首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High rainfall and the corresponding low herbage DM content has been shown to adversely affect cattle intakes and production. This could arise from physical restrictions on intake or digestion rate, or other behavioural limitations such as reduced palatability. A knowledge of the reason for the intake reduction would assist in determining the optimum supplement to feed. Eight steers were offered four diets in a changeover design. The diets were: A, cut herbage; B, cut herbage with added surface water; C, as B but with a low dry matter (DM) forage supplement (silage); and D, as B but with a high DM forage supplement (hay). The addition of surface water to herbage reduced DM intake and feeding time but had no effect on biting rate or rate of intake. Neither hay nor silage was eaten in sufficient quantities to restore DM intake, even though the silage was of similar nutrient composition to the herbage.  相似文献   

2.
In 2 experiments nitrogenous fertilizer was applied at 3 levels (0, 46 and 92 lb N/ac) to a permanent pasture and a ryegrass/clover ley and the swards were harvested before ear emergence and conserved as either artificially dried grass or tetrapod hay. Apparent dry matter digestibility and voluntary food intake of the conserved herbages were measured with sheep.
N caused a small but significant depression in apparent DM digestibility but did not affect voluntary food intake. It increased yields of DM and digestible DM significantly.
The DM digestibility and voluntary food intake of hay were always significantly lower than those of the corresponding dried grass. Voluntary food intake of all fodders was directly related to herbage digestibility and inversely related to herbage crude fibre content.  相似文献   

3.
Two experiments were carried out with grass silages cut at a leafy (Experiment 1) and a more mature (Experiment 2) stage of growth to evaluate the effect of wilting and chop length on silage intake and performance of store lambs. In each experiment, the herbage was cut with a rotary mower and was either ensiled within 24 h as unwilled silage (U) or wilted for 1–3 d (W). Each silage type was harvested with either a double-chop harvester (D) or a precision-chop harvester (P). All silages were treated with formic acid at 3 1 t?1 and were well preserved. The silages were fed ad libitum to Suffolk crossbred store lambs (twenty-four lambs per treatment) without any supplement over a period of 8 or 9 weeks. Wilting of the silages had little effect on silage intake (797 vs. 809g dry matter (DM) d?1) or on lamb performance in Experiment 1. In Experiment 2, wilting of the D silage increased silage DM intake (589 vs. 534 g DM d?1; +10%) and reduced the extent of liveweight losses. Wilting of the P silage reduced silage intake (770 vs. 791g DM d?1; -3%) and reduced liveweight gains. In Experiment 1 intakes of the D silages were 650–667g DM d?1 and just maintained lamb live weights. Intakes of the P silages were 39–49% higher than the D silages (927–968 g DM d?1) and increased liveweight gains. In Experiment 2 intakes of the D silages were 534–589 g DM d?1 and resulted in a loss in lamb live weight. Precision-chopping increased silage intakes by 31–48% (770–791 DM d?1)in Experiment 2 and improved lamb liveweight gains. Lamb performance was higher on the UP silage than on the WP silage. The rumen retention lime (RRT), estimated from the rumen contents of the lambs at slaughter and their silage intake before slaughter, was much shorter for the lambs fed on the P silages (12.6–20.6 h) than those fed on the D silages (21.4–29.3 h) in each experiment. Silage intake and liveweight gain were positively related to silage in vivo DM digestibility (DMD), whereas RRT was negatively related to DMD. However, there were distinct differences between the P and D silages in the elevation and, to a lesser extent, in the slope of the regression lines, indicating that intake of D silage was limited by factors other than the digestibility of the silage The results of this study show that the chop length of grass silage had a far greater effect on intake and on lamb performance than silage digestibility, whereas wilting had little or no effect.  相似文献   

4.
Three comparisons were made, with non-lactating fistulated cows, of the voluntary intake of silage and hay prepared from similar herbage. On average 28% more dry matter was eaten as hay than as silage. Silage and hay had similar digestibilities, but silage residues tended to remain in the gut longer than those of hay. The amount of digesta in the reticulo-rumen immediately after a meal ad lib . was greater with hay than with silage. The cows spent longer eating and ruminating per kg dry matter of silage than of hay. The results are discussed in relation to possible factors determining the voluntary intake of silage.  相似文献   

