首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonia volatilization from Vertisols   总被引:3,自引:0,他引:3  
Farmers want to minimize losses of nitrogen (N) by volatilization of ammonia when adding fertilizers and improve fertilizer recovery of N by plants. We aimed to quantify the losses of N through NH3 volatilization as affected by soil moisture content, type of fertilizer, and placement method in Vertisols in Kenya, and conducted three experiments for the purpose under controlled conditions in the laboratory. We found that NH3-N losses were greatest at 80% water holding capacity, which we ascribed to the ready availability of water to dissolve the fertilizer at that water content. The soil's cation exchange capacity (CEC) did not influence volatilization, whereas the soil's pH indicated the potential of the soil to volatilize ammonia. Ammonia losses from the fertilizers were in the order urea > ammonium sulphate > ammonium nitrate applied. Incorporating fertilizer within the 0–5 cm soil layer more than halved NH3 volatilization but did not prevent it completely. These results indicate that soil pH, rather than CEC, is the main inherent characteristic influencing ammonia volatilization from Vertisols. Ammonium-based fertilizers should be incorporated within the 0–5 cm soil layer, or preferably somewhat deeper, to avoid losses via NH3 volatilization, particularly in alkaline soils. Nitrate fertilizers are preferable to urea where the risks of NH3 volatilization are large, provided due consideration is given to denitrification risks.  相似文献   

2.
Abstract. Following removal of the upper 40 cm of soil, the physical properties of the exposed B horizon of a red-brown earth (Goulburn clay loam) were ameliorated using a combination of gypsum (5.4 ha−1) and rye grass. Phosphorus (P), nitrogen (N) and potassium (K) fertilizers were added to improve nutrient availability. The ameliorated properties of the exposed B horizon were compared with those of equivalent depths from an adjacent intact profile of Goulburn clay loam.
Initially, during the establishment phase of the rye grass, the gypsum increased the electrolyte concentration in the 0–10 cm layer, and stabilized the soil surface against mechanical dispersion. After 18 months all the gypsum in the 0–10 cm layer had dissolved. However, in the presence of rye grass, the soil surface was no longer susceptible to dispersion by the mechanical impact of water. The rye grass improved soil physical properties mainly in the upper 20 cm of the exposed B horizon. Water-stable aggregation > 2000 μm and macroporosity increased, and bulk density and penetrometer resistance of the soil decreased.
Continuous applications of P, N and K fertilizers resulted in a gradual improvement in the nutritional properties of the exposed B horizon. However, because of the large phosphorus adsorption by the exposed clay, 300 kg P ha−1 was required to provide sufficient available phosphorus in the 0–10 cm layer.  相似文献   

3.
Abstract

In the Rougiers de Camarès area (in the south of France), hillslopes are very susceptible to water erosion. This is the result of physical features (steep slopes, soft bedrocks, thin soils), climatic aggressiveness (frost, storms), as well as farming systems (intensive tillage, short crop cycles, land consolidation). The objective of this work was to study the relationships between soil erodibility, macroaggregate stability, and carbon content of surface samples (0–10 cm), in a Rougiers Entisol (Lithic Udorthent) under various management practices (flat or raised moldboard ploughing, superficial tillage, direct drilling, with inputs in the form of mineral fertilizers or sheep manure). The soil erodibility was assessed by field rainfall simulation (60 mm h‐1) on manually retilled bare dry soil; water‐stable macroaggregation (>0.2 mm) was assessed by wet‐sieving, after immersion in water. Runoff, turbidity and soil losses were linked to water‐stable macroaggregation and carbon content in the 0–10 cm layer. During the first 30 minutes of rainfall, runoff and soil losses were closely correlated with topsoil initial water‐stable macroaggregation, but not with topsoil carbon content (although there was a correlation between water‐stable macroaggregation and carbon content). At the end of the rain (runoff steady state), turbidity and soil losses were closely correlated with topsoil carbon content, and to a lesser extent, with water‐stable macroaggregation. Water‐stable macroaggregation (which prevents crusting) and carbon content (which has an effect upon liquidity limit, among others) were thus important determining factors of erodibility for the studied soil. The influence of management practices on soil erodibility was therefore dependent upon their effects on these factors.  相似文献   

