首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A collection of 63 bread wheats (Triticum aestivum L.) and 21 durum wheats (Triticum durum Desf.) commonly grown in Portugal since 1982 were characterized for the composition of wheat storage proteins (WSP), high molecular weight glutenin subunits (HMW-GS), low molecular weight glutenin subunits (LMW-GS) and ω-gliadins. The composition of HMW-GS, LMW-GS and &-gliadins, encoded at loci Glu-1, Glu-3 and Gli-1, respectively, was revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. WSP allelic compositions of bread and durum wheat patterns were given. In the bread wheats, a total of 24, 24 and 18 patterns were observed for HMW-GS, LMW-GS and ω-gliadins, respectively. Forty-two different alleles were identified for the nine loci studied, Glu-A1 (3), Glu-B1 (7), Glu-D1 (4), Glu-A3 (5), Glu-B1 (7), Glu-D3 (2), Gli-A1 (2), Gli-B1 (8) and Gli-D1 (4). In the case of durum wheats, 19 alleles were identified: one allele at Glu-A1, two at Glu-B3, Glu-B2 and Gli-A1, three at Glu-B1, four at Glu-A3 and five at Gli-B1. For HMW-GS, LMW-GS and ω-gliadins, three, six and six different patterns were revealed, respectively. This study represents the first attempt to discriminate the bread and durum wheat varieties commonly grown in Portugal by the allelic variation of storage proteins. The database is useful for varietal identification and for plant breeders who seek to devise effective programmes aimed at improving wheat quality.  相似文献   

2.
Summary High and low molecular weight glutenin subunit (HMW-GS and LMW-GS) compositions of 270 European spelts, 15 Iranian spelts and 25 bread wheat cultivars were analyzed by one- and two-dimensional gel electrophoresis. The results revealed a total of 22 HMW-GS alleles (4 at Glu-A1, 11 at Glu-B1 and 7 at Glu-D1) and 32 allele combinations among the three Glu-1 loci. Two major genotypes of HMW-GS: 1, 13+16, 2+12 and 1, 6.1+22.1, 2+12 were found to occur in Central European spelt wheat cultivars and landraces at higher frequencies of 35 and 28%, respectively. The Glu-B1 locus displayed the greatest variation and genetic diversity index (H) was 0.69 whereas Glu-A1 and Glu-D1 showed H index values of 0.26 and 0.19, respectively. The dendrogram constructed by HMW and LMW glutenin subunit bands revealed that European spelts form a separated cluster from common wheat suggesting that spelt and common wheat form distinct groups. In addition, all 15 Iranian spelt land variety accessions differed from European spelts and possessed similar HMW-GS alleles to common wheat. Because of a wider polymorphism Central European spelt wheats are an important genetic reserviour for improving common wheat quality. Both authors contributed equally to this work  相似文献   

3.
High molecular weight glutenin subunit composition of Chinese bread wheats   总被引:28,自引:0,他引:28  
Summary The endosperm storage proteins of 205 Chinese bread wheat cultivars and advanced lines were fractionated by SDS-PAGE to determine their high molecular weight (HMW) glutenin subunit composition. Seventeen alleles were identified: three at Glu-A1, eight at Glu-B1, and six at Glu-D1. The most common alleles were Null, 1, 7+8, 7+9, and 2+12. The results indicate that wheats from different regions differ in their frequencies of HMW glutenin subunits, however, none of the subunits could be related to specific environments. The glutenin quality scores of Chinese wheats ranged from 3 to 10, with an average of 6.7. Increasing quality scores have implications in improving steam-bread making quality for Chinese consumers. On the basis of HMW glutenin subunit composition, Chinese wheats are close to European wheats, especially Italian wheats because several Italian introductions are widely distributed in the pedigrees of Chinese wheat.  相似文献   

