首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purpose: The purposes of this study were to characterise the migration and the colonisation dynamics of two different fluorescent-tagged rhizobia in various alfalfa tissues (especially in seeds); and also to develop efficient inoculation treatments to promote colonisation ability of target rhizobia in elite seed varieties.

Materials and methods: Four treatments (root drench, root damaging and drench, root drench with matrine, and flower spray) were applied to inoculate alfalfa with two fluorescent-tagged rhizobia, Ensifer meliloti LZgn5f (gn5f) and Ensifer meliloti 12531f (12531f), at three different growth stages; bud, flower and pod stages. The migration and colonisation dynamics of the two fluorescent tagged rhizobia strains were monitored using UV lamp detection and a stereo fluorescence microscopy.

Results: The results showed that both rhizobia strains mainly colonised the roots and could migrate to aerial tissues. In aerial tissues, when alfalfa plants were inoculated during the bud stage, both rhizobia strains mainly colonised the leaves and stems; during the flower stage, a spray inoculation treatment resulted in more 12531f colonising reproductive tissues, while during the pod stage, more rhizobial strains gn5f colonised seeds using the root drench with matrine treatment.

Conclusions: These results indicate that endophytic rhizobia are natural inhabitants of internal regions of roots, stems, leaves and that the endophytes may arise from reproductive tissues, such as seeds. Understanding the population dynamics of endophytic rhizobia in alfalfa would considerably improve the survival of target rhizobia during seed transfer. Combining target endogenous rhizobial species with good alfalfa seed varieties may lead to the development of a novel breeding method.  相似文献   


2.
Abstract

Can humic acid (HA) and glutamic acid (GA), when added to tomato (Lycopersicon esculentum Mill. cv. ‘Hongyangli’) nutrient solution in a hydroponic system, improve growth? Tomato seedlings were grown in six nutrient solutions: (1) control (C), (2) C + 25 mg L?1 HA (HA1); (3) C + 50 mg L?1 HA (HA2); (4) C + 100 mg L?1 GA; (5) HA1 + GA; (6) HA2 + GA. Various biochemical and physiological parameters were measured. HA increased photosynthesis rate and mesophyll conductance. HA did not significantly affect transpiration, stomatal conductance, titratable acidity, or antioxidant activity. In addition, GA improved protein and sugar content, mesophyll conductance and yield. The combination of HA and GA was more effective, especially with 50 mg L?1 HA. The activity of superoxide dismutase (SOD) and peroxidases (POD) did not change in the presence of HA or GA. Malondialdehyde (MDA) content increased by 30% in HA2 together with GA. HA has a positive effect on tomato hydroponic growth when applied with GA. This expands the use of HA and GA for horticultural commodities in hydroponic systems.  相似文献   

3.
Four okra cultivars [Abelmoschus esculentus (L.) Moench] were cultivated for two growing periods at nitrogen (N) application rates of 150, 300 and 450 mg N L?1. There was no effect of N on pod size (length and diameter) or on the number of seeds per pod and seed size (mean 1000 seed weight), all these characteristics of which related to the genotype. High N application (450 mg N L?1), increased the seed yield of the cultivar with the lowest flower induction (Boyiatiou), but only in experiment 2. In Veloudo, seed yield was highest at 300 mg N L?1, whereas in Pylaias and Clemson 450 mg N L?1 reduced seed yield. In all cultivars, seeds produced at an N rate of 450 mg N L?1 exhibited a significantly higher percent germination N, possibly by reducing the incidence of seed hardness.  相似文献   

4.
In this study, interactions of nickel sulfate and urea sprays on vegetative growth, yield and leaf mineral contents in strawberry were investigated. Rooted Pajaro strawberry plants were potted in 3 liter pots filled with soil, leaf mold and sand (1:1:1, v/v/v). Established plants were foliar sprayed with nickel sulfate at 0, 150, 300 and 450 mg L?1 and urea 0 and 2 g L?1 concentrations. Results indicated that nickel (Ni; 300 mg L?1) plus urea (2 g L?1) significantly increased the yield and runner numbers. Nickel sulfate at the rate of 300 and 150 mg L?1and urea (2 g L?1) significantly increased the crown numbers. The greatest root fresh and dry weights were obtained from untreated plants. Urea at 2 g L?1 without nickel significantly increased shoot fresh and dry weights. Nickel at 450 mg L?1 without urea significantly increased Ni concentration in leaves. Overall, nickel sulfate at 150 and 300 mg L?1 along with urea at 2 g L?1 were the best treatments.  相似文献   

