首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
为探明生物质燃气各组分相对含量对发动机工作稳定性的影响,在一台小型火花点火发动机上进行了生物质燃气发动机循环变动试验研究,着重分析了理论空燃比与实际空燃比的比值理论空燃比与实际空燃比的比值、H2含量(H2在CH4-H2中的体积分数)及CO2含量(CO2在CH4-H2-CO2中的体积分数)的变化对燃烧稳定性的影响。试验结果表明,燃料组分对燃烧稳定性有较大影响。在本试验中,当理论空燃比与实际空燃比的比值较小、燃料组分中H2含量较低时(如理论空燃比与实际空燃比的比值为0.4、H2的体积分数为25%及理论空燃比与实际空燃比的比值为0.6、H2的体积分数为17%),CO2含量对燃烧稳定性起支配作用,CO2含量的增加导致循环变动增加(上述工况的平均指示压力循环变动系数均超过了10%),在个别条件下导致部分燃烧。随着理论空燃比与实际空燃比的比值及H2含量的增加,CO2含量对燃烧的影响作用逐渐减弱,当理论空燃比与实际空燃比的比值及H2含量达到一定程度时(理论空燃比与实际空燃比的比值为0.6、H2的体积分数为33%及50%,以及理论空燃比与实际空燃比的比值为0.8所对应的所有H2含量条件)CO2含量对燃烧的影响作用已不明显。通过改变燃料组分条件的方法,能够提高生物质燃气发动机的工作稳定性。该研究的成果对生物质燃气发动机燃烧稳定性、经济性及排放特性改善,以及生物质燃气发动机技术应用、推广均有重要指导意义。  相似文献   

2.
含水乙醇与汽油混合能有效改善发动机的燃烧和排放性能,而混合燃料的微观火焰发展能够揭示宏观表现的机理。该研究以此为切入点,采用光学单缸发动机试验,研究了不同喷油策略下,E10W(含水乙醇体积分数为10%)、E20W(含水乙醇体积分数为20%)和E100W(含水乙醇体积分数为100%)3种含水乙醇汽油燃料的燃烧特性、火焰发展及碳烟生成特性。结果表明:正常喷油时,缸压峰值、放热率、火焰传播速度随含水乙醇比例的上升逐渐增大,其中E100W相比E10W缸压峰值增加10%,燃烧相位提前2°CA,火焰传播速度增加15%,燃烧持续期缩短,E100W的循环变动相比E10W下降了20%;推迟喷油后,燃烧相位相比正常喷油时大幅提前,燃烧循环变动增大。火焰发展过程表明,火焰亮度在火焰充满燃烧室以后达到最大,前锋面向燃油湿壁量较高一侧偏置,池火燃烧剧烈区域黄褐色火焰较多,碳烟生成量较高。推迟喷油后缸内火焰分区现象明显,燃烧不均匀现象加剧,池火燃烧明显增多,含水乙醇的添加使火焰传播更均匀,剧烈燃烧池火区域减少,碳烟相对含量可降低90%。因此,缸内直喷汽油机燃用含水乙醇与汽油的混合燃料,可以有效改善发动机燃烧特性,加快火焰传播速度,减少碳烟生成量,对提升直喷汽油机性能和改善颗粒物排放有较好的作用。  相似文献   