4.
Leaching of phosphorus out of fen soils - Results from pot trials without growing plants In contrast to acid bog peat soils, fen soils with high content of iron, calcium und partially lime may fix phosphates in the same way as mineral soils. In model experiments without growing plants the quantity of leached phosphorus is determined. 0,4–0,5 kg P/ha are leached out of a slightly acid fen soil (pH 5,5) with 550 mm percolated water. The phosphate fertilizers (300 kg P/ha) Tripelphosphat, Novaphos, Hyperphos and Thomasphosphat have no influence on the amount of leached phosphorus. The phosphate is fixed in the depth of 0–10 cm, into which the fertilizers were mixed. However, from a very strongly acid fen soil (pH 3,0; limed in 0–10 cm to pH 4,5) with 1000 mm percolated water 25,8 kg P/ha are leached. The fertilization with Tripelphosphat and Novaphos increases the amount of leached phosphorus whereas the water insoluble phosphate fertilizers (Thomasphosphat and Hyperphos) have no influence. In a fen soil with high content of iron water soluble phosphate will be sorbed and fixed very rapidly, therefore only low parts of the water soluble phosphate fertilizers can be extracted with lactate solution (DL), in comparison to the water insoluble phosphates.  相似文献   

5.
To minimize application of nematicides in banana fields, crop systems have been developed in the French West Indies that combine fallow or rotation crops and nematode-free in vitro plants. After two to four years, populations of the burrowing nematode Radopholus similis have developed enough to cause economic losses, leading banana growers to use nematicides. To understand how banana fields are recontaminated, we studied the dissemination of R. similis by water flow. At a 1-m scale, we analyzed the dispersion of R. similis under a rainfall simulator: we isolated a 1-m2 study plot, placed a R. similis suspension on the upstream soil surface, and simulated a 60 mm/h rainfall for 72 min. We collected soil samples every 10 cm downstream after 12 min of rainfall, and subsequently at 20-min intervals, and extracted the nematodes using a Seinhorst elutriator and then a Baermann funnel. Our results showed that the nematode dissemination follows an inverse exponential law, and depends more on soil moisture at the beginning of rainfall than on the length of rainfall: in fresh soil, 69–80% of the R. similis recovered were found less than 10 cm downstream from the nematode inoculation line, whereas in wetted soil, 76–85% of the recovered individuals were collected in the outlet tub located downstream from the apparatus. This passive dissemination model partially explains the distance covered by individual nematodes but not the low percentage of motile nematodes recovered in the outlet tub (10% and 36% in fresh and wet soils) compared to the percentage of motile nematodes found in the soil (80% and 84% in fresh and wet soils). Indeed, water runoff is likely to disseminate R. similis over long distances only when soil moisture is close to field capacity.  相似文献   

6.
  目的  明确耕作深度对红壤坡耕地季节性干旱期土壤水分变化特征的影响。  方法  依托2015年设置的红壤坡耕地耕作深度试验,选择免耕(NT)、耕翻10 cm(P10)、耕翻20 cm(P20)和耕翻30 cm(P30)共4个处理,研究了耕作深度对红壤坡耕地季节性干旱期土壤水分变化特征的影响。  结果  强降雨后红壤坡耕地0 ~ 60 cm土层对雨水的接蓄能力在P30处理达到了最大值,P20处理次之,P10、NT处理相对较差。耕作深度对0 ~ 30 cm土层雨水接蓄能力有显著影响( P < 0.05),而对30 ~ 60 cm土层雨水接蓄能力无显著影响(P > 0.05)。多因素方差分析表明,耕作深度对季节性干旱期红壤坡耕地0 ~ 60 cm土层土壤水分含量产生了极显著影响(P < 0.01),耕作深度、土层深度和持续天数三个因素的交互作用对季节干旱期0 ~ 60 cm土层土壤水分含量也产生了极显著影响(P < 0.01)。从0 ~ 60 cm土壤储水量变化来看,P30处理造成季节性干旱期耕层和亚耕层土壤水分消耗过快,而NT和P10处理增加了季节性干旱期亚耕层土壤水分的消耗,P20处理土壤储水量变化最小,比其它处理低2.26% ~ 11.79%。  结论  耕翻20 cm有利于雨水接蓄且季节性干旱期水分消耗最少,最有利于红壤坡耕地季节性干旱期0 ~ 60 cm土层土壤水分含量的稳定,研究结果为红壤坡耕地季节性干旱期土壤水分调控耕作技术提供了一定的理论依据。  相似文献   