5.
《Journal of plant nutrition》2013,36(10):2315-2331
ABSTRACT

Split root solution culture experiments were conducted to study the effects of the rare earth element lanthanum (La) on rice (Oryza sativa) growth, nutrient uptake and distribution. Results showed that low concentrations of La could promote rice growth including yield (0.05 mg L?1 to 1.5 mg L?1), dry root weight (0.05 mg L?1 to 0.75 mg L?1) and grain numbers (0.05 mg L?1 to 6 mg L?1). High concentrations depressed grain formation (9 mg L?1 to 30 mg L?1) and root elongation (1.5 mg L?1 to 30 mg L?1). No significant influence on straw dry weight was found over the whole concentration range except for the 0.05 mg L?1 treatment. In the pot and field experiments, the addition of La had no significant influence on rice growth.Lanthanum had variable influence on nutrient uptake in different parts of rice. Low concentrations (0.05 mg L?1 to 0.75 mg L?1) increased the root copper (Cu), iron (Fe), and magnesium (Mg), and grain Cu, calcium (Ca), phosphorus (P), manganese (Mn), and Mg uptake. High concentrations (9 to 30 mg L?1) decreased the grain Ca, zinc (Zn), P, Mn, Fe and Mg, and straw Ca, Mn, and Mg uptake. With increasing La concentration, root Zn, P, Mn, Cu, and Ca concentrations increased, and grain Ca and Fe, and straw Mn, Mg, and Ca concentrations decreased. Possible reasons are discussed for the differences between the effects of La in nutrient solutions and in pot and field experiments.  相似文献   

6.
《Journal of plant nutrition》2013,36(12):2745-2761
ABSTRACT

Effect of cadmium (Cd) on biomass accumulation and physiological activity and alleviation of Cd-toxicity by application of zinc (Zn) and ascorbic acid in barley was studied, using semisolid medium culture including 15 treatments [four Cd concentration treatments: 0.1, 1, 5, 50?µmol?L?1, four treatments with addition of 300?µmol?L?1 Zn or 250?mg?L?1 ascorbic acid (ASA) based on these four Cd concentrations, respectively, and three controls: basic nutrient medium, and with Zn or ASA, respectively]. Cadmium addition to semisolid medium, at a concentration of 1, 5, and 50?µmol?L?1, inhibited biomass accumulation and increased malondialdehyde (MDA) content of barley plants, while the addition of 0.1?µmol?L?1 Cd increased slightly dry mass. There was a tendency to a decrease in Zn, copper (Cu) concentrations both in shoots and roots and iron (Fe) in shoots of barley plants exposed to 1 to 50?µmol?L?1 Cd. In addition, there were indications of a stress repose characterized by increased superoxide dismutase (SOD) and peroxidase (POD) activities relative to plants not subjected to Cd. The physiological changes caused by Cd toxicity could be alleviated to different extent by application of 300?µmol?L?1 Zn or 250?mg?L?1 ASA in Cd stressed plants. The most pronounced effects of adding Zn or ASA in Cd stressed medium were expressed in the decreased MDA and increased biomass accumulation, e.g., MDA contents were reduced (p≤0.01) by 4.8%–17.8% in shoots and 0.5%–19.7% in roots by adding 300?µmol?L?1 Zn, in 50?µmol?L?1 Cd stressed plants, and by 1.3%–7.4% in shoots and 2.6%–4.5% in roots by application of 250?µmol?L?1 ASA, respectively. However, ASA addition may enhance Cd translation from root to shoot, accordingly, ASA would be unsuitable for the edible crops grown in Cd contaminated soils to alleviate phytotoxicity of Cd.  相似文献   