3.
为了探究甲醇进气道喷射的柴油甲醇二元燃料(DieselMethanolDualFuel,DMDF)发动机在不同海拔条件下的燃烧和排放特性,该研究通过自行设计的内燃机高原大气状态模拟系统,试验研究了DMDF发动机A、B、C工况(A:1 200 r/min,50%负荷;B:1 800 r/min,50%负荷;C:2 200 r/min,50%负荷)在10、700和2 400 m海拔高度下的燃烧和排放特性随甲醇替代率的变化规律。通过标定试验,得出3个工况在各海拔高度下甲醇替代率的最大值。结果表明:相比纯柴油(D100),各海拔下的甲醇替代率达到最大值时,A、B、C工况下缸内最大压力增加了5.74%~26.14%,预混燃烧峰峰值增加了116.98%~234.83%,峰值对应的曲轴转角后移了1.5~5.0°CA,压力升高率最大值增加了49.99%~211.97%,压力升高率上升段曲线逐渐由双峰变为单峰,缸内最高温度升高了3.99%~8.53%,海拔越高趋势越明显。与D100相比,不同海拔高度下最大甲醇替代率时,A、B、C工况下的滞燃期延长了1.00~2.50°CA,燃烧持续期缩短了9.80~15.30°CA,燃烧重心前移了2.10~7.90°CA。D100时热效率随海拔高度的升高而降低,但甲醇替代率增加至最大值时,各工况在不同海拔条件下的热效率比D100时提高了0.64%~1.82%。不同海拔高度下,3个工况的峰值压力和平均有效压力的循环变动系数均随甲醇替代率的增加而增加,但在高转速、高甲醇替代率时(30%),同一甲醇替代率下平均有效压力的循环变动系数随海拔高度的增加出现下降趋势,峰值压力和平均有效压力的循环变动系数的数值均在0.6%~3.5%之间。当甲醇替代率达到最大值时,对比D100,各海拔高度下soot排放降低了26.94%~74.05%,NOX排放降低了4.23%~37.97%。高原环境下,合适的甲醇替代率可优化DMDF发动机的缸内燃烧过程并提升热效率,同时较大幅度降低soot和NOX排放。各海拔高度下,发动机可采用较大的甲醇替代率(≤50%)以改善缸内燃烧过程,提高动力性,并实现高海拔条件下发动机的高效清洁燃烧。  相似文献   

4.
为制定合理的活性控制压燃RCCI(Rreactivity Controlled Compression Ignition,RCCI)燃烧模式的控制策略,探明不同燃烧边界条件对RCCI燃烧与排放特性的影响,该研究在发动机转速和汽油能量预混比不变的条件下,用一台六缸重型柴油机进行了汽油/柴油双燃料RCCI试验,研究了不同循环能量(CycleEnergy,CE)下喷油定时(Startof Injection,SOI)和进气压力(Inlet Pressure,IP)对汽油/柴油RCCI燃烧和排放特性的影响规律和影响程度。结果表明,当CE从885增加到1700J时,SOI和IP对燃烧特性的影响规律不改变,但SOI和IP对缸内温度的影响程度增加,使缸内平均温度峰值分别增加约130和70 K,压力升高率峰值增加约0.054 MPa/°CA,而SOI和IP对滞燃期的影响程度不变;在排放方面,仅SOI对CO排放的影响规律发生变化,SOI和IP对HC排放的影响程度降低,使HC的排放分别减小约89和13.65g/(kW·h),IP对NOx排放的影响程度增加,使NOx的排放增加约3g/(k W·h),SOI对颗粒物总质量浓度的影响程度不变。研究结果可为制定合理的RCCI燃烧模式控制策略提供数据支撑。  相似文献   

5.
基于自主研发的直线发动机台架,进行直线发动机起动试验,采用速度-密度法,分析得到直线发动机在低转速时的循环进气量计算公式,并试验标定了直线发动机电控喷油器的流量特性。基于循环进气量计算公式与试验标定的直线发动机电控喷油器的流量特性,利用直线发动机起动试验测得的进气压力及缸压信号,计算得到当直线发动机起动循环喷油脉宽为5.4ms、点火时刻为上止点前1.0mm、发动机转速为575r/min时的空燃比为7.92,燃烧累积放热量为66J。研究表明,当活塞位于上止点前26mm时,循环进气量与此时进气道的瞬时进气压力线性度为0.03,线性特性最好。研究结果可为后续直线发动机空燃比计算及燃烧特性分析提供参考。  相似文献   

6.
单缸LPG发动机性能和工作过程(简报)   总被引:1,自引:1,他引:0  
为了弄清以ZSI 100柴油机为基础开发的单缸液化石油气发动机的工作原理,以利于进一步改进,以试验和模拟计算结合的方法,研究了该机的动力性能和工作过程.通过LPG与窄气混合器参数优选、燃烧系统参数设计及点火提前角控制等技术措施,优化了单缸LPG发动机的性能.性能试验结果表明,样机在安装点火提前装置后,取得了良好的整机性能.通过放热规律模型的建立、计算结果的分析,对柴油机燃用LPG后其工作过程的进行和组织有更直观和清晰的理解,对柴油机燃用LPG的改装应用提供参考依据.  相似文献   

