首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A two-channel ultraviolet photometer aboard Pioneer 10 has made several observations of the ultraviolet glow in the wavelength range from 170 to 1400 angstroms in the vicinity of Jupiter. Preliminary results indicate a Jovian hydrogen (1216 angstrom) glow with a brightness of about 1000 rayleighs and a helium (584 angstrom) glow with a brightness of about 10 to 20 rayleighs. In addition, Jupiter appears to have an extensive hydrogen torus surrounding it in the orbital plane of Io. The mean diameter of the torus is about equal to the diameter of the orbit of Io. Several observations of the Galilean satellites have also occurred but only a rather striking Io observation has been analyzed to date. If the observed Io glow is predominantly that of Lyman-alpha, the surface brightness is about 10,000 rayleighs.  相似文献   

2.
The Galilean satellites of Jupiter-Io (J1), Europa (J2), Ganymede (J3), and Callisto (J4)-are embedded in the intense ion and electron fluxes of the Jovian magnetosphere. The effect of these particles on the icy surfaces of the outer three satellites depends on the fluxes and the efficiency of the sputtering of water ice by such particles. Recent laboratory measurements provided data on the erosion of water ice by energetic particles and showed that it occurs much faster than would be expected from normal sputtering theory. The Voyager spacecraft encounters with Jupiter provided the first measurements of ion fluxes (energies greater, similar 30 kiloelectron volts) in the vicinity of the Galilean satellites. Using the laboratory sputtering data together with particle measurements from the Voyager 1 low-energy charged particle experiment, the effects of erosion on the surfaces of J2 to J4 are estimated. It is shown that the surface of Europa could be eroded by as much as 100 meters over an eon (10(9) years). Column densities of water vapor that could be produced around the three satellites from particle bombardment of their surfaces are also calculated, and the sources and losses of oxygen in the gravitationally bound gas produced by sputtering or sublimation are estimated.  相似文献   

3.
The cameras aboard Voyager 1 have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto.  相似文献   

4.
The satellites of Jupiter eclipsed each other in 1985, and these events allowed an unusual measurement of the sodium in Io's extended atmosphere. Europa was used as a mirror to look back through the Io atmosphere at the sun. The measured column abundances suggest that the atmosphere is collisionally thin above 700 kilometers and may be collisionally thin to the surface. The sodium radial profile above 700 kilometers resembles a 1500 kelvin exosphere with a surface density near 2 x 10(4) sodium atoms per cubic centimeter, but a complete explanation of the dynamics requires a more complex nonthermal model: the calculated loss rates suggest that the atmosphere is being replaced on a time scale of hours.  相似文献   

5.
Water frost absorptions have been detected in the infrared reflectivities of Jupiter's Galilean satellites JII (Europa) and JIII (Ganymede). We have determined the percentage of frost-covered surface area to be 50 to 100 percent for JII, 20 to 65 percent for JIII, and possibly 5 to 25 percent for JIV (Callisto). The leading side of JIII has 20 percent more frost cover than the trailing side, which explains the visible geometric albedo differences between the two sides. The reflectivity of the material underlying the frost on JII, JIII, and JIV resembles that of silicates. The surface of JI (Io) may be covered by frost particles much smaller than those on JII and JIII.  相似文献   

6.
Europa and Ganymede may have undergone an episode of chaotic motion before the establishment of the current Laplace resonance involving the three inner Galilean satellites. During this episode, the orbital eccentricities of both satellites may have increased dramatically. As a result, the mechanical stresses due to tidal deformation of the satellites' icy lithospheres may have been large enough to result in extensive fracturing, and tidal heating may have melted water ice in the mantles of both satellites, triggering the geological activity that has modified their surfaces since the heavy cratering period. The tidal effects on Ganymede during this episode provide an explanation of the dichotomy between it and Callisto, which have similar bulk properties but very different geological histories.  相似文献   

7.
The Cassini Imaging Science Subsystem acquired about 26,000 images of the Jupiter system as the spacecraft encountered the giant planet en route to Saturn. We report findings on Jupiter's zonal winds, convective storms, low-latitude upper troposphere, polar stratosphere, and northern aurora. We also describe previously unseen emissions arising from Io and Europa in eclipse, a giant volcanic plume over Io's north pole, disk-resolved images of the satellite Himalia, circumstantial evidence for a causal relation between the satellites Metis and Adrastea and the main jovian ring, and information on the nature of the ring particles.  相似文献   

8.
Observations of energetic electrons ( greater, similar 0.07 million electron volts) show that the outer magnetosphere of Jupiter consists of a thin disklike, quasitrapping region extending from about 20 to 100 planetary radii (R(J)). This magnetodisk is confined to the vicinity of the magnetic equatorial plane and appears to be an approximate figure of revolution about the magnetic axis of the planet. Hard trapping is observed within a radial distance of about 20 R(J). The omnidirectional intensity J(0) of electrons with energy greater, similar 21 million electron volts within the region 3 r 20 R(J) is given by the following provisional expression in terms of radial distance r and magnetic latitude theta: J(0) = 2.1 x 10(8) exp[-(r/a) - (theta/b)(2)]. In this expression J(0) is particles per square centimeter per second; a = 1.52 R(J) for 3 相似文献   

