首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The main crops on which plastic mulch is widely used in Mexico include tomato, bell pepper, eggplant, melons, watermelons, and strawberry; however, very little research has been performed on potato. One of the main benefits associated with plastic mulching is the modification of the microclimate around the plant. To obtain a positive microclimate modification studies are required to understand how plastic mulch affects growth and yield of a given species. Previous field research assessing the response to colored plastic mulching in potato shows no consistent results on yield, maybe because it has been performed under different geographical latitudes. Potato in Mexico is conventionally cultivated on bare soil combined with various irrigation systems. The objective of the present study was to examine the effect of colored plastic mulches on soil temperature, growth, yield and photosynthetic response of potato plants. The experiment was conducted in Northeast Mexico and the treatments included were: black plastic mulch (BPM); white-on-black plastic mulch (W/B), silver-on-black (SPM), aluminum-on-black plastic mulch (APM) and a control that consisted of bare soil cultivated plants. Treatments were arranged in a randomized complete block design with four replications. Results suggest that average daily mean soil temperature was linearly and negatively correlated with total yield and yield of first-quality tubers. Total yield and yield of first-quality tubers of plants mulched with W/B, SPM and APM was significantly higher (p≤0.05) than those of control plants. Leaf area and shoot dry weight were increased when soil temperatures were higher due to the effect of radiation transmission to the soil, however, this decrease was associated with a decrease in tuber production. The results of our study indicate that plants grown under BPM, which induced the highest soil temperature, showed marginal difference in yield compared with control plants, suggesting that colored plastic mulches have a positive effect on yield through decreased rise in soil temperature.  相似文献   

2.
The use of plastic mulch is associated with a higher increase in yield of vegetables. However, at the end of the growing season for each crop, plastic mulching can create environmental pollution that can cause negative impacts on the environment that could be solved by the use of degradable plastics. The aim of this study was to determine the effect of oxo-degradable plastic mulches on soil temperature, growth, gas exchange, and cucumber crop yield. The study was conducted in two locations in the northeast of Mexico during the spring and summer of 2013. The plastic mulch colors with additives were blue, green, and red and each color having 8% and 12% of pigment and 22% and 23% of Titanium dioxide (Rutile). The resultant treatments were compared with the black plastic mulch, which is the standard plastic in the world, and bare soil in a randomized complete block design with three replications in two locations. The mean soil temperature at both locations was statistically higher in black plastic mulch, followed by the oxo-degradable plastics mulches and lowest in the control. Gas exchange was not affected by plastic mulches. SPAD units as the index of chlorophyll content in leaves were very little affected by plastic mulch. Both, commercial and total yield were statistically similar in the oxo-degradable plastic mulches and the black plastic mulch, and lowest in the control. Plastics with higher concentrations of pigment registered higher degradation in both locations. Our results suggest that different plastic mulches impact positively on the yield of cucumber crop. The benefit in yield by the different plastic mulches in the conditions of this study was due to their soil warming ability that results in improved soil temperature, leaf area, and plant dry weight.  相似文献   

3.
ABSTRACT

The effectiveness of different mulch types on fruit yield, leaf-nutrient composition, and normal plant growth parameters was investigated in order to maximize water use efficiency (WUE) in cucumber grown under water stress. Treatments were (1) bare soil + water stress (WS), (2) bare soil + unstressed (control, C), (3) black polyethylene mulch + water stress (BPM + WS), (4) wheat straw mulch + water stress (WSM + WS), and (5) wheat straw mulch plus black polyethylene mulch + water stress (WSM + BPM + WS). Seasonal crop evapotranspiration was between 492 and 960 mm. Seasonal irrigation water amounts were 965 and 485 mm for the C and WS treatments, respectively. The WUE ranged from 3.40 to 5.78 kg m?3, while irrigation water-use efficiency (IWUE) was between 3.39 and 6.08 kg m?3. IWUE and WUE were increased under WS treatments with mulching compared with the control treatment, as mulching significantly reduced the amount of irrigation water required. Both BPM and WSM improved the fruit yield, fruit size, plant dry matter, total leaf area, and chlorophyll and nutrient concentrations in leaves under the stressed treatments, while these two mulches in combination (BPM + WSM) caused further increases in these parameters. This study confirms that limiting soil evaporation with mulches is a key action to take to save irrigation water and to improve WUE and IWUE. Because use of drip irrigation with mulching can increase WUE, this strategy might be used for vegetable production in semi-arid regions where irrigation water is limited.  相似文献   