7.
针对柴油预混合气着火相位难以直接控制的问题,提出射流控制压缩着火(jet controlled compression ignition,JCCI)方式。将一台单缸农用柴油机改造为JCCI发动机:压缩比降至12,增加一个带液化石油气(liquefied petroleum gas,LPG)供给通道和火花塞的点火室,并进行了JCCI发动机全负荷特性试验研究。试验结果表明:采用射流控制压缩着火方式可以有效控制发动机的燃烧相位和排放。在平均有效压力低于0.44 MPa的工况范围,NOx排放比原机降低较多,燃烧始点相位CA10与滞燃期几乎不随负荷增加而改变;在平均有效压力高于0.44直至0.54 MPa负荷范围内,燃烧始点相位迅速前移,滞燃期迅速减小,柴油提前自燃,射流对着火相位控制作用减弱,NOx排放迅速增加并超过原机;在全负荷范围,烟度始终维持在低水平,HC和CO排放较高。该研究可为柴油预混合燃烧着火相位控制提供参考。  相似文献   

8.
本文研究了直喷式柴油机燃用棉籽油时的性能。通过燃油加温对喷雾特性、燃烧特性、和工作特性的影响及燃油加温前后EMA循环试验所得到的喷嘴积炭状况对比,表明了燃油加温的措施促进燃油雾化,改善燃烧,减轻不完全燃烧倾向,提高热效率,减轻喷嘴积炭,从而能提高发动机的耐久性。本文还分析了加温的机理,并揭示了积炭形成的机理。 文中考察了供油提前角、喷油压力及燃油温度对发动机性能的影响,并用二次正交回归设计的方法建立了热效率与它们之间的数学模型,用优化的方法得到了柴油机燃用50/50混合油时的最佳调整,试验结果说明:用回收发动机余热加温燃油来改善发动机耐久性的措施是可行的。  相似文献   

9.
电控低压喷射小型汽油机燃烧与排放特性分析   总被引:1,自引:1,他引:0  
以168F汽油机为样机,采用自主开发的通用小型汽油机低压电控燃油喷射系统,按照美国EPA排放试验循环工况,对35 kPa、70 kPa和0.3 MPa喷射压力下发动机燃烧特性与排放特性进行试验研究。得出小型汽油机采用不同喷射压力喷油,可通过喷油脉宽控制使各工况点过量空气系数无明显差异,能实现以低排放为目标开环控制的电控低压喷射并能优化汽油机的综合性能。降低喷射压力,发动机标定工况缸内最大爆发压力略有降低,最大爆发压力对应曲轴转角推迟。随着喷射压力降低,燃烧持续期略有增加,缸内最高燃烧温度下降,CO排放值几乎保持不变,HC排放值呈上升趋势,NOX排放值则呈下降趋势,有效燃油消耗率略有增加。用喷油压力分别为35 kPa、70 kPa和0.3 MPa喷油,CO比排放分别为259.9、258.5和258.3 g/(kW·h);HC+NOX比排放分别为7.41、7.35和6.99 g/(kW·h)。相对于使用化油器供油的原机而言,电控样机整机动力性不变,排放和经济性能明显提高。采用35kPa 的低压电控喷射系统小型汽油机能满足美国 EPAⅢ排放法规限值要求,起动性能、运转稳定性明显改善,能降低整机电控系统的成本,可推动整个通用小型汽油机行业电控化发展。  相似文献   

10.
EGR对轻型柴油机缸内燃烧及排放性能影响的可视化   总被引:12,自引:10,他引:2  
为探索EGR对轻型柴油机小负荷工况下缸内燃烧及排放性能的影响规律,该文以某高压共轨轻型柴油机为样机,搭建柴油机缸内工作过程可视化研究平台,通过缸内燃烧过程高速摄影、缸内示功图采集及放热率计算分析了EGR对轻型车用柴油机燃烧过程及排放性能的影响规律。研究表明:通过所搭建的柴油机缸内工作工程可视化平台可以直观的分析柴油机缸内喷雾燃烧过程。小负荷工况条件下,随着EGR率的增加,滞燃期缩短,柴油机缸内燃烧持续期延长,燃烧后期平均温度上升,缸内压力峰值、瞬时放热率峰值均降低,与EGR率为10%时相比,EGR率40%时NOX、HC和CO排放分别下降了65.6%,46.4%和8.7%,而炭烟的排放先减小后增大,EGR率超过30%后炭烟排放及燃油经济性出现恶化。该研究可为有效降低柴油机排放提供参考。  相似文献   