5.
For three 8-week periods of the grazing season 48 spring-calving cows were continuously stocked at either a high or a low rate (average 4.9 and 4.3 cows ha−1 respectively) which declined through the season. Within each stocking rate group half the cows were allowed access to hay for 45 min after morning milking; the other half received no hay.
Total dry matter (DM) intakes were increased by offering hay, and intakes of hay were greater at the high stocking rate and during prolonged periods of inclement weather. However, there were times when, because of low herbage height and adverse weather, offering hay once daily could not prevent a decline in total DM intake. Grazing time was reduced and ruminating time increased by offering hay, but the rate of biting at pasture was unaffected. Hay DM was eaten at twice the rate of intake of herbage DM.
Offering hay increased milk yield in early season and liveweight gain in late season. The benefits of offering hay were greatest for the higher yielding cows. There were no significant effects on milk composition.
Stocking rate had only small effects on herbage height, but stocking at the higher rate tended to reduce herbage DM intake and reduced live-weight gain in late season. Levels of utilized metabolizable energy from grazed herbage were high (average 106 GJ ha−1) but were reduced by feeding hay and stocking at the lower rate.  相似文献   

6.
In an experiment, involving twelve male cattle (initially 235 kg live weight), the effects of applying lactic acid bacteria [Lactobacillus plantarum; 109 colony-forming units (g fresh silage)?1] to grass silage, immediately prior to that silage being fed, on dry-matter (DM) intake of the silage, degradability of nitrogen (N) and fibre in the rumen, total tract digestibility and composition of rumen fluid in the animals were examined. A grass silage, which had been made from the primary growth of a predominantly perennial ryegrass sward, was offered as the sole diet. The inoculant was applied to the silage at the rate of 2 g of freeze-dried powder reconstituted in 12 ml of water (kg fresh silage)?1 immediately prior to that silage being fed and an equivalent amount of water was applied to the silage in the control treatment. The two diets were compared in a change-over design. The silage was well preserved, having a pH and concentrations of ammonia N and butyrate of 3.72, 74 g (kg total N)?1 and 0.11 g (kg DM)?1 respectively. Application of the inoculant significantly increased true protein, acid-insoluble N and water-soluble carbohydrate concentrations (P < 0.001) in the diet. Silage DM intake was not significantly increased (P= 0.072) by this of inoculant treatment, which had no significant effect (P > 0.05) on rumen degradability or total tract digestibility of DM, N, neutral detergent fibre or modified acid detergent fibre. Rumen pH, ammonia concentration or the molar proportions of volatile fatty acids were not altered (P>0.05) by inoculant treatment. It is concluded that application of the inoculant to the silage prior to silage being fed did not significantly affect silage DM intake, total tract digestibility, or degradability or fermentation in the rumen of cattle offered grass silage as the sole diet. It is also concluded that the results of this experiment provide no evidence that the mode of action of L plantarum, applied as an additive to grass at ensiling in previous studies, is through ‘direct’ effects in the rumen.  相似文献   

7.
The effects of a 10-d increase in regrowth interval (35 and 45 d) of a predominantly perennial ryegrass sward harvested in two periods in the autumn in Ireland on feed intake, rumen fermentation, in situ degradability and rumen digesta kinetics was examined using six ruminally cannulated Holstein–Friesian steers in three replicates of a 2 × 2 crossover design. The longer regrowth interval had a higher grass dry-matter (DM) yield of herbage by 615 kg DM ha−1 and a lower crude protein (CP) concentration of herbage by 27 g kg−1 DM. There was no effect of regrowth interval on DM intake, rumen pH, total volatile fatty acid concentration or the molar proportions of acetate, propionate or butyrate in the rumen but the concentration of rumen ammonia (NH3-N) was lower on the longer regrowth interval. The longer regrowth interval had a lower apparent total tract digestibility of DM, organic matter (OM), N and neutral-detergent fibre (NDF). There was no effect of regrowth interval on the in situ degradability of DM, OM, N or NDF. The passage rates ( k p) of DM and OM were higher while the rate of digestion ( k d) of DM and NDF was lower with the longer regrowth interval. The results indicated that, although increasing the regrowth interval by 10 d in autumn reduced the apparent digestibility of the grass herbage, there was no adverse effect on DM intake, rumen fermentation pattern or in situ rumen degradability. The reduction in rumen NH3-N concentrations, reflecting the lower herbage CP concentration in herbage for the longer regrowth interval, may potentially reduce nitrogen excretion to the environment.  相似文献   