7.
Abstract. In a long-term experiment, soil physical properties were studied after 20 annual cycles of maize-wheat-fodder cowpea cropping with annual application of inorganic fertilizers and farmyard manure (FYM). Weeds were controlled by hand or by the use of herbicides. The hand weeding treatment resulted in a lowering of the bulk density of the surface layer (0-15 cm) and a significant increase in the subsurface (15–30 cm) density. Application of FYM significantly increased the soil organic carbon (OC), infiltration rate, water retention, aggregation and aggregate stability in water. Application of inorganic fertilizers had small but statistically significant effect in increasing soil OC.  相似文献   

8.
Pollutants can be introduced to soil through the application of organic and inorganic fertilizers and pesticides and through atmospheric depositions. The objective of this research was to evaluate the influence of long-term (9–17 years) tillage systems on the behavior of pollutants in soils. Bioavailability and enrichment of heavy metals, arsenic, and organics, i.e. polychlorinated biphenyls (PCB’s) and a chlorinated phenol (2,4-DCP) were measured in a Eutric Cambisol and a Luvisol under conventional tillage (CT), reduced tillage (RT), and no-tillage (NT). Soil samples were collected from 0 to 3, 3 to 10, and 10 to 25 cm depths.

The upper layer of NT soils was enriched in pollutants, but concentrations decreased with increasing soil depth. Atmospheric deposition of pollutants and input via organic fertilizers was noticeable in soils under long-term NT. Total amount of zinc (59 mg kg−1) was significantly enriched in the 0–3 cm depth of the Luvisol under NT and this was attributed to higher sorption capacity for heavy metal input via liquid manure. In the Eutric Cambisol, NT resulted in significant increase of cadmium extracted by aqua regia in the arable layer of 0–25 cm. As a result of higher soil organic C, long-term accumulation of PCB’s in NT soils was more pronounced than in plowed soils. In plowed soils the mixing effect resulted in homogeneous distribution of pollutants within a soil depth of 0–25 cm.

The enrichment of organic C in RT and NT soils emphasizes the role of soils as a sink for pollutants, buffering the contaminants against leaching and transfer into crops.  相似文献   


9.
  【目的】  研究长期有机无机肥配施对土壤孔隙特征、土壤水分参数等土壤剖面物理特征的影响,深入认识有机无机肥配合施用效果的机理。  【方法】  试验基于渭北旱塬12年苹果园长期定位试验,设不施肥 (CK)、单施化肥 (NPK) 和有机无机肥配施 (MNPK) 3个处理,采用CT扫描法定量分析了0—40 cm土壤样品中大孔隙 (>1000 μm) 的数量,计算了大孔隙度及大孔隙在土壤剖面中的分布特征, 同时采用常规方法测定了0—10、10—20和20—40 cm土壤样品的土壤容重、田间持水量及饱和导水率等。  【结果】  1) 相比NPK处理,有机无机肥配施对0—20 cm土层土壤大孔隙度有提高的趋势,在20—40 cm土层,有机无机肥配施相比单施化肥土壤大孔隙度提高了91.7% (P < 0.05);MNPK处理土壤大孔隙数量在3个土层均为最大,在0—10和20—40 cm土层,分别较NPK处理提高了38.4%和54.8% (P < 0.05)。NPK处理大孔隙数量在0—10和10—20 cm分别显著高于CK。2) 与不施肥相比,单施化肥除10—20 cm土层土壤的饱和导水率、田间持水量有明显升高外,其它土层没有明显变化,而有机无机肥配施0—10、20—40 cm土层土壤的饱和导水率、田间持水量较不施肥均有明显提升;有机无机肥配施相比不施肥、单施化肥在不同土层的土壤容重均为最小,而20—40 cm土层单施化肥的土壤容重较不施肥提高了2.8% (P > 0.05)。3) 相关分析表明,土壤大孔隙数量、大孔隙度与田间持水量、土壤饱和导水率呈极显著正相关 (P < 0.01),与土壤容重呈极显著负相关 (P < 0.01),而与土壤机械组成无显著相关性。  【结论】  相比单施化肥,长期有机无机肥配施改善了苹果园0—40 cm土层土壤的大孔隙状况和土壤的持水、导水性能,在20—40 cm土层效果更明显,有机无机肥配施可改善渭北旱塬苹果园土壤物理性质。  相似文献   