7.
The effects of inoculating arbuscular mycorrhizal (AM) fungi on the growth, phosphorus (P) uptake, and yield of Welsh onion (Allium fistulosum L.) were examined under the non-sterile field condition. Welsh onion was inoculated with the AM fungus, Glomus R-10, and grown in a glasshouse for 58?days. Non-inoculated plants were grown as control. Inoculated and non-inoculated seedlings were transplanted to a field with four available soil P levels (300, 600, 1,000, and 1,500?mg P2O5?kg?1 soil) and grown for 109?days. AM fungus colonization, shoot P concentration, shoot dry weight, shoot length, and leaf sheath diameter were measured. Percentage AM fungus colonization of inoculated plants was 94% at transplant and ranged from 60% to 77% at harvest. Meanwhile, non-inoculated plants were colonized by indigenous AM fungi. Shoot length and leaf sheath diameter of inoculated plants were larger than those of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Shoot P content of inoculated plants was higher than that of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Yield (shoot dry weight) was higher for non-inoculated plants grown in soil containing 1,000 and 1,500?mg P2O5?kg?1 soil than for those grown in soil containing 300 and 600?mg?P2O5 kg?1 soil. Meanwhile, the yields of inoculated plants (200?g plant?1) grown in soils containing the four P levels were not significantly different. Yield of inoculated plants grown in soil containing 300?mg P2O5 kg?1 soil was similar to that of non-inoculated plants grown in soil containing 1,000?mg P2O5?kg?1 soil. The cost of AM fungal inoculum for inoculated plants was US$ 2,285?ha?1 and lower than the cost of superphosphate (US$ 5,659?ha?1) added to soil containing 1,000?mg P2O5 kg?1 soil for non-inoculated plants. These results indicate that the inoculation of AM fungi can achieve marketable yield of A. fistulosum under the field condition with reduced application of P fertilizer.  相似文献   

8.
Sodium chloride, at rates up to 100 mg g?1, was added to a Sassafras sandy loam amended with finely-ground alfalfa to determine the effect of NaCl on CO2 evolution, ammonification, and nitrification in a 14-week study. A NaCl concentration of 0.25 mg g?1 significantly reduced CO2 evolution by 16% in unamended soil and 5% in alfalfa-amended soil. Increasing NaCl progressively reduced CO2 evolution, with no CO2 evolved from the soil receiving 100 mg NaCl g?1. A 0.50 mg NaCl g?1 rate was required before a significant reduction in decomposition of the alfalfa occurred. The NO?2-N + NO?3-N content of the soil was significantly reduced from 40 to 37 μg g?1 at 0 and 0.25 mg NaCl g?1, respectively in the unamended soil. In the alfalfa amended soil, nitrification was significantly reduced at 5 mg NaCl g?1. At 10 mg NaCl g?1, nitrification was completely inhibited, there being only 6 and 2 μg NO?2-N + NO?3-N g?1 in the alfalfa amended and unamended soil, respectively. In the alfalfa amended soil NH+4-N accumulated from 6 μg g?1 at the 0 NaCl rate to a maximum of 54 μg g?1 with 25 mg NaCl g?1. These higher NH+4-N values resulted in a 0.5 unit increase in the pHw over that of the 0 NaCl rate in the alfalfa amended soil. At NaCl concentrations above 25 mg g?1 there was a reduction in NH+4-N. The addition of alfalfa to the soil helped to alleviate the adverse affects of NaCl on CO2 evolution and nitrification.  相似文献   