8.
Beef cattle partition dietary nitrogen (N) into meat or excrete it mainly in faeces and urine, which can contribute significantly to water and air pollution. The effects of two inorganic nitrogen (N) fertilizer application rates—15 (LN) or 80 (HN) kg N/ha—to Lolium perenne‐dominant swards in autumn, on herbage chemical composition, intake, digestion and N balance in beef cattle, and in vitro fermentation and methane production were studied. Four growing beef steers used in a 2 × 2 crossover design experiment were offered zero‐grazed grass harvested 21 days post‐N application between July and October. The same grasses were incubated in an eight‐vessel rumen simulation technique in a randomized complete block experiment. Grass dry‐matter (DM) concentration was 26 g/kg lower and crude protein (CP) concentration was 35 g/kg DM higher for HN compared to LN. There was no difference in herbage DM intake or in vivo DM digestibility between treatments. Nitrogen intake and the digestibility of N were higher for HN compared to LN. Total and urine N loss were 41 and 45 g/day greater, respectively, for HN compared to LN, but faecal N loss did not differ between treatments. The quantity of N retained and therefore N‐use efficiency did not differ between LN and HN (25% vs. 22%). In vitro rumen pH and ammonia‐N concentrations were higher for HN compared to LN, whereas volatile fatty acid concentrations and molar proportions did not differ between treatments. In vitro methane and total gas production were 0.9 mmol/day and 280 ml/day lower for HN than LN respectively. Under the particular conditions of this experiment, reducing fertilizer N application rate reduced total and urinary N excretion, which has potential environmental benefits; however, methane output measured in vitro was increased.  相似文献   

9.
In three experiments the effects of restricting the silage ration of dairy cows and of offering alternative forages as buffer feeds were investigated.
In the first experiment of changeover design with 3-week periods, restricting the intake of low-quality silage to 0.62 of ad libitum had no significant effect on milk yield in spite of the large energy deficit. Offering high-quality hay as a buffer feed increased total DM intake and milk production of cows receiving either restricted or ad libitum silage.
In the second experiment of similar design, restricting the DM intake of high-quality silage to 0·58 of ad libitum significantly reduced milk yield and was associated with a large negative energy balance. Offering straw or ammonia-treated straw with the restricted silage diet did not restore milk production to the level achieved with ad libitum silage but these supplements slightly reduced the energy deficit of the cows. In the third experiment of continuous design lasting 7 weeks, restricting the silage ration to 0.85 of ad libitum had no significant effect on milk production. Offering a strawmix based on straw, barley, molasses and soya with the restricted silage ration restored total DM intake to the ad libitum silage level.
In all three experiments milk protein content was reduced by restricting the silage ration and partially restored by offering alternative forages. There were no significant effects on milk fat content and milk lactose content was only reduced by the severest restriction in Experiment 2. It is concluded that short-term minor restrictions of silage intake can be partly sustained by body fat mobilization but more severe restrictions will result in loss of milk yield. Good-quality hay and a strawmix were of benefit in restoring DM and metabolizable energy intakes, whereas straw and ammonia-treated straw were of little value.  相似文献   

10.
A grazing experiment to measure the feeding values of 4-week-old regrowths of S37 cocksfoot, S23 ryegrass and S24 ryegrass is described. A low grazing pressure was maintained on the pastures to ensure that animal production was not limited by herbage availability. Each sward was grazed by a group of 12 lambs under "worm-free" conditions. Increases in empty body weight, dry body weight and energy were measured by the comparative slaughter technique.
The liveweight gain of the cocksfoot-fed lambs was the same as the ryegrass-fed groups during the first half of the experiment but was lower in August and September. The final liveweight gains on S23 and S24 ryegrass were 14% higher than on S37 cocksfoot, but in terms of energy retention S23 ryegrass was 18% and S24 7% better than S37 cocksfoot. Digestibility measurements of herbage cut from the plots being grazed showed a positive correlation with energy retention by the lambs. Energy retention was negatively correlated with the proportion of acetic acid in the rumen adds, a fraction which was itself correlated with the soluble carbohydrate content of the herbage, but not with the digestibility of the herbage.
When interpreting animal-production results, intake, digestibility and rumen volatilc-fativ-acid proportions, should be taken into account. Because of the inadequacy of present methods of estimating the herbage intake of grazing animals, measurement of body-energy gains is not justified and empty-liveweight gains are sufficiently precise to measure relative energy retentions at pasture.  相似文献   