4.
Potato is one of the most important crops in the world because of its high nutritional value; however, traditional cultivation in bare soil may render low yields and poor quality. Crop production efficiency can be increased by using plastic mulching and row covers to modify root zone temperature and plant growth, in addition to reduction in pest damage and enhance production in cultivated plants. However, there is little information demonstrating the effect of row covers in combination with plastic mulch on potato. The aim of this study was to assess the change in root zone temperature and its effect on growth, leaf nutrient, and yield of potato using plastic mulch of different colors, in combination with row covers. Seed of cultivar Mondial was planted in May 2012. The study included four plastic films: black, white/black, silver/black, aluminum/black, and a control with bare soil, which were evaluated alone and in combination with row covers removed at 30 days after sowing in a split-plot design. Higher yields were obtained when no row cover (43.2 t ha?1) and the white/black film (42.2 t ha?1) were used. Leaf nitrogen, sulfur, and manganese concentration were higher in plants when row cover was used; in contrast, no–row cover plants were higher in Fe and Zn. Mulched plants were higher in Mn concentration than control plants. There was a quadratic relationship between mean soil temperature and total yield (R2 = 0.94), and between plant biomass and total yield (R2 = 0.98), between leaf area with total yield (R2 = 0.98).  相似文献   

5.
The aim of this study was to realize whether soil mulching, with different plastic mulch colors, is a suitable practice under shade house (SH) conditions for the culture of cucumber. To do so, cucumber was cultured mulched or not with black, blue, red or white-on-black plastic films under SH, and contrasted against mulched cucumber in open field (OF). Red mulch produced the highest shoot dry weight per plant and bare soil the lowest. However, it was the white mulch which produced the highest commercial yield per plant. Contrastingly, bare soil plants produced the lowest commercial yield. SH plants two folded photosynthetic rates compared to OF plants. Mulch color mainly impacted leaf phosphorus (P) and magnesium (Mg) content while the SH affected nitrogen (K), calcium (Ca) and magnesium (Mg). Our results confirm that soil mulching, and shading positively impact the cucumber yield and quality but also show that soil mulching under SH enhances cucumber crop.  相似文献   

6.
The aim of this study was to determine if plastic mulch films may have positive effects on bell pepper plants grown under shade house conditions. The experimental design was split-plot, where large plots contained four plastic mulch films (black, aluminum, silver, and white) compared to bare soil and small plots contained two bell pepper cultivars. Plant shoot dry weight was higher in plastic mulch treatments than in bare soil. The net photosynthesis rate in the cultivar SWG-46 exceeded in net photosynthesis with respect to the cultivar SWG-42 in one of three sampling dates. Nutrients in leaf showed a similar behavior in plastic mulch treatments than the control but the total content of nitrogen (N), potassium (K), and sulfur (S) was increased. The total yield was higher in black plastic mulch than in the other plastic mulch colors and lowest in the control.  相似文献   

7.
研究了覆盖不同厚度稻草(4、8 cm)以及加盖普通地膜和黑色地膜对免耕马铃薯农艺性状及品质的影响。结果表明:覆盖不同厚度稻草的影响效果具有显著的差异,与覆盖稻草4 cm相比,覆盖稻草8 cm可提高单株结薯数和产量,降低绿薯率,但降低出苗率和株数,其他品质参数差异不明显;在覆盖稻草4 cm的基础上加盖薄膜具有提高单薯重和产量的作用,但在覆盖稻草8 cm的基础上加盖薄膜则对出苗不利,降低了出苗率和株数,降低产量;加盖地膜能显著降低绿薯率,其中黑色地膜的效果优于普通地膜。  相似文献   