4.
选用北方冬麦区近年来育成的优质强筋品种及山东省主栽品种共42份, 采用反相高效液相色谱法(RP-HPLC)和凝胶色谱法(SE-HPLC)对小麦贮藏蛋白组分进行量化, 分析了不同高分子量谷蛋白亚基(HMW-GS)组成对其表达量、面团流变学特性和面包加工品质的影响。结果表明, Glu-D1位点对谷蛋白亚基含量和加工品质的加性效应最大, 达5%显著水平, 贡献率为28.5%~71.3%。在Glu-A1和Glu-D1位点, 单个亚基对谷蛋白亚基含量和加工品质的贡献分别为1>2*>N和5+10>2+12>4+12, 而在Glu-B1位点, 则表现为差异不显著。不同亚基组合的HMW–GS表达量差异达5%显著水平, 相同亚基组合的品种间贮藏蛋白组分表达量的变异较大, 亚基表达量的差异可能是导致品种间品质差异的重要原因。1B/1R易位显著降低LMW-GS、谷蛋白总量和%UPP, 导致加工品质变劣。选择具有优质亚基组合, 且谷蛋白亚基表达量高的类型, 是有效改良面筋强度, 进一步提高优质新品种选育的有效途径。  相似文献   

5.
HMW-GS和LMW-GS组成对小麦加工品质的影响   总被引:11,自引:0,他引:11  
高分子量麦谷蛋白亚基(HMW-GS)和低分子量麦谷蛋白亚基(LMW-GS)是决定小麦加工品质的重要因素。以小麦品种PH82-2(亚基组成1, 14+15, 2+12和Glu-A3d, Glu-B3d, Glu-D3c)和内乡188(亚基组成1, 7+9, 5+10和 Glu-A3a, Glu-B3j, Glu-D3b)的242份F3和F4株系(试验I)和91份产量比较试验材料(试验II)研究了贮藏蛋白组成对小麦加工品质的影响。结果表明,HMW-GS和LMW-GS等位变异对籽粒蛋白质含量的影响不大,但对加工品质均有极显著影响(P<1%)。就位点的效应而言,Glu-D1位点对加工品质的效应较大,而Glu-D3位点的效应较小。就单个亚基而言,在Glu-B1位点,14+15<7+9;在Glu-D3位点,Glu-D3c>Glu-D3b。1B/1R易位系的部分品质性状,如和面时间、曲线下降斜度和峰积分好于非1B/1R易位系。  相似文献   

6.
The objective of this paper was to study the differences between some prolamin variants coded at the loci Glu-3/Gli-1, Glu-1 and Gli-A2 and their relative roles in durum-wheat quality. F3 lines from four durum wheat crosses (‘Abadia’בMexicali’. ‘Oscar’בArdente’, ‘Oscar × Mexicali’ and ‘Alaga’בC. of Balazote’) were analysed for gliadin and glutenin composition by electrophoresis. Whole-grain-derived samples were analysed for SDS sedimentation (SDSS) value, mixing properties, and contents of protein and vitreousness. The glutenin patterns LMW-2. LMW-2? and LMW-2 (CB) at Glu-B3/Gli-B1 were associated with better gluten quality than were LMW-1 and LMW-2*. The glutenin subunits LMW4 and LMW3 + 15 at Glu-A3/Gli-A1 and HMW-1 showed better mixing properties than LMW7 + 12, LMW5 and the null phenotype. respectively. The HMW glutenin subunits 20 + 8 at Glu-B1 showed a negative association with gluten quality, but the rest of the HMW glutenin subunits and α-gliadins did not show any influence on gluten quality. Correlations between the results of the SDSS test and the mixograph were highly significant, but no correlation was found between these results and protein and vitreousness contents. The results are discussed in relation to the development of durum wheat varieties with improved qualities.  相似文献   

7.
转玉米C4光合酶基因水稻株系中的光合C4微循环   总被引:10,自引:1,他引:10  
王涛  李竹林  任正隆 《作物学报》2004,30(6):544-547
采用种间杂交(硬粒小麦´普通小麦)创造了具有高分子量谷蛋白5+12亚基的稀有小麦新品系,SDS-PAGE分析表明,该品系的Glu-D1位点编码5+12亚基。其沉降值、湿面筋含量、粉质仪图形成时间、稳定时间等品质指标显著优于具有优质亚基5+10的姊妹系,该小麦品系遗传上纯合,具有多花多粒的优良农艺性状。5+12亚基稀 有小麦新  相似文献   