9.
Abstract

Manganese (Mn) toxicity may play an important role in the poor survival of seedlings in declining sugar maple (Acer saccharum Marsh.) stands in northern Pennsylvania. To determine the effect of Mn on the growth of sugar maple seedlings, 1‐year‐old seedlings inoculated with vesicular‐arbuscular mycorrhizal (VAM) fungi and growing in sand‐vermiculite‐peat moss medium were irrigated for 7 weeks with nutrient solution (pH 5) containing 0.1 (control), 1, 2, 4, 8, or 16 mg L?1 Mn. Total seedling dry weight was negatively correlated with Mn, becoming significantly different than the control at 2 mg L?1 Mn. Stem and root dry weight were reduced by lower Mn levels than leaf dry weight. Manganese had no effect on the root/shoot ratio. The concentration of Mn in roots and leaves increased as the level of Mn in the nutrient solution increased, with the concentration in the leaves 2.2‐ to 3.7‐fold greater than the concentration in the roots. Except for a reduction of P in the roots, Mn had little effect on the concentration of nutrient elements in the roots or leaves. Colonization of the roots by VAM fungi was increased by Mn, with a maximum percentage at 4 mg L?1 Mn. Manganese toxicity symptoms in the leaves, small discrete chlorotic spots, began to appear at 1 mg L?1 Mn. The sensitivity of sugar maple seedlings to Mn found in this study supports the hypothesis that Mn may affect regeneration in declining sugar maple stands. However, evaluation of the effects of Mn on seedlings in native soils under field conditions will be necessary before the role of Mn in sugar maple regeneration can be understood.  相似文献   

10.
Abstract

The transformation of added phosphorus (P) to soil and the effect of soil properties on P transformations were investigated for 15 acid upland soils with different physicochemical properties from Indonesia. Based on oxide-related factor scores (aluminum (Al) plus 1/2 iron (Fe) (by ammonium oxalate), crystalline Al and Fe oxides, cation exchange capacity, and clay content) obtained from previous principal component analyses, soils were divided into two groups, namely Group 1 for soils with positive factor scores and Group 2 for those with negative factor scores. The amounts of soil P in different fractions were determined by: (i) resin strip in bicarbonate form in 30 mL distilled water followed by extraction with 0.5 mol L?1 HCl (resin-P inorganic (Pi) that is readily available to plant), (ii) 0.5 mol L?1 NaHCO3 extracting Pi and P organic (Po) (P which is strongly related to P uptake by plants and microbes and bound to mineral surface or precipitated Ca-P and Mg forms), (iii) 0.1 mol L?1 NaOH extracting Pi and Po (P which is more strongly held by chemisorption to Fe and Al components of soil surface) and (iv) 1 mol L?1 HCl extracting Pi (Ca-P of low solubility). The transformation of added P (300 mg P kg?1) into other fractions was studied by the recovery of P fractions after 1, 7, 30, and 90 d incubation. After 90 d incubation, most of the added P was transformed into NaOH-Pi fraction for soils of Group 1, while for soils of Group 2, it was transformed into resin-Pi, NaHCO3-Pi and NaOH-Pi fractions in comparable amounts. The equilibrium of added P transformation was reached in 30 d incubation for soils of Group 1, while for soils of Group 2 it needed a longer time. Oxide-related factor scores were positively correlated with the rate constant (k) of P transformation and the recovery of NaOH-Pi. Additionally, not only the amount of but also the type (kaolinitic) of clay were positively correlated with the k value and P accumulation into NaOH-Pi. Soils developed from andesite and volcanic ash exhibited significantly higher NaOH-Pi than soils developed from granite, volcanic sediments and sedimentary rocks. Soil properties summarized as oxides-related factor, parent material, and clay mineralogy were concluded very important in assessing P transformation and P accumulation in acid upland soils in Indonesia.  相似文献   