11.
In a two-year experiment, three silages were prepared from herbage treated either with an inoculant at 1·25 × 105 organisms (g fresh material (FM))−1. formic acid (850 g kg−1) at 4 1 (t FM)−1, or no additive (untreated). In Experiment 1, unwilted and in Experiment 2, wilted silages were investigated and had mean dry matter (DM) and water soluble carbohydrate (WSC) concentrations at ensiling of 171 g kg−1 and 17·6 g (kg FM)−1 and 263 g kg−1 and 25·1 g (kg FM)−1, respectively. In Experiment 1, 45 and in Experiment 2, 54 individually fed cows were used to evaluate the silages in three-treatment, randomized-block design experiments. During weeks 4-12 of lactation the cows were offered silages ad libitum and during weeks 15-26 a constant amount of silage was fed. There were few major differences in chemical composition of the resulting silages. Formic acid had no effect on silage digestibility. Inoculant treatment increased digestibility when the grass had been wilted. The use of formic acid resulted in increased silage DM intake of 9% during weeks 4-12 of lactation in Experiment 1 but not in Experiment 2. The inoculant gave no increase in silage DM intake over the control in Experiment 1 but increased silage DM intake by 7% in Experiment 2. There was no significant response in milk yield to formic acid. In Experiment 2 the response in milk yield to inoculant treatment was significant both in weeks 4-12 of lactation (4%) and in weeks 15-26 of lactation (5%). It is concluded that the response in milk yield to the use of a specific inoculant appears to be mediated through increased intake of metabolizable energy (ME).  相似文献   

12.
Four management systems involving different dates for first harvest (simulated grazing, early silage, late silage and hay) and two fertilizer N rates in spring (0 and 80 kg ha-1) were imposed on a perennial ryegrass cv. Talbot/white clover cv. Blanca sward during 1981-82. In each year, annual total herbage DM was increased by spring application of N but white clover production and content in the total herbage were reduced; however, white clover, which was depressed in the harvests immediately after N application, recovered during the season to amounts and contents in the total herbage similar to those given no spring N.
Annual total herbage DM production increased as the date of primary harvest was delayed (935 to 1197 t ha-1 over two years) but mean organic matter digestibility values for the same period decreased (0-769 to 0700). First-harvest production made up substantial proportions of the annual production in the conservation systems. White clover, as shown by its production and the amount of stolon present, was tolerant of conservation systems, especially with no applied N.
It is concluded that grass/white clover swards are suitable for management systems which involve cutting for conservation. The use of strategic spring N seems a viable option, but more knowledge of rates would be valuable since this experiment only compared 80 kg ha-1 with no applied N.  相似文献   

13.
Experiments with cows and sheep are described in which the voluntary intakes of hay and silage of differing digestibility were determined. The voluntary intake of hay increased consistently with increasing digestibility, but the relationship was not as well defined for silage. The addition of concentrates depressed the intake of hay, and this effect was more marked for hay with a high digestibility than with poorer quality hay. Concentrates appeared to depress the intake of hay by sheep more than by cows, an effect which was again more marked when the hay had a high digestibility value.  相似文献   

14.
An experiment was undertaken to examine the effect of supplement type on herbage intake, total dry matter (DM) intake, animal performance and nitrogen utilization with grazing dairy cows. Twenty‐four spring‐calving dairy cows were allocated to one of six treatments in a partially balanced changeover design with five periods of four weeks. The six treatments were no supplement (NONE), or supplementation with either grass silage (GS), whole‐crop wheat silage (WS), maize silage (MS), rapidly degradable concentrate (RC) or slowly degradable concentrate (SC). Cows were rotationally grazed with a mean herbage allowance of 20·5 kg DM per cow per day, measured above 4 cm. Forage supplements were offered for approximately 2 h immediately after each morning milking, with cows on NONE, RC and SC treatments returning to the grazing paddock immediately after milking. Cows on treatment MS had a significantly higher supplement DM intake than the other treatments but a significantly lower grass DM intake than the other treatments, resulting in no significant difference in total DM intake when compared with cows on treatments WS, RC and SC. Concentrate type had no significant effect on herbage intake, milk yield, milk composition or yield of milk components. The yield of milk fat and milk protein was significantly higher on treatments MS, RC and SC compared with treatments NONE, GS and WS. The results indicate that despite a relatively high substitution rate, maize silage can be a useful supplement for the grazing dairy cow.  相似文献   