8.
Dough rheological properties and end-use quality were evaluated to determine the effects of Glu-1 and Glu-3 alleles on those characteristics in Korean wheat cultivars. SDS-sedimentation volume based on protein weight was positively correlated with mixograph parameters and maximum height of dough and also positively correlated with bread volume, crumb firmness and springiness of cooked noodles. Protein content was negatively correlated with optimum water absorption of noodle dough, lightness of noodle dough sheet and hardness and cohesiveness of cooked noodles. Within Glu-1 loci, 1 or 2* subunit and 5 + 10 subunits showed longer mixing time, higher maximum dough height and larger bread volume than other alleles. Cultivars with 13 + 16 subunits at Glu-B1 locus showed higher protein content and optimum water absorption of mixograph than cultivars with 7 + 8 subunits. At Glu-3 loci, Glu-A3d showed longer mixing time than Glu-A3e, and Glu-B3d and Glu-B3h had stronger mixing properties than Glu-B3i. Glu-B3h had higher bread volume and hardness of cooked noodles than Glu-B3d. Glu-D3a had lower protein content than Glu-D3c, and Glu-D3b showed stronger mixing properties than Glu-D3a. Glu-D3c showed lower hardness of cooked noodles than others.  相似文献   

9.
The high molecular weight glutenin subunit (HMW-GS) compositions of 66 Chinese endemic wheats were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Ten alleles at the Glu-1 loci were detected in 50 Tibetan weedrace wheat accessions which in combination resulted in seven different HMW-GS patterns. Four HMW-GS patterns were observed among 10 Yunnan hulled wheat accessions, and two patterns in six Xingjiang rice wheat accessions. Two novel alleles (Bx7** + By8, Bx7 + By8**) and two rare alleles (Dx2 + 1Dy12*, Dx2 + null) were found in Tibetan weedrace accessions, with one of the latter (Dx2 + Dy12*) also being found in Yunnan hulled wheat. The mean indices of genetic variation at the Glu-1 loci in Yunnan hulled wheat, Tibetan weedrace wheat and Xingjiang rice wheat were 0.2232, 0.1655 and 0.0926, respectively, showing that Yunnan hulled wheat and Tibetan weedrace wheat had higher genetic variation than Xingjiang rice wheat.  相似文献   

10.
The objective of this study was to identify allelic variations at Glu-1 loci of wheat (Triticum aestivum L.) advanced lines derived from hybridization of bread wheat and synthetic hexaploid wheats (2n = 6x = 42; AABBDD). Locally adapted wheat genotypes were crossed with synthetic hexaploid wheats. From the 134 different cross combinations made, 202 F8 advanced lines were selected and their HMW-GS composition was studied using SDS-PAGE. In total, 24 allelic variants and 68 HMW-GS combinations were observed at Glu-A1, Glu-B1, and Glu-D1 loci. In bread wheat, the Glu-D1 locus is usually characterized by subunits 1Dx2+1Dy12 and 1Dx5+1Dy10 with the latter having a stronger effect on bread-making quality. The subunit 1Dx5+1Dy10 was predominantly observed in these advanced lines. The inferior subunit 1Dx2+1Dy12, predominant in adapted wheat germplasm showed a comparative low frequency in the derived advanced breeding lines. Its successful replacement is due to the other better allelic variants at the Glu-D1 locus inherited in these synthetic hexaploid wheats from Aegilops tauschii (2n = 2x = 14; DD).  相似文献   

11.
The high molecular weight glutenin subunit (HMW-GS) composition of acollection of 107 Argentinean bread wheat cultivars was analysed bysodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE).Allelic variation at the Glu-1 loci was identified and its frequencycalculated. Eleven alleles were detected, three encoded at the Glu-A1locus, six at the Glu-B1 locus and two at the Glu-D1 locus. Alow frequency of the null allele at the Glu-A1 locus and a highfrequency of subunits 5+10 at the Glu-D1 locus were observed.Reversed phase-high performance liquid chromatography (RP-HPLC)analysis was used to further characterise HMW-GS. Two different types ofBx subunit 8 (named subunits 8 and 8) were detected, the latterhaving shorter elution time. Subunit 8 was not identifiable bySDS-PAGE. According to quantification by RP-HPLC analysis, two groupsof subunit 7 were observed. One group, with a relatively high proportionof subunit 7 (approximately 39% of the total amount of HMW-GS)appeared in cultivars with allele 7+8 at the Glu-B1 locus; asecond group of subunit 7 (around 24% of the total amount ofHMW-GS), was found in alleles 7+8, 7+8 and 7+9. Restrictionfragment length polymorphisms (RFLP) analyses of HMW-GS genes werealso carried out after digestion of genomic DNA with HindIII andTaqI restriction enzymes. The relationship between DNA fragment sizeand glutenin subunits, as estimated by electrophoretic mobility inSDS-PAGE, was also examined. The restriction enzyme TaqIdemonstrated to be a useful tool to detect homozygous plants in selectionprograms against the Glu-A1 null allele.  相似文献   

