological architecture of the bread. Enzymes and additives were used to modify the bread formulation. This resulted in a modification of the bread characteristics. Crust and crumb had higher porosity than the control breads and a decreased water content of the bread crust was found. Instrumental crispness was evaluated by simultaneous analysis of the fracture behaviour and sound emission while breaking the crust. Addition of lipase, amylase, glucose oxidase and hydroxypropyl methylcellulose (HPMC) increased the number of force and sound events, indicative of higher crispness. The number of fracture and sound events correlated negatively with the water content and positively with the porosity of the crust. Both properties are affected by the use of enzymes/additives. Whether the observed positive effect of the enzymes and additives on the number of force and sound events is due to a direct effect on the flour components properties or interactions or to an indirect effect via structure-water migration properties is still open to discussion.  相似文献   

5.
The influence of the formulation on the crispness of bread crust was studied. Crispness is a relevant sensory attribute that depends on several factors particularly the plasticizer content (water), the mechanical properties of the solid matrix and the morphological architecture of the bread. Enzymes and additives were used to modify the bread formulation. This resulted in a modification of the bread characteristics. Crust and crumb had higher porosity than the control breads and a decreased water content of the bread crust was found. Instrumental crispness was evaluated by simultaneous analysis of the fracture behaviour and sound emission while breaking the crust. Addition of lipase, amylase, glucose oxidase and hydroxypropyl methylcellulose (HPMC) increased the number of force and sound events, indicative of higher crispness. The number of fracture and sound events correlated negatively with the water content and positively with the porosity of the crust. Both properties are affected by the use of enzymes/additives. Whether the observed positive effect of the enzymes and additives on the number of force and sound events is due to a direct effect on the flour components properties or interactions or to an indirect effect via structure-water migration properties is still open to discussion.  相似文献   

6.
The possible improvement of the nutritional properties of starch in barley flour-based bread by using barley genotypes varying in amylose content (3–44%) was evaluated. Breads were made from 70% whole-meal barley flour and 30% white wheat flour. Test breads were baked from waxy barley (WB), ordinary barley (OB), ordinary Glacier barley (OGB) and high-amylose barley (HAB). Each bread was baked either at conventional baking conditions (45 min, 200 °C) or at pumpernickel conditions (20 h, 120 °C). A white wheat bread (WWB) was used as reference. The resistant starch (RS) content and rate of starch hydrolysis were measuredin vitro. The glycaemic index (GI) and the insulinaemic index (II) of the high-amylose breads were determined in healthy subjects. The amount of RS (total starch basis) varied from <1% (WB) to approximately 4% (HAB) in conventionally baked bread, and from about 2% to 10% in the corresponding long-time/low-temperature baked products. The long-time/low-temperature baked HAB displayed a significantly lower rate of starch hydrolysisin vitrocompared with WWB and reduced the incremental blood-glucose response in healthy subjects (GI=71). In contrast, the GI of the conventionally baked HAB was similar to that for WWB. It is concluded that a barley flour-based bread of low GI and high RS content can be obtained by choosing high-amylose barley and appropriate baking conditions.  相似文献   

7.
The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC) showed an endothermic transition at 70 °C associated with the melting of crystalline amylopectin. The relative starch crystallinity, as determined by X-ray and DSC, from different types of breads was found to lie between 36% and 41% (X-ray) and between 32% and 43% (DSC) for fresh bread crust. Storage of breads in a closed box (22 °C) for up to 20 days showed an increase in crust crystallinity due to amylopectin retrogradation both by X-ray and DSC. However, DSC thermograms of 1-day old bread crust showed no amylopectin retrogradation and after 2 days storage, amylopectin retrogradation in the crust was hardly detectable. 13C CP MAS NMR was used to characterize the physical state of starch in flour and bread crumb and crust. The intensity of the peaks showed a dependence on the degree of starch gelatinization.  相似文献   

8.
Partly baked (PB) and fully baked (FB) breads were frozen at −18 °C for 7, 21, 63, 92, 126 and 188 d and were analysed after its thawing (FB) or thawing and final baking (PB). The starch retrogradation, the moisture content and the firmness were measured as properties closely related to the aging of bread. The temperature of glass transition of the maximally freeze-concentrated state, Tg′, was also measured and established in (−18 ± 0.8) °C. This value cannot ensure molecular immobility in both types of bread during its frozen storage at (−18 ± 2) °C. Consequently, the rearrangements of starch component molecules, needed for its recrystallization and for the diffusion of water during frozen storage, could take place and could justify the changes observed in the bread. PB bread showed a significant decrease in firmness with frozen storage, while the firmness of the FB bread did not change significantly, although an increase when compared with the control, not frozen bread, was detected. A regression study led to the conclusion that the combined effect of starch component crystallization and water loss could explain the firming evolution and that both variables exerted an effect of similar intensity on crumb firmness.  相似文献   