9.
Observations of the Galilean satellites with the radar system at the Arecibo Observatory, Puerto Rico, show that their surfaces are highly diffuse scatterers of radio waves of length 12.6 centimeters; spectra of the radar echoes are asymmetric and broad. The geometric radar albedos for the outer three satellites-0.42 +/- 0.10, 0.20 +/- 0.05, and 0.09 +/- 0.02 for Europa, Ganymede, and Callisto, respectively-show about the same relative decreases as do the optical albedos, although the latter presumably bear only on material much nearer the surface. Radii of 1420 +/- 30, 2640 +/- 80, and 2360 +/- 70 kilometers for Europa, Ganymede, and Callisto were determined from the radar data and are in good agreement with the corresponding optically derived values. Io, observed successfully only once, appears to have an albedo comparable to Ganymede's, but no radius was estimated for it.  相似文献   

10.
The plasma and field perturbations of magnetospheres that would surround magnetized galilean satellites embedded in the corotating jovian plasma differ from those produced by interaction with an unmagnetized conductor. If the intrinsic satellite dipole is antiparallel to that of Jupiter, the magnetosphere will be open. It is predicted that Io has an internal magnetic field with a dipole moment of 6.5 x 10(22) gauss-cubic centimeters antiparallel to Jupiter's, and Io's special properties can be interpreted on the basis of a reconnecting magnetosphere.  相似文献   

11.
Many of the observed properties of Jupiter's decametric radiation may be explained by postulation that the inner Galilean satellites of Jupiter have magnetic properties that strongly distort Jupiter's magnetic field in the region of each satellite. Charged particles from Jupiter's radiation belts are trapped by these distorted fields and emit synchrotron radiation.  相似文献   

12.
The infrared spectroscopy and radiometry investigation has obtained spectra of Jupiter and its satellites between approximately 180 and 2500 cm(-1) with a spectral resolution of 4.3 cm(-1). The Jupiter spectra show clear evidence of H(2), CH(4) C(2)H(2), C(2)H(6), CH(3)D, NH(3), PH(3), H(2)O, and GeH(4). A helium concentration of 0.11 +/- 0.03 by volume is obtained. Meridional temperature cross sections show considerable structure. At high latitudes, the stratosphere is warmer in the north than in the south. The upper troposphere and lower stratosphere are locally cold over the Great Red Spot. Amalthea is warmer than expected. Considerable thermal structure is observed on Io, including a relatively hot region in the vicinity of a volcanic feature.  相似文献   

13.
A 2.5-centimeter telescope aboard Pioneer 10 is capable of making two-dimensional spin-scan maps of intensity and polarization in red and blue light at high spatial resolution. During the recent flyby of Jupiter, a large quantity of imaging and polarimetric data was obtained on Jupiter and the Galilean satellites over a wide range of phase angles.  相似文献   

14.
Much has been learned about the electromagnetic interaction between Jupiter and its satellite Io from in situ observations. Io, in its motion through the Io plasma torus at Jupiter, continuously generates an Alfvén wing that carries two billion kilowatts of power into the jovian ionosphere. Concurrently, Io is acted upon by a J x B force tending to propel it out of the jovian system. The energy source for these processes is the rotation of Jupiter. This unusual planet-satellite coupling serves as an archetype for the interaction of a large moving conductor with a magnetized plasma, a problem of general space and astrophysical interest.  相似文献   

15.
For 2 weeks continuous imaging, photometry, and polarimetry observations were made of Jupiter and the Galilean satellites in red and blue light from Pioneer 11. Measurements of Jupiter's north and south polar regions were possible because the spacecraft trajectory was highly inclined to the planet's equatorial plane. One of the highest resolution images obtained is presented here along with a comparison of a sample of our photometric and polarimetric data with a simple model. The data seem consistent with increased molecular scattering at high latitudes.  相似文献   

16.
Spectroscopy of Io's Pele plume against Jupiter by the Hubble Space Telescope in October 1999 revealed absorption due to S2 gas, with a column density of 1.0 +/- 0.2 x 10(16) per square centimeter, and probably also SO(2) gas with a column density of 7 +/- 3 x 10(16) per square centimeter. This SO2/S2 ratio (3 to 12) is expected from equilibration with silicate magmas near the quartz-fayalite-magnetite or wüstite-magnetite buffers. Condensed S3 and S4, probable coloring agents in Pele's red plume deposits, may form by polymerization of the S2, which is unstable to ultraviolet photolysis. Diffuse red deposits near other Io volcanoes suggest that venting and polymerization of S2 gas is a widespread feature of Io volcanism.  相似文献   