8.
不同地面覆盖对土壤性状和秋播大蒜产量及品质的影响   总被引:2,自引:0,他引:2  
李文旺  周世洋  刘敏  蒋芳玲  彭怡琳  吴震 《土壤》2021,53(2):305-312
为探究秋播大蒜适宜的地面覆盖类型及其对大蒜产量的影响机制,从而为地面覆盖在大蒜高产高效栽培中的应用提供理论依据,以'麻江红蒜'为试验材料,以不覆盖处理为对照,分别设置白色地膜、黑色地膜、银灰色地膜、1~2cm和3~4cm稻草、1~2cm和3~4 cm稻壳共7种地面覆盖处理,分析不同处理对土壤含水量、温度和酶活性以及大蒜...  相似文献   

9.
Abstract

The seven mulches investigated affected soil temperature throughout the season compared with bare soil. The degree of temperature moderation varied depending on whether the temperature trend was increasing, relatively constant or decreasing. The organic mulches, wood chips and silage, as well as spun polypropylene covered with wood chips kept the soil temperature cooler compared with bare soil until middle of August. During periods of soil warming, spun polypropylene and paper reduced soil temperature. Soil under black plastic had a higher mean temperature than bare soil throughout the season. Degradable plastic increased soil temperature, but only to a small extent. The organic mulches conserved more moisture than any other of the materials evaluated, although during July soil moisture contents were significantly higher under all mulches compared with bare soil.  相似文献   

10.
Plant materials differ in their chemical composition, rate of decomposition and suitability as mulch materials. Experiments were conducted during 2006–2007 and 2007–2008 cropping seasons for early yam cultivation at Owo in the forest–savanna transition zone of southwest Nigeria to study the effect of Chromolaena odorata and Tithonia diversifolia mulches applied at 0.0, 5.0, 7.5, 10.0 and 12.5 t ha?1 on soil chemical properties, leaf nutrient composition, growth and tuber yield of white yam (Dioscorea rotundata Poir). Both C. odorata and T. diversifolia mulches reduced soil bulk density and temperature; increased concentrations of soil organic matter (SOM), total N, available P, exchangeable K, Ca and Mg, leaf N, P, K, Ca and Mg; enhanced growth and yield of yam compared with control. The values of SOM, total N and available P and leaf N and P concentrations increased with increasing mulch rate. C. odorata mulch and T. diversifolia mulch applied at 10.0 and 7.5 t ha?1, respectively, was found to be suitable for yam production. T. diversifolia mulch compared with C. odorata mulch produced higher values of soil chemical properties, leaf nutrient concentrations, growth and yield of yam. T. diversifolia mulch produced 19% and 18% higher tuber yield compared with C. odorata mulch during 2006–2007 and 2007–2008 cropping seasons, respectively.  相似文献   