11.
Abstract

An experiment was carried out in a controlled temperature (CT) room for five weeks with tomato cvs., Moneymaker, Liberto, and Calypso, to investigate possible relationships between zinc (Zn) deficiency or toxicity and electrolyte leakage in plant leaves. The concentrations of Zn in nutrient solution were 0.01, 0.5, and 5.0 mg L?1, respectively. There were significant reductions in the dry matter and chlorophyll content of all three cultivars grown both at 0.01 (low) and 5 mg L?1 (high) Zn compared to 0.5 mg L?1. The concentration of Zn at 0.01 mg L?1 was not sufficient to provide for optimal plant growth, while 5 mg L?1 in nutrient solution was detrimental to plant growth for all three cultivars. Dry matter production was generally lowest in the plants grown at low (0.01 mg L?1) Zn except for Moneymaker where the lowest biomass was in the high Zn treatment. Zinc concentration was increased in the leaves and roots with increasing Zn concentration in nutrient solution. Phosphorus concentration was toxic in the leaves of the plants grown at low (0.01 mg L?1) and was deficienct at high Zn (5 mg L?1). The electrolyte leakage (%) gradually increased in the plants grown at low and high Zn concentrations and these increases were greatest in the leaves of plants grown at low Zn (except for Moneymaker grown at high Zn where reduction in dry matter was less). The best results for all growth parameters tested were for the plants grown at 0.5 mg L?1 Zn. The results of this short‐term experiment show that electrolyte leakage which is relatively simple and easy to measure may be a good indicator of cultivar tolerance to Zn deficiency and toxicity.  相似文献   

12.
Abstract

The effects of exogenous NaCl and silicon on ion distribution were investigated in two alfalfa (Medicago sativa. L.) cultivars: the high salt tolerant Zhongmu No. 1 and the low salt tolerant Defor. The cultivars were grown in a hydroponic system with a control (that had neither NaCl nor Si added), a Si treatment (1 mmol L?1 Si), a NaCl treatment (120 mmol L?1 NaCl), and a Si and NaCl treatment (120 mmol L?1 NaCl + 1 mmol L?1 Si). After 15 days of the NaCl and Si treatments, four plants of the cultivars were removed and divided into root, shoot and leaf parts for Na+, K+, Ca2+, Mg2+, Fe3+, Mn2+, Cu2+ and Zn2+ content measurements. Compared with the NaCl treatment, the added Si significantly decreased Na+ content in the roots, but notably increased K+ contents in the shoots and leaves of the high salt tolerant Zhongmu No.1 cultivar. Applying Si to both cultivars under NaCl stress did not significantly affect the Fe3+, Mg2+ and Zn2+ contents in the roots, shoots and leaves of Defor and the roots and shoots of Zhongmu No.1, but increased the Ca2+ content in the roots of Zhongmu No.1 and the Mn2+ contents in the shoots and leaves of both cultivars, while it decreased the Ca2+ and Cu2+ contents of the shoots and leaves of both cultivars under salt stress. Salt stress decreased the K+, Ca2+, Mg2+ and Cu2+ contents in plants, but significantly increased Zn2+ content in the roots, shoots and leaves and Mn2+ content in the shoots of both cultivars when Si was not applied. Thus, salt affects not only the macronutrient distribution but also the micronutrient distribution in alfalfa plants, while silicon could alter the distributions of Na+ and some trophic ions in the roots, shoots and leaves of plants to improve the salt tolerance.  相似文献   

13.
Abstract

Laboratory experiments were conducted to determine the influence of three types of decomposing fresh organic materials [pig manure (PM), Astagalus sinicus (AS), and Alternanthera philoxeroides (AP)] on dissolution of Fe2O3 and ZnO and also the use of a loamy calcareous soil as an alternative source of iron (Fe) and zinc (Zn). Levels of Fe and Zn concentrations in composting solutions changed with composting time. The maximum levels of solution Fe resulting from the decomposition of the three organic materials were 20, 612, and 348 mg L?1 for PM, AS, and AP, respectively, when the soil was supplied as the Fe source, and 17, 32, and 16 mg L?1 when Fe2O3 was supplied as the Fe source. Corresponding maximum levels of solution Zn were 0.9, 0.7, and 1.3 mg L?1 and 35, 171, and 103 mg L?1 when the soil and ZnO was supplied as the Zn source respectively for the same three organic materials.  相似文献   