17.
Because of the small size and irregular orbits of the seven outer satellites of Jupiter, it is often assumed that they were derived by capture. The conditions whereby Jupiter can capture satellites have therefore been examined. Relationships derived on the basis of the three-body problem for planets in elliptical orbits enable the dimensions of the capture orbits around Jupiter to be calculated. It is found that Jupiter may capture satellites through the inner Lagrangian point when at perihelion or at aphelion. Captures at perihelion should give rise to satellites in direct orbits of 11.48 x 10(6) kilometers and capture at aphelion to retrograde orbits of 21.7 x 10(6) kilometers. The correspondence with the seven outer satellites suggests that Jupiter VI, VIl, and X in direct orbits at 11.47, 11.74, and 11.85 x 10(6) kilometers were captured at Jupiter perihelion, whereas Jupiter VIII, IX, XI, and XII in retrograde orbits of 23.5, 23.7, 22.5, and 21.2 x 10(6) kilometers were captured when Jupiter was at aphelion. Examination of the precapture orbits indicates that the seven outer satellites were derived from the asteroid belt.  相似文献   

18.
《Science (New York, N.Y.)》1996,274(5286):377-385
M. J. S. Belton, (*) J. W. Head III, A. P. Ingersoll, R. Greeley, A. S. McEwen, K. P. Klaasen, D. Senske, R. Pappalardo, G. Collins, A. R. Vasavada, R. Sullivan, D. Simonelli, P. Geissler, M. H. Carr, M. E. Davies, J. Veverka, P. J. Gierasch, D. Banfield, M. Bell, C. R. Chapman, C. Anger, R. Greenberg, G. Neukum, C. B. Pilcher, R. F. Beebe, J. A. Burns, F. Fanale, W. Ip, T. V. Johnson, D. Morrison, J. Moore, G. S. Orton, P. Thomas, R. A. West The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on Io. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution. M. J. S. Belton, National Optical Astronomy Observatories, 950 North Cherry Ave, Tucson, AZ 85719, USA. J. W. Head III, R. Pappalardo, G. Collins, Department of Geological Science, Brown University, Providence, RI 02912, USA. A. P. Ingersoll and A. R. Vasavada, Department of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. R. Greeley and R. Sullivan, Department of Geology, Arizona State University, Tempe, AZ 85287-1414, USA. A. S. McEwen, P. Geissler, R. Greenberg, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 87721, USA. K. P. Klaasen, D. Senske, T. V. Johnson, G. S. Orton, R. A. West, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. D. Simonelli, J. Veverka, P. J. Gierasch, D. Banfield, M. Bell, J. A. Burns, P. Thomas, Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. M. H. Carr, U.S. Geological Survey, Menlo Park, CA 94025, USA. M. E. Davies, RAND, Santa Monica, CA 90406, USA. C. R. Chapman, Southwest Research Institute, Boulder, CO 80302, USA. C. Anger, ITTRES Ltd, Calgary, Alberta TIY 5Z6, Canada. G. Neukum, Institute for Planetary Exploration, Deutsche Forschunganstalt für Luft und Raumfahrt, Berlin, Germany. C. B. Pilcher, National Aeronautical and Space Administration, Washington, DC 20546, USA. R. F. Beebe, Department of Astronomy, New Mexico State University, Las Cruces, NM 88003, USA. F. Fanale, Institute for Geophysics, University of Hawaii, Honolulu, HI 96822, USA. W. Ip, Max Planck Institute für Aeronomie, Lindau, Germany. D. Morrison and J. Moore, NASA Ames Research Center, Moffett Field, CA 94035, USA. (*) To whom correspondence should be addressed. E-mail: belton@noao.edu.  相似文献   

19.
Infrared spectra obtainedfrom Voyager 2 have provided additional data on the Jovian system, complementing those obtained from Voyager 1. The abundance ratio of ethane to acetylene in Jupiter's atmosphere appears to be about three times larger in the polar regions than at lower latitudes. A decidedly hemispherical asymmetry exists, with somewhat higher ratios prevailing in northern latitudes. An overall increase in the abundance ratio by a factor of about 1.7 appears to have occurred between the Voyager 1 and 2 encounters. Global brightness temperature maps of Jupiter at 226 and 602 cm(-1) exhibit a large amount of local- and planetary-scale structure, as well as temporal variability. Although heterogeneous cloud structure and ammonia concentration in the lower troposphere may contribute to the appearance of the 226-cm(-1) map, the detail in the 602-cm(-1) maps probably represents the actual horizontal thermal structure near the tropopause and suggests that dynamical heating and cooling processes are important. Low-latitude surface temperatures on the Galilean satellites rangefrom approximately 80 K on the dark sides to 155 K at the subsolar point on Callisto. Below a thin insulating layer, the thermal inertia of Callisto is somewhat greater than that of Earth's moon. Upper limits on the infrared optical depth of the Jovian ring rangingfrom approximately 3 x 10(-4) at 250 cm(-1) to 3 x 10(-3) at 600 cm(-1) have been found.  相似文献   

20.
Brown RA  Ip WH 《Science (New York, N.Y.)》1981,213(4515):1493-1495
Several recent developments have implications for the neutral particle environment of Jupiter. Very hot sulfur ions have been detected in the Io torus with gyrospeeds comparable to the corotation speed, a phenomenon that would result from a neutral sulfur cloud. Current evidence supports the hypothesis that extensive neutral clouds of oxygen and sulfur exist in the Jupiter magnetosphere and that they are important sources of ions and energy for the Io torus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号