首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
华北落叶松人工林生物量分配格局   总被引:3,自引:0,他引:3  
采用相对生长模型W=a(D2H)b对不同林龄华北落叶松人工林生物量进行了研究。结果显示,随着林龄的增大,树干的生物量增长的速度最快,树皮、树枝和树叶的生物量所占全株的比例随着林龄的增大而减小;6a生林中,乔木层各器官生物量分配规律为树枝〉树干〉树皮〉树叶〉树根;12a生林、22a生林和32a生林中,分配规律为树干〉树枝〉树根〉树皮〉树叶;灌木层和草本层所占比例随着林龄的增大而减小,由6a生林的9.28%和15.72%减小到0.46%。  相似文献   

2.
以2012年广东连续清查资源数据中木荷的分布为基础,按2 cm、4 cm、6 cm、8 cm、12 cm、16cm、20 cm、26 cm、32 cm、38 cm共10个径阶90株木荷样木,获取树干、树皮、树叶、树枝、树根各器官生物量及含碳率数据,计算90个单株各器官的碳储量。结果表明:(1)广东木荷平均含碳率为0.556 9,各器官含碳率排列顺序为树干(0.565 4)树叶(0.558 4)树枝(0.556 1)树根(0.548 7)树皮(0.508 8),各器官含碳率除树皮外,树干、树叶、树枝、树根差异不显著,树皮含碳率显著低于其它各器官。(2)木荷含碳率与胸径相关性不明显,胸径增加对含碳率的影响较小,天然林的含碳率与人工林差异很小,实际应用中可以忽略其差异。(3)各器官碳储量占全树碳储量的比例从大到小排列顺序为树干树根树枝树皮树叶。(4)随着胸径增加,树干碳储量比例变化趋势为先增加后减少,树枝碳储量比例为先减少后增加,树根碳储量比例上下波动,但变化不大,树皮、树叶碳储量比例减少。(5)拟合出木荷人工林胸径、D2H的碳储量模型依次为Ct=0.007 8D3.164 8,Ct=0.004 3(D2H)1.189 7,R2值依次为0.996 4,0.995 5;天然林胸径、D2H的碳储量模型依次为Ct=1.109 1 D1.511 9,Ct=0.636 3(D2H)0.597 9,R2值依次为0.911 5,0.903 5。  相似文献   

3.
桂西南米老排人工林单株生物量回归模型   总被引:1,自引:0,他引:1  
通过对桂西南大青山林区28a生米老排(Mytilaria laosensis)人工林林分进行每木检尺和生物量的测定,建立了米老排各器官生物量与胸径、树高和胸径平方乘树高(D2 H)的相关关系;分别选用幂函数等5种模型,用回归分析方法对米老排人工林单株生物量模型进行了拟合。结果表明:树叶和树根生物量分别与胸径和树高的相关关系最显著,而树干、树枝、树皮和全株的生物量都与D2 H的相关关系最为显著。胸径、树高和D2 H与各器官生物量拟合的模型中,全株、树干和树皮的拟合效果最好,树叶和树根的拟合效果中等,树枝的拟合效果较差。除树皮外,各器官均以幂指数模型的拟合效果最好。  相似文献   

4.
为实现杨树人工林的分类经营,提高杨树人工林的经济效益,采用标准木法对洞庭湖区杨树人工林中不同径阶林木生物量进行了测定。结果表明:7年生杨树人工林的径阶集中分布在14~20 cm。不同径阶杨树单株不同器官生物量均遵循树干树枝树根(含桩)树皮树叶的分配规律;随着径阶的增长,树干在单株、林分内所占的比例均呈增长趋势;小于5 cm的主干、树枝和根的生物量与地上部分的胸径和树高均成幂函数关系,相关系数分别为0.839 4、0.940 5和0.994 7。  相似文献   

5.
研究了燕山山地华北落叶松人工林3种林分类型植物群落的生物多样性和生物量。结果表明:1)华北落叶松白桦混交林和华北落叶松山杨混交林植物物种数均高于华北落叶松纯林,3种类型群落优势种有很大差异。2)3种类型群落的α多样性指数均表现为草本层>灌木层>乔木层,2种华北落叶松混交林α多样性指数高于华北落叶松纯林。3)华北落叶松纯林乔木层生物量比例最高,达到99.33%,高于两种混交林;各器官生物量的分配规律为树干>树枝>树根>树皮>树叶,且所占比例有所差异。  相似文献   