11.
Abstract

This study evaluated the effects of plastic mulched ridge-furrow cropping on soil biochemical properties and maize (Zea mays L.) nutrient uptake in a semi-arid environment. Three treatments were evaluated from 2008 to 2010: no mulch (narrow ridges with crop seeded next to ridges), half mulch (as per no mulch, except narrow ridges were mulched), and full mulch (alternate narrow and wide ridges, all mulched with maize seeded in furrows). Compared to the no mulch treatment, full mulch increased maize grain yield by 50% in 2008 and 25% in 2010, but reduced yield by 21% in 2009 after low precipitation in early growth. Half mulch had a similar grain yield to no mulch in the three cropping years, suggesting half mulch is not an effective pattern for maize cropping in the area. Mulch treatments increased aboveground nitrogen (N) uptake by 21?34% and phosphorus (P) uptake by 21?42% in 2008, and by 16?32% and 14?29%, respectively, in 2010; but in 2009 mulching did not affect N uptake and decreased P uptake. Soil microbial biomass and activities of urease, β-glucosidase and phosphatase at the 0?15 cm depth were generally higher during vegetative growth but lower during reproductive growth under mulch treatments than no mulch. Mulching treatments increased carbon (C) loss of buried maize residues (marginally by 5?9%), and decreased light soil organic C (15?27%) and carbohydrate C (12?23%) concentrations and mineralizable C and N (8?36%) at harvest in the 0?20 cm depth compared with no mulch, indicating that mulching promotes mineralization and nutrient release in soil during cropping seasons. As a result of these biological changes, mineral N concentration under mulch was markedly increased after sowing in upper soil layers compared with no mulch. Therefore, our results suggest that mulched cropping stimulated soil microbial activity and N availability, and thus contributed to increasing maize grain yield and nutrient uptake compared with no mulch.  相似文献   

12.
银黑双色膜覆盖对土壤理化性状和木薯产量的影响   总被引:1,自引:0,他引:1  
[目的] 探讨银黑双色膜覆盖对土壤理化性状和木薯生长、产量的影响,为银黑双色地膜在木薯上应用提供科学依据。[方法] 采用银黑双色地膜、黑色地膜、白色地膜覆盖和不盖膜4种处理,开展野外试验,并用Excel 2003和DPS 7.05软件进行数据分析。[结果] 银黑双色地膜覆盖土壤保水力比黑色地膜覆、白色地覆盖和不覆盖分别提高18.34%,15.49%和49.95%;土壤固相体积比例分别降低4.87%,15.18%和15.25%,土壤气相体积比例分别增加2.24%,2.43%和8.13%,土壤液相体积比例分别增加2.4%,2.45%和6.83%;土壤速效氮含量分别增加20.94,21.64和27.22 mg/kg。土壤速效磷含量分别增加18.19,19.39和41.29 mg/kg;土壤速效钾含量分别增加21.77,22.30和28.16 mg/kg;木薯块根产量分别增产10.49%,17.75%和30.93%。淀粉产量分别提高11.18%,19.55%和34.70%。[结论] 银黑双色地膜覆盖对增强土壤的保水力,调节土壤三相比,改善土壤理化性状,促进土壤有效化,提高土壤有效养分含量,促进木薯生长,提高木薯产量起着重要作用。  相似文献   

13.
不同覆膜种植对土壤水热和冬小麦产量的影响   总被引:4,自引:0,他引:4  
曹寒  吴淑芳    冯浩  张延 《水土保持研究》2015,22(6):110-115
为探索不同地膜颜色和种植方式对土壤水热及冬小麦产量的影响,设置黑、白两种地膜颜色及平作和垄作两种种植方式。通过使用TRIME-TDR及地温计对不同覆膜处理整个生育期内土壤水分和温度的监测,探究不同覆膜种植对农田土壤水热动态变化和冬小麦产量的影响。结果表明:(1)在作物越冬期—返青期,覆膜处理增温效果最为显著,较对照该时期增加了1.3℃,在作物拔节期—灌浆期,覆膜受植株茂密遮阳影响,增温效果不显著;无论是平作还是垄作,黑膜处理其表层5 cm土壤温度均高于白色覆膜和对照不覆膜处理;一天内,黑、白覆膜处理表层5 cm土壤温度最高值较对照分别增加4.9℃和5.7℃。(2)整个生育期,0—20 cm耕层内土壤含水率变化波动最显著,起垄覆膜处理耕层土壤含水率平均较平作覆膜处理和对照处理分别提高5.04%和14.82%。在起垄覆黑膜处理作物生育期内,抽穗期0—100 cm土层蓄水量处理提高最为显著,较对照增加45.2 mm。(3)起垄覆黑膜增产节水效果最显著,产量较对照处理增加658.7 kg/hm2;水分利用效率较对照提高16.3%。在丰水型年,由于降水充沛,不同种植方式间土壤水分利用效率差异不显著。该结果对于覆膜种植技术的改进有一定的指导意义。  相似文献   