11.
柴油机怠速燃用小桐子油的燃烧噪声及其波动性   总被引:1,自引:1,他引:0  
为了分析柴油机燃用小桐子油在怠速工况时的燃烧噪声及燃烧噪声的波动性,分别以柴油、柴油-小桐子掺混油、小桐子油、高温小桐子油为燃料,在单缸水冷四冲程柴油机上进行了怠速工况试验,测录了多循环的瞬时气缸压力,采用最高燃烧压力、压力升高率、压力升高加速度、气缸压力频谱曲线以及A声压级进行了对比。结果发现,柴油与掺混油、小桐子油与高温小桐子油的气缸压力频谱相似,柴油和掺混油的气缸压力级较大;对于同一工况,最大压力升高率越大且对应相位越迟,则燃烧噪声越大;18°供油提前角时,燃用高温小桐子油的A声压级低于柴油约7dB,21°供油提前角时低于柴油约5dB;燃用相同燃料,最大压力升高率的波动率降低均会减小A声压级的波动。  相似文献   

12.
小型通用四冲程汽油机循环波动特性研究   总被引:3,自引:2,他引:1  
根据实测小型通用四冲程汽油机气缸压力,分析了最大爆发压力、最大爆发压力所对应曲轴转角、平均指示压力以及最大压力升高率等参数的循环波动特性,以及点火提前角、负荷和发动机转速对循环波动的影响。试验结果表明:在低速及小负荷工况下,循环波动率较大;在全负荷及标定转速下,循环波动率小。适当加大点火提前角,可使原机的稳定性变好。  相似文献   

13.
乙醇/柴油混合燃料燃烧过程与排放试验研究   总被引:9,自引:8,他引:1  
在YZ4DB3柴油机上,通过测量燃用乙醇/柴油混合燃料的示功图和排放污染物,分析了燃烧过程与排放污染物的变化规律。结果表明,随着乙醇掺混比例的增加,乙醇/柴油混合燃料的滞燃期延长,燃烧终点提前,燃烧持续期缩短。小负荷时,与柴油相比,E10和E20的最大爆发压力分别下降了0.2、0.4MPa,扩散燃烧放热率峰值升高;全负荷时,与柴油相比,乙醇/柴油混合燃料的最大爆发压力变化不大,预混燃烧放热率峰值升高。与燃用柴油相比,掺混乙醇能明显降低烟度,NOx排放变化不大;HC和CO排放随着乙醇掺混比例的增加而升高,小负荷时较明显。乙醇/柴油混合燃料的燃料消耗率与燃用柴油的燃油消耗率基本相同。  相似文献   

14.
甲醇/柴油双燃料发动机燃烧过程分析   总被引:4,自引:4,他引:0  
为了防止某些工况下爆震的发生,该文在不改变4B26增压柴油机结构的前提下,采用进气甲醇电控喷射,实现甲醇/柴油双燃料燃烧,分析了进气预混掺烧甲醇/柴油双燃料发动机的燃烧过程。试验结果表明,低负荷时随着甲醇掺烧比例的增大,最大爆发压力、缸内平均温度和放热率峰值略有降低,燃烧始点推迟,燃烧持续期变化不明显;高负荷时,随着甲醇掺烧比例的增大,滞燃期缩短,燃烧终点提前,定容放热比例增大,最大爆发压力和放热率峰值明显增加,缸内平均温度略有升高;与燃烧柴油相比,在最大扭矩转速、80%负荷时,掺烧50%甲醇的最大爆发压力增加了12.1%,放热率峰值增加了37.7%。研究结果确定了不同负荷的甲醇掺烧比例变化范围,为甲醇喷射控制策略的优化提供了依据。  相似文献   