6.
桂西北马尾松人工林生物量生长规律及其分配模式   总被引:2,自引:0,他引:2  
对桂西北马尾松人工林的单木生物量相对生长模型、林分生物量及其分配规律的研究结果表明:(1)马尾松树干、树皮、地上生物量、地下生物量以及总生物量以方程W=a×(D2H)b的拟合效果为好,树枝和树叶以方程W=a×Db的拟合效果为好。(2)不同林龄马尾松林分标准木各器官的生物量所占总生物量的百分比出现明显的变化。在不同的马尾松林龄中,各器官的生物量均以树干为最高,同时随着林龄的增加,其所占百分比例出现明显的升高,随着林龄的继续增大,其所占百分比逐渐趋于稳定。与树干的变化趋势相反,树皮、树枝、树叶和树根的所占总生物量百分比随着林龄的增加而呈现下降。(3)林分生物量随着林龄的增大而出现明显的增加。林分树干和树枝的总生物量和所占百分比均出现明显的上升;树皮和树叶的总生物量随林龄的增加而增加,但其所占乔木层总生物量的百分比则随着林龄的增加而下降;地下生物量随林龄的增大而无显著变化。  相似文献   

7.
不同林龄尾巨桉林木碳贮量研究   总被引:1,自引:0,他引:1  
以雷州半岛6个林龄尾巨桉林分为研究对象,分析了不同林龄尾巨桉林分的单株生物量和林分碳贮量变化特征。结果表明:随着林龄的增长,尾巨桉林分的平均树高、平均胸径和单木生物量均有所增加,但各个器官所占比例的变化趋势不同:树干和树叶所占比例增加,树枝、树皮和树根所占比例降低。1—7年生尾巨桉林分碳贮量在1822.56—33925.75kg·hm2,随着林龄增长,尾巨桉林分的碳贮量呈逐渐增多的趋势。树干有机碳贮量所占比例迅速增大,树枝、树皮和树根的逐渐减小,树叶所占比例先增大后减小。  相似文献   

8.
贺兰山灰榆疏林单株生物量回归模型的研究   总被引:1,自引:0,他引:1  
对贺兰山东麓天然灰榆疏林林分进行了调查研究。实测灰榆单株的地上和地下生物量,应用相关分析方法,探讨灰榆单株各器官生物量与树高(H)、胸径(D)、1/2树高处直径(D1/2)和胸径平方乘树高(D2H)的相关关系,结果表明:1)贺兰山东麓天然灰榆疏林单株各器官生物量分配比率为树干>树根>树枝>树皮>树叶。2)各器官生物量拟合的预测模型中,树干、树枝和树叶的生物量预测模型拟合效果较好,而且具有一定的实用价值;树枝和树皮的生物量预测模型拟合效果一般;任一自变量与单株生物量拟合的预测方程适用性均较好。  相似文献   

9.
通过在田林县3个不同林龄的马尾松人工林分中设置标准样地并进行每木调查,以D—H曲线进行平均木选择,分径阶伐倒平均木获得生物量数据。以幂指数模型和线性函数为基础对马尾松人工林的单株生物量模型进行了模拟,得到树干、树叶、树皮、树枝、树根和总生物量的回归模型分别为:W=166.0860×(DOH)-2.0497、W=9.1446×(DOH)+2.1403、W=10.1717×(D^2H)^0.5959、W=0.0035×D^2.9702、W=32.7589×(D^2H)^0.8546、W=258.2048×(D^2H)+2.0278。数据分析结果表明,马尾松林分平均木生物量随林龄的增加而增大,各器官的生物量所占总生物量的百分比出现明显的变化;各器官的生物量均以树干为最高,并随着林龄的增加而升高;树枝、树叶和树根的比例随着林龄的增加而出现下降。  相似文献   

10.
刘化桐 《福建林业科技》2013,40(1):26-28,98
对20年生北美鹅掌楸人工林生产力及碳氮积累研究表明:北美鹅掌楸福建北部生长潜力较大,树高达15.61~24.54m,胸径为21.37~33.31 cm,单株材积为0.259~0.990 m3。北美鹅掌楸对立地条件敏感,Ⅰ类地树高、胸径、材积生长分别比Ⅲ类地增加63.62%、55.90%、281.91%;全树总生物量可达580.27 t.hm-2,各生长器官的生物量大小顺序为树干>树枝>树根>树皮>树叶,分别占到总生物量的58.80%、20.61%、11.94%、5.58%和3.07%;树干、树叶、树皮、树枝、树根碳含量分别为52.13%、50.61%、49.20%、46.85%、45.34%,氮含量分别为0.72%、0.91%、0.96%、0.88%、0.83%;全树碳总积累量可达290.26 t.hm-2,树干、树枝、树根、树皮、树叶分别为177.86、56.02、31.43、15.92、9.03 t.hm-2;全树氮总积累量可达4.56 t.hm-2,大小顺序依次为树干>树枝>树根>树皮>树叶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号