14.
Abstract

In this research the effect of foliar application of selenium (Se) at four levels (Na2OSe4; 0, 5, 10 and 20?mg L?1) was evaluated on some phytochemical characteristics of Sultana grapevine under different salinity levels (NaCl; 0 or 75?mM). The vines were fed twice a week with Hoagland nutrient solution and Se was foliar applied twice with 24 intervals. During growing period, plant height, leaf number and leaf area were recorded. Moreover, at the end of experiment, mature leaves from middle nods of canes were used for measurement of some phytochemical indices. According to results, Se application had a positive effect on plant height, leaf numbers, leaf area and photosynthetic pigments content especially at 5?mg L?1 and to some extent 10?mg L?1 Se levels. Under salinity stress, foliar application of Se at 5?mg L?1 considerably decreased vines leaves electrolyte leakage and lipid peroxidation values compared to non se-treated plants under salinity stress condition. Selenium had an additive effect on salinity stress (75?mM NaCl) induced accumulation of total phenol, total flavonoid, soluble sugars and proline content in leave of vines. Moreover, the interaction of salinity and Se at 5 and 10?mg L?1 improved leaves antioxidant enzymes activities in Sultana grapevine. Likewise, foliar application of Se improved leaf mineral content in 75?mM NaCl -treated vines. Totally, foliar application of selenium (Se at 5 or 10?mg L?1) increased salt tolerance through improvement in nutritional balance and by enzymatic and non-enzymatic antioxidant capacity in grapevine leaves.  相似文献   

15.
ABSTRACT

Uncertainties exist about the importance of rhizobia inoculant and starter nitrogen (N) application in dry pea (Pisum sativum L.) production. Three field experiments were conducted to evaluate how rhizobia inoculant and starter N fertilizer affect pea seed yield and protein concentration in a semi-arid environment in central Montana. Commercial rhizobia inoculant was mixed with seed prior to planting at the manufacturer’s recommended rate. Starter N fertilizers were applied into the same furrow as seed at 0, 22, 44 and 88 kg ha?1 as urea, slow-release polymer-coated N fertilizer (ESN), and a combination of both. The application of rhizobia inoculant had no or a very small beneficial effect on pea yield in lands with a previous history of peas. In a land without pea history, application of rhizobia increased pea seed yield by 16%. The positive effect of starter N was only pronounced when initial soil N was low (≤ 10 kg ha?1 nitrate-nitrogen), which increased net return by up to US$ 42 ha?1. In this condition, application of slow-release N outperformed urea. However, application of starter N (especially with urea) had a negative effect on pea establishment, vigor and seed yield when soil initial N was high (≥ 44 kg ha?1 NO3-N). The results indicate that the rate, placement and form of the starter N must be optimized to benefit pea yield and protein without detrimental effects on germination and nodulation. Moreover, application of starter N must be guided by the soil nitrate content.  相似文献   

16.
Abstract

This study was conducted to evaluate the magnitude of nitrogen (N) pollution in stream water associated with intensive livestock farming practices. An extensive water sampling was carried out from stream tributaries, open channels, drainages, and seepages during the snow-melting season in 2001. Total nitrogen (TN) concentration was determined and water flow was measured. The lowest concentration of TN in the headwater of tributary ‘A’ was as low as 0.39 mg N L?1 (0.03 g s?1 of N load), and the concentration reached a value of 5 mg N L?1 in the outlet of the stream, which resulted in a N load of 1.37 g s?1. The increase in the N load (1.34 g s?1) was mainly due to drainage from a constructed wetland for livestock wastes, other drainages, and seepages from around the livestock sheds. The maximum concentration of TN in the drainage and seepage water from the constructed wetland was very high, 63 mg N L?1, which resulted in a N load of 0.53 g s?1 into the open channel that reached tributary ‘A.’ About 40% of the increased N load in the main tributary in the intensive livestock farming area was occupied by a single constructed wetland confirming that the drainage from this facility acted as the point source of pollution in the area.  相似文献   