9.
This work consisted of two complementary sets of experiments in which breads differing in their recipe and/or process were characterised according to their odorant perception, volatile compound composition and physical properties. The results revealed that commercial partially baked and/or partially baked frozen breads were characterised by a different odour compared to commercial conventional, fully baked frozen and frozen dough breads, which were perceived similarly. These differences were explained by their variable aromatic composition. By analysing breads based on the same recipe but from different processes, it was demonstrated that adding a freezing stage before dough proofing or at the end of the conventional process, as well as after partial baking, did not influence bread aroma. Likewise, partial baking had no effect on bread odour and aromatic profile. Thus, the aromatic differences between commercial conventional, fully baked frozen and frozen dough breads on the one hand, and commercial partially baked breads on the other hand, were due to their different formulations. Concerning bread physical properties, the recipe also influenced bread crust/crumb ratio and density. Moreover, adding a partial baking stage to the process led to breads with a more compact crumb.  相似文献   

10.
The purpose of this study was to investigate the effects of emulsifiers [sodium stearoyl-2-lactylate (SSL), glycerol mono stearate (GMS-90), di-acetyl tartaric acid esters of monoglycerides (DATEM), S-570, S-1170, S-1670, P-1670] on pita bread quality. Three flour types (soft wheat flour with 10·0% protein, hard red winter wheat flour with 11·6% protein, and hard red spring wheat flour with 14·4% protein) and three emulsifier concentrations (0·25%, 0·50%, 0·75%, flour basis) were used. Pita breads were baked in an air impingement oven. Loaves were scored on the first and second days, and the influence of the more effective emulsifiers on shelf life stability were investigated after 5 days. Analysis of variance indicated that the flour of moderate protein content (11·6%) resulted in the best overall product quality. The high protein flour (14·4%) gave a dough with high water absorption and bread loaves with dark crust color. On the other hand, the low protein flour (10·0%) had low water absorption. The loaves were uniform in texture and thickness for top and bottom layers, and had a light crust color. All emulsifiers improved the tearing quality of the product. The low concentration (0·25%) of SSL, S-1170, S-1670, and S-570 with flour of moderate protein content (11·6% protein) resulted in a good quality pita bread. No significant differences occurred amongst breads containing those emulsifiers for ability to roll and fold and tearing quality after 5 days of storage at room temperature.  相似文献   

11.
Crispness of bread is rapidly lost because of water migration inside the crumb towards the crust. How crumb properties determine this process independent of crust properties has not been examined before. Therefore, the aim of this study was to analyze and explain the influence of crumb morphology on the overall crispness retention. Crispness retention was determined by analyzing the acoustic emission of breads differing in either crust or crumb morphology. When crumb morphology is coarse with a lower number of large connections between the air cells, the effective diffusion coefficient is reduced. This effective diffusion coefficient of crumb, which equals approximately half the value of air, was estimated using X-ray micro-computer tomography images of crumb pieces. If the crumb has a lower effective diffusion coefficient, bread with similar crust properties has significantly longer crispness retention. Despite this, our data show that variations in properties of crust, which has 30 times higher permeability than crumb, have a larger impact on crispness retention than variations in properties of crumb.  相似文献   

12.
Bread staling involves a combination of physico-chemical phenomena that leads to a reduction of quality. This study aims at evaluating the impact of baking conditions (280 °C, 8 min; 310 °C, 5.5 min; 340 °C, 4 min), baking type (of fully baked (FB) and part-baked (PB)) and storage temperature (−18, 4 and 20 °C) on the staling of Sangak bread. Results showed that lower baking temperature with longer baking time produced drier bread with higher firmness. In FB Sangak breads, amylopectin retrogradation, amount of unfreezable water and firmness (measured by compression test) increased during storage at positive temperatures but hardness (determined by Kramer shear test) decreased significantly during first day of storage. The recrystallized amylopectin traps the free water resulting in crumb hardening. Water is also absorbed by the dry crust resulting in changes of rheological properties in the crust and crumb, and finally in staling. Storage at 4 °C resulted in increasing melting enthalpy of amylopectin crystallite in comparison with storage at 20 °C. Also it was found that firmness of PB breads due to rebaking was significantly lower than FB breads. There were no significant changes in staling parameters of FB and PB stored at −18 °C.  相似文献   

13.
14.
High fibre breads were produced with the addition of durum wheat bran fractions (regular bran and a fraction extracted from the most internal bran layer) and their physico-chemical properties and water status were characterised during storage. Bran enriched breads exhibited similar properties during storage, they were harder, less springy and less cohesive than the control. Water status was strongly affected by bran addition, independently of bran composition: water activity, moisture and frozen water content (measured by Differential Scanning Calorimetry) were generally higher in the bran samples than in the control bread during storage. Amylopectin retrogradation was significantly larger in the presence of bran fractions. 1H NMR mobility (T2 number of populations and relaxation times) was different in the high fibre breads as compared to the control sample. The changes in protons mobility observed upon storage indicated an influence of bran on water/gluten/starch molecular domains and their dynamics, that may have affected the development of the gluten network resulting in different textural properties.  相似文献   