15.
Silages were prepared in late September from a mixed crop of perennial ryegrass and white clover with low dry matter and high nitrogen content. Six different treatments were used during ensiling; addition of either molassed sugar beet pulp or rolled barley, at 50 kg and 25 kg (t fresh grass)?1, formic acid at 51 t?1 and no additive (control). All silages were well fermented with low levels of ammonia and pH. The addition of rolled barley or sugar beet pulp increased the dry matter content of the silages incrementally and appeared to assist the retention of nitrogen in the silage. Dry matter intakes of silages with 50 kg of barley or sugar beet pulp tonne?1 were similar to the control silage when fed to wether sheep but at 25 kg t?1, dry matter intake increased by 0·15 with barley and 0·04 with sugar beet pulp compared to the control. The digestibility of dry matter (DM) and organic matter (OM) were significantly higher than the control for silages treated with formic acid or high levels of barley and sugar beet pulp whereas neutral-detergent fibre (NDF) digestibility did not appear to be significantly affected. All treated silages had a significantly higher metabolizable energy (ME) content than the control, and additions of barley or sugar beet increased the ME content. The ME intakes of all treated silages were also significantly greater than those of the control, and the formic acid-treated and low barley silages were the highest. This appeared to be associated with significantly higher energy digestibility and DM intake. Addition of rolled barley during ensilage resulted in greater nitrogen intake, availability and retention compared to additions of sugar beet pulp. The higher retention with barley silages was associated with a significantly lower proportional loss of absorbed nitrogen in urine, which indicated a more efficient utilization of nitrogen. These differences require further study to determine the mechanisms involved in the interactions between the energy source and herbage protein, both during fermentation and in the rumen.  相似文献   

16.
The objective of the present experiment was to examine the effects of 0 (Nil), 32 (Low), 66 (Medium) or 96 (High) kg sodium (Na) ha-1 yr-1, applied as fertilizer to zero-grazed perennial ryegrass pasture, on rumen digestion and feed and water intake of steers. Herbage Na contents increased with increasing Na up to the Medium Na treatment and no further at the High. Dry matter (DM) contents were increased by Na fertilizer but not affected by the level. Herbage crude protein (CP), true protein (TP) and non-protein nitrogen (NPN) fractions were not affected by treatment. Application of Na fertilizer increased the modified acid detergent fibre (MADF) and ash and total cation content of herbage, particularly at the Medium and High treatments. Faecal DM and TP contents were not affected by treatment, but the CP, NPN, MADF and ash and total cation contents were increased by Na fertilizer. Herbage DM intake increased in proportion to dietary Na content. Water intake increased with increasing Na fertilizer level. Rumen pH was increased by Na fertilizer but ammonia concentration was not affected. The rapidly (a), slowly (b) and potentially (a + b) soluble fractions of degradable DM and the effective degradability (P) of DM increased in direct proportion to amount of Na fertilizer applied up to the Medium level, above which b was reduced and a, a + b and P did not increase further. Solid and total outflow rates were not affected by treatment. Liquid outflow rates were greater in the Medium and High treatments than in the Nil and Low treatments. The immediately soluble fraction of MADF was increased in the Na-applied treatments but the increase declined with each additional Na level. The degradability of MADF increased with increasing dietary Na, particularly in the High treatment. Na increased the proportion of small particles and those with a high specific gravity. It is suggested that the high dilution rates that accompanied the high water intakes and the increased rumen pH are essential factors enabling increased DM intake and rumen digestion when high Na herbages are fed to steers.  相似文献   