12.
Variation of high molecular weight gluteninsubunits (HMW-GS) at the Glu-1 lociwas studied using SDS-PAGE method in 43advanced lines or cultivars commonly grownin Iran. Fourteen alleles and 21 alleliccompositions were detected. Among the 43bread wheats analysed only five showed aunique HMW-GS composition. The mostfrequent HMW-GS patterns were 2*, 7+8,2+12 and 2*, 17+18, 2+12 which wereobserved in 13 and six cultivars,respectively. In the remainings, each twoto three lines or cultivars showed a commonHMW-GS pattern. Therefore, allelicvariation at Glu-1 loci is of limitedvalue for cultivar identification comparedwith loci controlling gliadins. Sevencultivars were observed to consist of twoto three biotypes with different alleles.In cultivar Mahdavi a biotype showedinactivity at the Glu-B1 locus. Analready reported rare subunit pair'2***+12' at Glu-D1locus was found in cultivar Kavir. Theresults of scoring cultivars for theirquality based on the HMW-GS compositionswith an average score of eight, wasgenerally good. Cultivars Inia, Tajan, andadvanced lines N-75-11 and N-75-15 showedquality score equal to 10, whereas Alamootand C-75-5 showed quality scores equal tofive. The quality of former and latterlines and cultivars were considered highestand lowest, respectively. The resultsobtained in this study are useful inbreeding programs to improve bread makingquality, developing uniformity andimproving heterogeneous cultivars by meansof selection of the best genotypes.  相似文献   

13.
Variability of high molecular weight glutenin subunits (HMW-GS) was studied in198 accessions of Ae. Tauschii (2n=2x=14, DD) by sodium dodecyl sulphate(SDS-PAGE) and acid polyacrylamide gel electrophoresis (A-PAGE) and capillary electrophoresis (CE). A high allelic variation of HMW-GS, including some novel x- and y-type subunits and variable subunit combinations were observed. One accession(TD159) showed a x-type null form. The results by A-PAGE analysis revealed that the subunits Dx5 t and Dy10 t encoded by Glu-D t 1 locus in Ae. tauschii were different in relative mobilities in comparison with the subunits Dx5 and Dy10 found in bread wheats, whereas they had the same mobilities, respectively, when separated by SDS-PAGE. The higher resolution of Ae. tauschii HMW-GS separated by CE method showed two clear peaks in accordance with x- and y-type subunits, respectively,except the accession TD151 which possessed only subunit Dy12.1*t. The electro elution time of the x-type and y-type subunits were about 13–14 and 7–8minutes, respectively. Characterization of wheat HMW-GS was facilitated by using CE which provides high resolution and increases the speed of analysis in conjunction with the traditional gel electrophoretic methods. A total of 42HMW-GS alleles were identified, among which were several alleles not presently detected in bread wheats. Hence Ae. tauschii is potentially a valuable genetic resource for quality improvement of bread wheat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Hexaploid tritordeum is the amphiploid derived from the cross between Hordeum chilense and durum wheat. The storage proteins synthesized in the Hch genome influence the gluten strength of this amphiploid. The D‐prolamins of H. chilense have been analysed by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis with and without urea. A new locus named GluHch3 has been detected. The effects of allelic variation at this locus on gluten strength, as measured the sodium dodecyl sulphate sedimentation test, were determined using seeds of 92 lines from a cross of two hexaploid tritordeum lines. Two allelic variants have been detected for this locus, which have shown different effects on gluten strength.  相似文献   