17.
This nutrient solution experiment investigated the effects of zinc (Zn) and cadmium (Cd) on winter wheat growth and enzymatic activity. Twelve nutrient solution treatments were prepared of four zinc levels (0, 0.5, 5 and 50 mg L?1) and three cadmium levels (0, 5 and 50 mg L?1). Cadmium concentrations ≥5 mg L?1 decreased plant growth, superoxide dismutase activity, and leaf and stem zinc concentrations, but increased plant cadmium concentrations, proline content, and peroxidase and catalase activities. Root activity and zinc concentration were highest in the 5 mg L?1 treatment and lowest in the 50 mg L?1 treatment. Zinc concentrations ≥5 mg L?1 inhibited plant growth, but increased proline content and cadmium concentration in stems and leaves. Low levels of zinc (0.5 mg L?1) increased cadmium-induced toxicity in wheat plants but high levels of zinc (50 mg L?1) reduced. In conclusion, these results indicated that the addition of zinc alleviated cadmium toxicity if the zinc/cadmium ratio was >10/1. Additional study needs to be done to quantify zinc content before zinc is supplied to alleviate cadmium toxicity.  相似文献   

18.
Abstract

The objective of this study was to determine the effect of phosphorus applied through fertigation on growth and root yield of cassava. This was achieved through a greenhouse pot-experiment consisting of 1, 4, 7, 10, 20 and 30?mg?P?L?1. Increasing P from 1 to 30?mg?P?L?1 realized a 57.1 and 150.0% increase in leaf blade P in 2014 and 2015, respectively. Similarly, chlorophyll content and shoot growth increased as P concentration in solution increased. However, leaf stomatal conductance and net photosynthesis reached a maximum in 7 and 20?mg?P?L?1 in 2014 and 2015, respectively. This trend of stomatal conductance and net photosynthesis was consistent with that of dry root yield and storage roots numbers. Regressing dry root yield against storage root numbers showed that R2 = 0.80. Phosphorus encourages formation of storage roots and the duration of cassava’s growth affects the amount of P required for maximum root yield.  相似文献   

19.
Abstract

Tomato cultivars Blizzard and Liberto were grown hydroponically in a controlled temperature (C.T.) room for 35 days. The objective was to investigate the relationship between phosphorus (P) concentration and acid phosphatase enzyme [EC.3.1.3.2.] (APE) activity in leaves in relation to zinc (Zn) concentration in nutrient solution. Zinc was added at concentrations of 0.01,0.5, and 5 mg L‐1. The 0.01 and 5 mg L‐1 Zn treatments led to a significant reduction in dry matter and total chlorophyll content compared with 0.5 mg L‐1 for both cultivars. Zinc concentration was considered inadequate in the leaves of plants subjected to 0.01 mg L‐1 Zn, while it was at toxic level in those in the 5 mg L‐1 Zn treatment according to values stated for tomato plants. Optimal results for all criteria tested in this experiment were for plants grown in 0.5 mg L‐1 Zn treatment. In the leaves of plants grown at 0.01 mg L‐1 Zn, APE concentrations were significantly the lowest and concentrations of P were at a toxic level. The APE activity was noticeably higher in the P‐deficient plants of both cultivars grown in the solutions with high Zn (5 mg L‐1).  相似文献   

20.
Abstract

Heavy‐metal inhibition of nitrification in soils treated with reformulated nitrapyrin was investigated. Clarion and Okoboji soils were treated with ammonium sulfate [(NH4)2SO4] and a nitrification inhibitor. Copper(II) (Cu), Zinc(II) (Zn), Cadmium(II) (Cd), or Lead(II) (Pb) were added to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and the termination period of nitrification (t s). In the Clarion soil, the K max decreased from 12 mg kg?1 d?1 without the nitrification inhibitor to 4, 0.25, 0.86, and 0.27 mg kg?1 d?1, respectively, when the inhibitor and Cu, Zn, Pb, or Cd were applied. In the Okoboji soil, K max decreased from 22 mg kg?1 d?1 with no inhibitor to 6, 3, 4, and 2 mg kg?1 d?1, respectively, when an inhibitor and Cu, Zn, Pb, or Cd were added. The t′ varied from 8 to 25 d in the Clarion soil and from 5 to 25 d in the Okoboji soil, due to addition of Cu, Zn, Pb, or Cd and the inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号