17.
Data from thirty-three experiments conducted at three ADAS Experimental Husbandry Farms were used to compare unwilted non-additive-treated silage with silage treated with formic acid, a formalin and formic-acid mixture, a calcium-formate and sodium-nitrite mixture, a formalin and sulphuric-acid mixture and wilted silage made without or with formic acid or a formalin and formic-acid mixture.
Formic acid significantly reduced pH and wilting significantly increased silage pH compared with other treatments. Formalin-acid mixtures significantly reduced pH compared with untreated silage. Formic acid in conjunction with formalin or wilting significantly increased water-soluble carbohydrate in silage compared with other treatments except wilting. Formic acid either alone or combined with either formalin or wilting significantly reduced silage butyric acid content compared with other treatments. Formic acid treatment either alone or combined with formalin significantly increased lactic acid as a proportion of total silage acids compared with other treatments except sulphuric acid-formalin.
All treatments significantly increased silage dry matter (DM) intake compared with untreated silage and intakes of wilted silage were significantly greater than of unwilted silage. Daily liveweight gains on all treatments were significantly higher than on untreated silage.
Herbage water-soluble carbohydrate necessary for successful preservation as silage without additive use was approximately 30 g (kg DM)−1 and with additives containing formic acid it was approximately 25 g (kg DM)−1.
It is suggested that formic acid application to unwilted silage either alone or in conjuction with formalin was the best treatment for improving subsequent preservation as silage, and that animal performance was enhanced by addition of acid-formalin additives to unwilted herbage or formic-acid application to unwilted or wilted herbage.  相似文献   

18.
In three separate feeding experiments using a total of thirty individually-housed Ayrshire cows three silages made from perennial ryegrass were given ad libitum together with supplements of four different hays in the long form. The in vitro D-values of the silages ranged from 0·298 to 0·283, and the hays from 0·280 to 0·200. The daily intake of hay DM varied from 0·2 to 4·2 kg per cow and was given either without or with a daily maximum of 2·2 kg concentrate DM containing 379–527 g CP per kg DM. On average, 1 kg hay DM decreased silage intake by 0·24 kg DM with a range of 0·21–1·20 kg. The hay supplements had only small and non-significant effects on total DM intake, milk yield and milk composition, but increased the daily intake of drinking water. In three behavioural studies, the eating and ruminating times expressed as min per kg DM did not differ significantly between the various supplement treatments. It is concluded that hay has only a marginal value as a supplement for grass silage, although the hay could serve as a useful 'buffer' feed if the amount of silage was limited.  相似文献   

19.
The chemical composition of silage consumed by cattle can influence the subsequent rumen microbial fermentation patterns and methane (CH4) emissions. The objectives of this study were to (i) evaluate the effect of ensilage on the in vitro rumen methane output of perennial ryegrass and (ii) relate the silage fermentation characteristics of grass silages with in vitro rumen methanogenesis. Three pre‐harvest herbage‐conditioning treatments and seven silage‐additive treatments were used in a laboratory‐scale silo experiment to produce a diversity of silage fermentation characteristics. Ensilage reduced (< 0·01) the in vitro rumen CH4 output (mL CHg?1 dry matter (DM) disappeared). This reflected differences in the direction of rumen fermentation (lower acetic (< 0·05) and higher propionic (< 0·001) acid proportions in volatile fatty acids) rather than major changes in the extent of in vitro rumen fermentation (i.e. mmol VFA g?1 DM). The magnitude of the decrease in CH4 output (mL g?1 DM incubated) owing to ensilage increased as the extent of silage fermentation, and in particular the lactic acid concentration, increased. In contrast, among silages with relatively similar extents of silage fermentation (i.e. total fermentation products), an increase in the proportion of lactic acid in silage fermentation products led to a more extensive in vitro rumen fermentation and thus to a greater CH4 output (mL g?1 DM).  相似文献   

20.
An experiment was designed to examine the effects of partially replacing extensively fermented grass silage with varying proportions of fresh grass (0, 0–33, 0–67 and 100) on rumen fermentation, degradation of dry matter (DM) and rate of outflow of liquid and particulate phases from the rumen with four mature Limousin steers. The fresh grass had a higher pH and water-soluble carbohydrate and lower ammonia-N and lactic acid concentrations than the silage. Partial replacement of silage with fresh grass resulted in a reduction in rumen ammonia concentration, and in the proportion of rumen propionate, i-butyrate and n -valerate and an increase in the proportion of rumen acetate and in both die particulate and liquid outflow rates from the rumen. These changes in rumen fermentation parameters could account for increases in animal performance in situations in which grass silage is partially replaced with fresh grass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号