15.
辐射诱变是一种重要的变异手段,为了丰富小麦的品质性状变异资源,通过采用60Co-?射线辐射普通小麦品种‘冀3235’幼胚愈伤组织的方法,获得辐射诱变处理的再生植株。对再生株后代种子进行麦谷蛋白亚基的SDS-PAGE分析,结果从中发现了不含Glu-D1位点编码的高分子量麦谷蛋白亚基的材料。经进一步的系谱选择,选育成了稳定遗传的7份材料。与对照‘冀3235’相比,这些株系的农艺性状无明显差异,醇溶蛋白A-PAGE电泳谱带也完全相同,仅在麦谷蛋白SDS-PAGE电泳图谱的Glu-D1位点上有差异(变异系缺少Glu-D1位点控制的亚基,对照‘冀3235’为2+12)。品质分析结果表明,Glu-D1位点缺失系的面粉品质发生了很大变化,其湿面筋没有检出,沉降值显著下降。这些变异系是培育弱筋小麦品种和评价Glu-D1位点功能的珍贵材料。  相似文献   

16.
Over recent years, quality has become an important commercial issue for durum wheat breeders. Modern breeding methods are most efficient for producing and supplying the best quality raw materials to the pasta industry. Here we assessed the effectiveness of molecular marker-assisted selection of quality traits in durum wheat. To this end, DNA and quality trait markers were jointly used to analyze quality-related traits in a durum wheat collection. A total of 132 durum wheat (Triticum turgidum ssp. durum) Mediterranean landraces, international lines, and Moroccan cultivars were analyzed for seven important qualityrelated traits including thousand-kernel weight (TKW), test weight (TW), gluten strength, yellow pigment (YP), and grain protein content (GPC). Additionally, 18 simple sequence repeat (SSR) markers previously reported to be associated with different quality traits were analyzed. Of these, 14 (78%) were polymorphic and four were monomorphic. There were between two and seven alleles per locus, with an average of four alleles per locus. The average phenotypic variation value (R2) ranged from 2.81 to 20.43%. Association analysis identified nine markers significantly associated with TKW, TW, and YP, followed by eight markers associated with GPC, six markers associated with yellow index b, four markers associated with brightness L, and three markers associated with SDS-sedimentation volume. This study highlights the efficiency of SSR technology, which holds promise for a wide range of applications in marker-assisted wheat breeding programs.  相似文献   

17.
Wheat (Triticum aestivum L.) glutenin allelic variation and presence of the 1AL.1RS wheat-rye (Secale cereale L.) translocation play important roles in determining end-use quality. This study was conducted to evaluate the effects of high and low molecular weight glutenin alleles and 1AL.1RS on dough mixing properties of 189 recombinant inbred lines (RILs) from the cross TAM 107-R7/‘Arlin’ grown in irrigated and rainfed Colorado (USA) environments. The results indicated that (1) higher values (P < 0.05) of some dough mixing properties were observed for Glu-A1b versus Glu-A1a, Glu-B1b versus Glu-B1c, Glu-D1d versus Glu-D1a, and non-1AL.1RS versus 1AL.1RS; (2) no differences in Mixograph properties were found for Glu-A3c versus Glu-A3e, Glu-B3e versus Glu-B3g, or Glu-D3a versus Glu-D3b; (3) although variation at some glutenin loci had little effect on Mixograph properties, pairwise combinations of glutenin loci or a glutenin locus combined with 1AL.1RS affected most Mixograph traits; and (4) in general, the effects of glutenin alleles and 1AL.1RS on dough mixing properties did not differ greatly between the irrigated and the rainfed environment. These results will be useful for assessing potential wheat quality and directing wheat breeding efforts in Colorado and similar environments.  相似文献   