15.
生物质热解燃油在柴油机上的应用效果   总被引:2,自引:1,他引:1  
生物质通过快速热解得到的生物质热解燃油主要成分为含氧有机混合物和水,不宜直接作为燃料使用,但与柴油乳化后可实现其在发动机上的应用。在确定生物质热解燃油/柴油乳化油乳化剂的最佳亲水亲油平衡(HLB)值后,利用超声波乳化装置制备了生物质热解燃油质量分数为10%的乳化油(用BPO10表示),然后在一台未作改动的直喷式柴油机上对燃用BPO10时的燃烧和排放进行了研究。结果表明,生物质热解燃油/柴油乳化油乳化剂的最佳HLB值约为5.8。与0号柴油相比,发动机燃用BPO10时燃烧始点推迟,预混燃烧放热峰值明显升高,扩散燃烧放热峰值略低,最高燃烧压力较低,燃烧持续期缩短;燃用BPO10时有效燃油消耗率较高,而有效热效率与0号柴油的相当;燃用BPO10时可同时大幅降低NOx和碳烟排放,但HC和CO排放升高。  相似文献   

16.
为了保证4D29G31非道路用柴油机动力性、经济性以及有害物排放等满足限值要求的同时,降低燃烧噪声和降低整机噪声,该研究对缸内燃烧过程进行优化。通过对油嘴凸出量、喷油嘴孔数、喷孔直径和涡流比优化匹配,改善缸内油气混合和燃烧过程;通过对动态供油提前角的优化,缩短滞燃期,进而抑制快速燃烧期内的燃烧速率和压力振荡。各参数优化匹配后,标定工况下柴油机的最高燃烧压力和压力升高率与原机相比分别下降了18%和44.9%,整机噪声降低了0.73 dB;最大扭矩工况下柴油机的最高燃烧压力和压力升高率与原机相比分别下降了39%和40%,整机噪声降低了1.07 dB。研究可为小功率非道路用柴油机通过缸内燃烧过程优化降低噪声提供技术参考。  相似文献   

17.
为探究不同海拔条件下甲醇/柴油反应活性控制压燃(reactivity controlled compression ignition, RCCI)发动机的运行特性,该研究基于甲醇/柴油双燃料发动机试验台架,试验研究1 800r/min、100%负荷和3 200r/min、100%负荷下不同甲醇替代率、柴油喷射正时对发动机燃烧与排放性能的影响规律。结果表明:不同海拔条件下随着甲醇替代率的增加,缸压和瞬时放热率峰值逐渐升高,燃烧始点和燃烧中心前移,当量有效燃油消耗率(equivalent brake specific fuel consumption, ESFC)降低,有效热效率升高,NOx和碳烟排放大幅降低,THC(total hydrocarbons)和CO排放增加。1 800 r/min、100%负荷工况下,甲醇替代率由0增至20%,0、1 000、2 000m海拔下最大缸压平均增加1.72MPa,瞬时放热率峰值平均升高25.08J/(°),ESFC平均降低4.67%,有效热效率平均升高4.90%,NOx和碳烟排放分别平均降低16.63%和50%,THC和CO排放量分别平均增加142.03、388.18 mg/kg。3 200 r/min下甲醇替代率由0增至7%,不同海拔高度下ESFC平均降低1.76%,有效热效率平均升高1.79%,NOx和碳烟排放量分别平均降低8.17%和20.70%。海拔高度由0升至2 000m,1 800r/min、20%甲醇替代率与3 200r/min、7%甲醇替代率下,瞬时放热率峰值分别降低4.80和8.08J/(°),燃烧中心分别推迟1.44°和1.43°,有效热效率分别降低0.82%和0.68%,ESFC分别升高2.10%和1.99%,NOx排放量分别减少10.61%和7.35%,碳烟排放分别增加26.54%和32.12%,THC排放分别升高29.88%和15.45%,CO排放量分别增加22.42%和18.15%。固定甲醇替代率后,随着柴油主喷正时提前,不同海拔条件下缸压和放热率峰值逐渐升高,燃烧中心向上止点靠近,ESFC逐渐降低,有效热效率升高,碳烟排放减少,NOx、THC和CO排放增加。1 800 r/min、15%甲醇替代率下,主喷正时从-1.5°提前至-7.5°,不同海拔高度下ESFC平均降低8.27%,有效热效率平均升高9.08%,碳烟排放平均减少90.94%。为提升高海拔条件下甲醇/柴油RCCI发动机的热效率和燃油经济性,可以适当增大柴油主喷正时。研究结果可为不同海拔环境下甲醇/柴油RCCI发动机燃烧与污染物排放控制优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号