14.
对板栗园树盘土壤双重覆盖的效应研究   总被引:9,自引:4,他引:9       下载免费PDF全文
对板栗园树盘土壤进行麦秸、黑色地膜和无色地膜的单一或双重覆盖试验。结果表明,所有覆盖处理的保水效果均好于对照,但对温度的影响因不同处理而有差异;覆草+覆膜的处理不仅具有显著的增温保墒作用,能培肥地力,双重覆盖处理的有机质平均含量比单独的膜覆盖增加0.1%,有效磷和有效钾分别提高1.2和5.7 mg·kg-1,孔隙度增加3.21%,栗果产量增加10.70%。综合各种效应不同处理优劣顺序为:黑膜+草>无色膜+草>覆草> 黑膜>无色膜>对照。  相似文献   

15.
Abstract

Cover cropping and mulching to sustain and improve soil fertility and for weed control are common practices in organic growing systems. In this study, microbial parameters under different kinds of mulches and cover crops were analyzed in a field experiment with organically grown black currant (Ribes nigrum). The experiment comprised a combination of two mulches with bare soil as a control and two cover crops which were compared with bare soil, with and without an extra supply of organic fertilizer. Soil carbon (C) and nitrogen (N) as well as pH were unaffected by any of the treatments. The basal respiration rate was increased by mulching with wood chips throughout the four years of the experiment. During the last two years of the experiment, substrate induced respiration was also measured but was not found to be affected by any of the mulches. The potential ammonium (NH4 +) oxidation increased significantly after an initial supply of 200 kg N ha‐1 as solid cattle manure. The increase was significantly lower under wood chips than in bare soil, although an extra 200 kg N ha‐1 had been supplied under the wood chips. Furthermore, the black currant bushes suffered from a N deficiency in the wood chip treatment. The results showed that there was no substantial lasting build‐up of microbial biomass or organic matter content with wood chips because of lack of N, despite a large initial input of N and easily‐available C. Possible reasons for this deficiency are either increased denitrification under the wood chips or fungal translocation of N to the wood chip layer. Results from this experiment suggests that the evaluation of a few complementary biological soil parameters can be an important tool when developing sustainable growing systems and for indicating environmental stress.  相似文献   

16.
Water and nutrient availability significantly limits global crop production, especially for dryland agriculture in arid and semi-arid regions. To explore the optimal soil mulching options for the Loess Plateau in China, a 3-year field study was conducted to investigate the effects of various soil mulching practices on soil temperature and the water use and grain yield of spring maize. The treatments included traditional flat farming (CK), narrow plastic film mulch (NM), wide plastic film mulch (WM) and narrow plastic film mulch?+?maize straw mulch between rows (MS). The results showed that MS treatment increased consistently soil temperature during the initial stages of maize growth, and more importantly, it reduced diurnal temperature variation. MS also increased in soil water storage by 10.1%, leading to the highest water use efficiency (WUE?=?30.9?kg?ha?1?mm?1) over CK on 3 year average. MS significantly increased maize yield and net income of farmers by up to 20%, compared to CK. In conclusion, optimisation of soil mulching strategies significantly enhanced crop yield and water productivity in dryland agriculture in China. Our study provides important guidance for exploring better soil management practice for dryland agriculture in the other regions of the world.  相似文献   