18.
Polymorphism of waxy proteins in Iberian hexaploid wheats   总被引:4,自引:0,他引:4  
A collection of 130 cultivars of bread wheat, 332 landraces of bread wheat and 144 spelt wheats was analysed for waxy proteins in the grain. The electrophoretic patterns showed very low polymorphism and most of the hexaploid wheats had the Wx-Ala, Wx-D1a and Wx-B1 alleles of ‘Chinese Spring’. Two alleles were detected at Wx-A1 (Wx-A1a, and Wx-A1b (null)), the latter was present in only 5.1% of the bread wheat landraces and 7.6% ofthe spelt wheats. No allelic variation was found at the Wx-D1 locus and all the hexaploid wheats had the Wx-D1a allele. Wx-B1 was the most polymorphic locus, with three alleles detected: Wx-B1a, Wx-B1b (null) and Wx-Blc coding for a Wx-B1 protein with a slightly different mobility from Wx-B1a. The null Wx-B1b allele was found in 10.8% of the bread wheat cultivars, 21.4% of the bread wheat landraces and 12.5% of the spelt wheats. Among the 604 hexaploid wheats analysed, only two bread wheat landraces (0.6%) and two spelt wheats (1.4%) had the null allele at both Wx-A1 and Wx-B1 loci.  相似文献   

19.
Genetic diversity of wheat storage proteins and bread wheat quality   总被引:17,自引:0,他引:17  
To understand the genetic and biochemical basis of the bread makingquality of wheat varieties, a large experiment was carried out with a set of162 hexaploid bread wheat varieties registered in the French or EuropeanWheat Catalogue. This material was used to analyse their allelic compositionat the twelve main storage protein loci. A large genetic and biochemicaldiversity of the gluten proteins was found. Several gliadin encoding lociexhibited the highest allelic diversity whereas the lowest diversity was foundfor Glu-A1 and Glu-D3 loci encoding some high molecularweight glutenin subunits (HMW-GS) and LMW-GS respectively. Thevarieties were grown in three experimental locations in France. Qualityevaluation was carried out from material harvested in each location usingseven technological tests: grain protein content (Prot), grain hardness(GH), Zeleny sedimentation test (Zel), Pelshenke test (Pel), water solublepentosans (relative viscosity: Vr ), mixograph test (giving 11 parameters)and the alveograph test (dough strength W, tenacity P , extensibility L,swelling G, ratio P/L and the elasticity index Ie). Genetic and locationeffects as well as broad-sense heritability of each of the 22 technologicalparameters were calculated. GH, corresponding to the major Ha gene, Pel,and MtxW (mixograph parameter) had the highest heritability coefficients,alveograph parameters like W, P, the relative viscosity Vr and severalmixograph parameters had medium heritability coefficients whereas Protand L had the lowest. Variance analysis (using GLM procedure) allowed theeffect of the allelic diversity of the storage proteins, on the geneticvariations of each quality parameters, to be estimated. Glu-1 and Glu-3 loci had significant additive effects in the genetic variations of manyparameters. Gliadin alleles encoded at Gli-1 and Gli-2 were alsofound to play significant effect on several quality parameters. The majorpart of the phenotypic variation of the different quality parameters like Zel,Pel, W or mixograph peak time MPT was explained with the GH and allelesencoded at Glu-1 and Glu-3. Allelic variants encoded at Glu3and Gli-2 had similar contribution to the phenotypic variations ofquality parameters and accounted for 4% up to 21% each.  相似文献   

20.
49份山西水地小麦品系的HMW-GS组成及品质分析   总被引:1,自引:0,他引:1  
为了解在育种过程中各品系材料的品质状况,采用SDS-PAGE技术对选取的49份品系材料高分子量麦谷蛋白亚基的组成进行分析。结果表明:共发现8种等位变异和11种亚基组合类型。其中,Glu-A1位点出现2种亚基类型,以亚基1(83.67%)为主。Glu-B1位点出现4种亚基类型,以亚基14+15(42.86%)为主。Glu-D1位点出现2种亚基类型,亚基2+12(71.43%)和亚基5+10(28.57%)。对49份材料进行品质性状测定,并与各个亚基间做相关性分析。Glu-A1位点,亚基1的各个指标均高于亚基Null的指标。Glu-D1位点,亚基5+10的品质指标也高于亚基2+12。Glu-B1位点4种亚基在各个品质指标间均存在显著差异,亚基7+8对蛋白质含量、容重以及湿面筋的贡献最高,亚基17+18对沉淀值和最大抗延阻力的贡献最高,亚基7+9具有最长的稳定时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号