10.
ABSTRACT

Mineralization is the main organic matter conversion process, which leads not only to preservation of organic matter in the soil but also to its sequestration. Soil organic matter has equal value as mineral part if we want to improve soil quality or increase the yield. Because of intensive farming, irresponsible use of mineral fertilizers and natural factors, soil organic matter is decreasing. To counteract this process, different soil-friendly management practices and techniques, such as shallow tillage, no-tillage or direct drilling and application of additional organic matter are used. The objective of the present study was to assess the changes in the intensity of soil organic matter mineralization as influenced by primary soil tillage of different intensity in combination with organic matter incorporation. Long-term studies showed that land management practices differentiated the soil into two layers: upper (0–10?cm) layer containing more moisture and nutrients and lower (10–20?cm) layer comprising less moisture and nutrients. The conditions of aeration in the arable soil layer did not change under the effect of ploughing. In this soil, the rate of mineralization was lower than that in the ploughless tillage treatment. The most active mineralization of soil organic matter in the ploughless tillage treatment occurred in the autumn period, when high level of rainfall promoted the loss of nutrients from the topsoil layer.  相似文献   

11.
Pale-podzolic soils occupying slope positions in a small stream valley are more acidic and contain less pedogenic chlorites in the clay fraction than those soils occupying uplands. These characteristics are thought to be caused by more intensive leaching of matter from eluvial horizons due to intensive lateral interflow of soil water. Soddy-gleyic soils of the stream bottomland are rich in organic matter and have a slightly acidic reaction in the A1 horizon and an alkaline reaction in the calcareous subsoil. Both factors lead to accumulation of Feox and Alox supplied to bottomland positions from uplands and slopes and those formed in situ.  相似文献   

12.
Abstract. The influence of trampling on the soils of the St James Walkway was studied during 1985 by comparing 'on'- and off-track sites. Trampling increased the average soil bulk density by 0.3 g/cm3 at 0–5 cm depth and by 0.1 g/cm3 at 10–15 cm depth. Trampling increased the average soil shear strength by 11 kPa at 0–5 cm depth and by 6 kPa at 5–10 cm depth. All mineral soils were compacted to some extent by trampling. The podzolized high country yellow-brown earths (Dystrochrepts) were the most affected because their organic topsoil was truncated. Their exposed subsoil was however more resistant to further damage than their topsoil. Organic soils (Medihemists) were not compacted but their very low shear strength and high moisture content make them unsuitable for tracks. Untrampled soil bulk density and soil stone content were negatively correlated with the change in bulk density by trampling, and could be used to predict the risk of soil compaction by trampling.  相似文献   

13.
The large dryland area of the Loess Plateau (China) is subject of developing strategies for a sustainable crop production, e.g., by modifications of nutrient management affecting soil quality and crop productivity. A 19 y long‐term experiment was employed to evaluate the effects of fertilization regimes on soil organic C (SOC) dynamics, soil physical properties, and wheat yield. The SOC content in the top 20 cm soil layer remained unchanged over time under the unfertilized plot (CK), whereas it significantly increased under both inorganic N, P, and K fertilizers (NPK) and combined manure (M) with NPK (MNPK) treatments. After 18 y, the SOC in the MNPK and NPK treatments remained significantly higher than in the control in the top 20 cm and top 10 cm soil layers, respectively. The MNPK‐treated soil retained significant more water than CK at tension ranges from 0 to 0.25 kPa and from 8 to 33 kPa for the 0–5 cm layer. The MNPK‐treated soil also retained markedly more water than the NPK‐treated and CK soils at tensions from 0 to 0.75 kPa and more water than CK from 100 to 300 kPa for the 10–15 cm layer. There were no significant differences of saturated hydraulic conductivity between three treatments both at 0–5 and 10–15 cm depths. In contrast, the unsaturated hydraulic conductivity in the MNPK plot was lower than in the CK plot at depths of 0–5 cm and 10–15 cm. On average, wheat yields were similar under MNPK and NPK treatments and significantly higher than under the CK treatment. Thus, considering soil‐quality conservation and sustainable crop productivity, reasonably combined application of NPK and organic manure is a better nutrient‐management option in this rainfed wheat–fallow cropping system.  相似文献   