17.
Abstract. In the Sahel, promising technologies for agricultural intensification include millet stover mulching and ridging. A four year on‐farm experiment was set‐up in order to assess the effect of various combinations of these two technologies on crop development and yield in a millet (Pennisetum glaucum (L.) R. Br.) ‐ cowpea (Vigna unguiculata (L.) Walp.) intercropping system. Treatments included bare surface, ridging, a surface applied banded millet stover mulch (2 t ha–1) and a banded millet stover mulch (2 t ha–1) buried in ridges. The latter three treatments were implemented exclusively in the cowpea rows, with an annual rotation between the millet and cowpea rows. On bare and ridged plots, millet yields fell below 100 kg grain ha–1 after the first year. This was ascribed mainly to soil acidification and loss of soil organic matter rather than to soil physical constraints or water availability despite extensive surface crusting and high soil penetration resistance and bulk density. Compared to the bare plots, ridging increased cowpea hay production by 330% over the four years which was attributed to lower soil penetration resistance and bulk density but also to a reduction of 0.15 cmol+ kg–1 exchangeable acidity in the ridges. Except during the severe drought year of 1997, millet grain yield in the banded mulch treatment remained fairly stable over time at 526 ± 9 kg ha–1. However, a detailed analysis revealed yield compensation mechanisms between various yield components depending on the timing of occurrence of the abiotic stresses. Cowpea productivity was always higher in buried banded mulch plots than in surface applied banded mulch plots but the former treatment appeared unable to sustain millet yields. This decline was attributed to a greater nutrient uptake by cowpea and more rapid acidification in the buried mulch treatment compared to the banded mulch treatment.  相似文献   

18.
不同覆盖方式对土壤水热分布的影响   总被引:1,自引:0,他引:1  
[目的]覆盖会影响土壤水、热分布,研究不同覆盖方式对土壤水热分布的影响,可为不同作物选择合适的覆盖方式控制土壤水热状态提供参考.[方法]用田间试验测定不同覆盖方式下玉米农田土壤的温度、含水率与蒸发量,比较测定数据探究不同覆盖方式对土壤水、热分布影响的特征.共设5个试验处理,无覆盖、地膜覆盖、1.5 cm落叶覆盖、3.0...  相似文献   

19.
Abstract

Effects of five types of plant residues [Acioa, presently Dactyladenia barteri, Gliricidia sepium, and Leucaena lecocephala prunings, maize (Zea mays) stover and rice (Oryza sativa) straw] applied as mulch on soil organic matter (SOM) content and effective cation exchange capacity (ECEC) were studied on an Alfisol in the humid tropics. Plant residue mulch resulted in a decline in SOM and ECEC during two years of cropping following six years of grass fallow. Rice straw mulch resulted in less and maize stover mulch in a greater decrease of SOM and ECEC than the other mulches. Decrease in SOM and ECEC is attributed to the mulching effect on the soil micro‐climate which enhanced the decomposition of SOM accumulated during the grass fallow prior to the initiation of the experiment. In order to maintain SOM for a tropical soil, plant residues with high lignin, polyphenols, and silica will have to be among residue species when applied in continuous cropping systems.  相似文献   

20.
Soil surface evaporation processes under mulches of different sized gravel   总被引:1,自引:0,他引:1  
To reduce water loss from soil surface evaporation is important in agricultural and environmental practices, especially in arid and semi-arid regions. Gravel mulch has long been practiced to reduce soil surface evaporation. In this study, a series of simulation experiments were conducted to study the effects of gravel mulches of different sizes on evaporation process from soil surface. Four mulch treatment levels were used: diameter 0.5 cm (A), diameter 2.5 cm (B), diameter 4.5 cm (C), and bare soil (CK), with three replicates. It was found that the gravel mulches dramatically reduced the evaporation from bare soil surface, particularly when soil water contents were at high levels. Under the same soil water content, the evaporation reduction rates under gravel mulches were negatively correlated with gravel sizes. The evaporation processes under gravel mulches were much more stable as compared with that from bare soil surface. The ratio of the soil surface evaporation to the atmospheric evaporation (Ess/Esa) and soil water contents with no mulch decreased rapidly with time. Soil water contents decreased slowly with time under mulches while the Ess/Esa values maintained at the more or less stable levels. During the successive evaporation process of 41 days, the cumulative soil surface evaporation under mulches was linearly correlated with time but that from bare soil surface was logarithmically correlated with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号