15.
64 breads were baked in a deck oven under conventional French baking conditions. Their hearth and surface temperatures were measured at various baking times using thermocouples and Infra-red thermometer; their moisture content was determined after sampling of the external layer, termed the “crust”, and by weighing breads. In addition, an image analysis method, based on saturation and colors, allowed determination of a mask of crust and the kinetics of its mean thickness. Associated with hydrothermal kinetics, it showed that the development of crust was achieved at a final local temperature of 160 °C and moisture of 5% for an average final thickness of 1.7 mm. DSC analysis of crust samples also underlined the significance of non gelatinized starch in the crust. This result was interpreted by representing the hydrothermal history of crust in a starch melting diagram.  相似文献   

16.
Sound and sprouted flours (24 and 48 hr) from bread wheat (WL-1562), durum wheat (PBW-34) and triticale (TL-1210) were stored at room temperature (34.8°C) and relative humidity (66.7%) for 0, 45, 90 and 135 days to assess the changes in physico-chemical and baking properties. Protein, gluten, sedimentation value, starch and crude fat decreased during storage in all the samples; however, the decrease was more in sprouted flours. Free amino acids, proteolytic activity, diastatic activity and damaged starch decreased with increase in storage period. Total sugars and free fatty acids increased more rapidly in the flours of sprouted wheats during 135 days of storage. Loaf volume of breads decreased during storage in both sound and sprouted flour but the mean percent decrease in loaf volume was more in stored sound flours. Aging of sprouted flour for 45 days improved the cookie and cake making properties but further storage was of no value for these baked products.Chapati making properties of stored sound and sprouted flour were inferior to that of fresh counterparts.  相似文献   

17.
The effect of water on the mechanical properties of extruded breads was studied, at room temperature. As the moisture content was increased from 6 to 9% moisture, the resistance to fracture (compression tests) or rupture (tensile tests) was improved. Above this moisture range, plasticisation by water was the dominant phenomenon. The brittle to ductile transition was observed to occur within a moisture content range from 9 to 13·7% (w/w). The influence of water on the crispness of extruded bread, evaluated with sensory evaluation, is also described.  相似文献   

18.
Three commercial wholegrain oat (WO) flours from Finland (WOF), Ireland (WOI) and Sweden (WOS) were evaluated for their bread making ability with the objective of finding predictive relationships between flour physicochemical properties and bread quality. Overall, significant differences were found in the bread making properties of the WO flours. Good bread quality was obtained when using WOS and WOI flour since breads showed high specific loaf volume and slice height as well as low density and hardness. Low quality breads were obtained when WOF flour was used. In addition, positive effects on oat bread quality were observed for low batter viscosity and high deformability, as obtained for WOS and WOI. Based on the physicochemical analysis of the flours, water hydration capacity was found to be the main reason for increased elasticity of WOF batters. Small flour particle size, damaged starch granules and high protein content were identified as the key factors causing increased water hydration capacity. These findings suggest that WO flours with coarse particle size, limited starch damage and low protein content result in superior oat bread quality.  相似文献   

19.
In this study, a simple strategy for acrylamide (AA) reduction in white and dark wheat and spelt and rye breads, including the impact of flour basic composition, flour extraction rate, type of technology and baking time and temperature was addressed. Moreover, the correlation between AA formation in breads and total phenolic compounds (TPC) and antioxidant capacity (AC) of flours and breads was calculated. The studies showed an impact of flours origin on AA formation in breads with the following rank: wheat bread ≤ spelt bread < rye bread. There was no statistically significant effect of flour extraction rates and their chemical components on AA formation in breads baked at 200 °C/35 min. However, a weak effect was noted for wheat and spelt breads baked at higher temperature. In contrast, a positive correlation between AA in wheat, spelt and rye breads baked at both applied conditions (200 °C for 35 min or 240 °C for 30 min) and AC of white and dark flours was noted. The same finding was noted between AA formation and TPC and AC of bread and its crust. The provided data indicated that AA mitigation strategy should be based on the selection of lower baking temperature with longer baking time as the main important factor amongst others.  相似文献   

20.
The influence the quality and shelf life of baked product has previously been reported to be effected by the time and temperature of the baking process. In this study, dough was baked at 219 °C by using different ovens (conventional, impingement or hybrid) or with doughs of different sizes (large or small) for varying times. During baking the temperature profile at the dough center was recorded. Texture, thermal properties and pasting characteristics of baked product with reference to baking conditions were investigated. Small breads baked in the hybrid oven had the highest heating rate (25.1 °C/min) while large breads baked in conventional oven had the lowest heating rate (6.0 °C/min). When the data are viewed as a function of heating rate in this study, the enthalpy of amylopectin recrystallization, rate of bread firmness and the amount of soluble amylose were all-lower at the slower heating rate. The differences observed in product firmness following storage are potentially a consequence of the extent of starch granule hydration, swelling, dispersion and extent of reassociation; all of which are affected by the heating rate during baking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号