14.
为理解煤对土壤结构的影响,以土壤煤累积现象普遍的焦作矿粮复合区为研究区,选取3种不同程度的煤累积土壤(低累积、中累积和高累积)为研究对象,不含煤的土壤为对照,通过测定0—40 cm土层深度范围的水稳性团聚体组成,并采用分形维数(D)、平均重量直径(MWD)、几何平均直径(GMD)和大团聚体破坏率(PAD)作为团粒结构的评价指标,探讨煤累积对土壤团聚体组成与稳定性的影响。结果表明:煤在土壤中累积可以促进水稳性微团聚体向大团聚体转化,降低团聚体的分形维数,提高团聚体稳定性。深层(20—40 cm)土壤水稳性大团聚体含量的增幅高于表层(0—20 cm)土壤。土壤团聚体稳定性随着煤累积程度的增高表现出先增加后降低的趋势。土壤团聚体的稳定性主要取决于>2 mm粒级水稳性团聚体的含量。总体上,煤在土壤中的累积改善了土壤的团粒结构性状。此外,根据本研究结果,研究区长期运煤、堆煤、洗煤和矿井水灌排等活动导致的"黑土"现象并不能视作煤污染。  相似文献   

15.
Abstract. Losses of soil and fertilizer nitrogen by leaching and denitritication from a clay soil in southern England have been measured over four years. Nitrate losses in drainage water from direct-drilled land averaged 20–30 kg N ha 'a' with wide seasonal variation. Ploughing and conventional cultivations increased this loss. Denitritication from direct-drilled land averaged 5–10 kg N ha 'a' with wide seasonal variation. Ploughing and drainage both diminished denitritication losses but cultivation had the greater effect. These nitrogen losses occurred mainly in autumn and spring.
Nitrogen losses, in drainage water or by denitritication after spring fertilizer applications, were related to the rainfall in the 28 days following top dressing. Approximately 40 mm rain was needed to cause a loss of 10% of the nitrogen applied but in practice losses were quite variable.  相似文献   

16.
红壤交换性钙、镁和钾的分布及施肥对其影响   总被引:1,自引:0,他引:1  
A leaching experiment was Carried out with repacked soil columns in laboratory to study the leaching process of a red soil derived from sandstone as affected by various fertilization practices.The treatments were CK(as a control),CaCO3,CaSO4,MgCO3,Ca(H2PO4)2,Urea,KCl,Multiple(a mixture of the above mentioned fertilizers) and KNO3,The fertilizers were added to the bare surface of the soil columns,and then the columns were leached with 120 mL deionized water daily through perstaltic pumps over a period of 92 days,At the end of leaching process,soils were sampled from different depths of the soil profiles ,i.o.,of 92 days,At the end of leaching process,soils were sampled from different depths of the soil profiles,I.e.0-5cm,5-10cm,10-20cm,20-40cm,and 40-60cm,The results showed when applying Ca,Mg,and K to the bare surface of the soil columns,exchangeable Ca^2 ,Mg^2 ,and K^ in the upper layer of the soil profile increased correspondingly,with an extent depending mainly on the application rates of Ca,Mg,and K and showing a downward trend,CaCO3,CaSO4,MgCO3,and Ca(H2PO4)2 treatments had scarcely and effect on movement of exchangeable K^ ,while CaCO3,and CaSO4 treatments singnificantly promoted the downward movement of exchangealble Mg^2 although these two treatments had no obvious effect on leaching losses of Mg,The fact that under Urea treatment,exchangeable Ca^2 and Mg^2 ,were higher as compared to CK treatment showed urea could prevent leaching of exchangeable Ca^2 and Mg^2 ,the obvious downward movement of exchangeable Ca^2 and Mg^2 was noticed in KCl treatment ,In Multiple treatment,the downward movement of exchangeable Ca^2 and Mg^2 was evident,while that of K^ was less evident,Application of KNO3 strongly promoted the downward movement of exchangeable Ca^2 and Mg^2 in the soil profile.  相似文献   

17.
东北黑土有机碳的分布及其损失量研究   总被引:11,自引:0,他引:11  
为了分析东北黑土土壤有机碳(SOC)的分布特征及其开垦以来黑土SOC的损失程度,我们于2004~2005年在黑龙江和吉林两省采集了32个自然黑土剖面样品,在每个自然黑土样品附近对应采集32个景观条件相似的耕作黑土样品。结果表明,自然黑土样品0~30cm土层SOC含量平均为32.20 g kg-1,最高可达63.46 g kg-1,黑龙江省自然黑土SOC含量(34.55 g kg-1)高于吉林省(23.80 g kg-1)。耕作土壤SOC平均含量为22.71 g kg-1,远低于自然土壤。受温度的影响,随着纬度的增加,自然黑土与耕作黑土SOC含量逐渐递增。由于土壤侵蚀以及耕垦和去除作物残留物等农业管理措施的综合作用,使得耕作黑土表层SOC含量小于自然黑土。与自然黑土相比,耕作黑土0~10cm土层SOC损失量在26.84%~46.57%之间,亚表层损失相对较少。黑土SOC含量下降也是土壤水土流失致使黑土层变薄的一个直接表现。耕作黑土表层流失厚度可以通过自然与耕作黑土剖面SOC含量的分异差值来估算。通过对土壤剖面上SOC的分布进行校正剔除土壤侵蚀的影响后得到的同等深度SOC含量的差值才可视为由耕作以及有机质输入量差异等因素造成的SOC损失量。未经校正而进行的自然黑土和耕作黑土同一深度SOC含量的比较可能过高估计了农业管理措施对土壤SOC损失量的影响。  相似文献   

18.
水旱轮作地区土壤长期休闲与耕种的肥力效应   总被引:3,自引:1,他引:3  
长期定位试验水旱轮作地区土壤长期休闲和耕种对土壤肥力的影响研究结果表明,长期休闲土壤有机质、全N含量显著高于连续种植作物的土壤,其差异随土壤深度的增加而减小;休闲地15cm以上土层土壤N素矿化势高于耕种地;耕种土壤连续施入猪粪、作物秸秆等有机肥可保持与休闲土壤相当或远高于休闲土壤的有效磷水平,单施化肥或不施肥料的耕种土壤有效磷均低于休闲土壤;休闲和耕种对15-30cm土层土壤缓效钾含量无影响响,15cm以上土层土壤缓效钾含量休闲高于耕种;休闲土壤速效钾含量在整个耕作层(30cm)均高于耕种土壤;休闲土壤PH值略低于耕种土壤。  相似文献   

19.
覆膜旱作稻田土壤有效N、P、K及盐分分层变化研究   总被引:4,自引:0,他引:4  
刘铭  吴良欢 《土壤通报》2004,35(5):570-573
以常规水作和裸地旱作作对照,对覆膜旱作栽培条件下稻田各土层(0~60cm)土壤有效N、P、K和盐分含量变化作了比较研究。结果表明:与常规水作相比,覆膜旱作稻田10~15cm土层的碱解氮与有效磷含量显著增加,其余差异不大。与裸地旱作相比,覆膜旱作稻田5~15cm土层的碱解氮含量及5~20cm土层的有效磷含量显著增加,其余差异不大。与常规水作和裸地旱作相比,覆膜旱作稻田土壤速效钾含量在20cm以上土层增加明显。当地下水位较高时,覆膜旱作稻田0~5cm表层土壤表现积盐,地下水位较低时表层表现脱盐。  相似文献   

20.
分根区交替灌溉和氮形态影响土壤硝态氮的迁移利用   总被引:1,自引:0,他引:1  
采用模拟土柱利用15N标记于土层10~20 cm、40~50 cm的方法,并设置不同形态氮肥供应(铵态氮、硝态氮)、灌溉方式(常规灌溉CI、分根区交替灌溉APRI),研究APRI下土壤中不同层次硝态氮的去向以及不同形态氮肥的影响。结果发现,APRI节水34.31%而不显著影响产量(P0.05)。随着15N标记层次下降,番茄植株对15N吸收利用率以及番茄收获后15N在1 m土层内的残留量显著下降,损失率显著增加。CI对10~20 cm土层的15N淋洗作用强于40~50 cm土层,APRI对10~20 cm的15N淋洗作用相对CI减弱,而促进了40~50 cm土层中61.3%的15N向上层土壤迁移。APRI下15N的损失率显著降低,利用率没有大幅度下降。相对于铵态氮肥料,硝态氮供应由于促进了植株生长及对15N的吸收,造成番茄收获后1m土层内15N累积量减少,而损失率与相应铵态氮供应的处理没有显著差异。因此分根区交替灌溉能够减少土壤中硝态氮的淋洗,并能够促进下层土壤硝态氮向上迁移,减少损失,增加植物吸收利用的机会;不同形态氮肥通过影响植物生长而影响土壤中硝态氮的去向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号