首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine spongiform encephalopathy caused a situation of crisis leading the public and winemakers to lose their confidence in the use of gelatin as a fining agent and to reject animal proteins in general. Therefore, we started the search for a substitute for gelatin and egg protein by comparing gluten with these fining treatments currently used. This study concerned the fining of a Burgundy red wine (Rully, Controlled Appellation). For 6 g/hL, enzymatically hydrolyzed glutens (EHG) gave better efficiencies than deamidated glutens. The efficiency of the egg proteins treatment was situated between those of the hydrolyzed glutens and deamidated glutens. For 12 and 18 g/hL, turbidities of the wine treated by five glutens were 67 to 86% less than that of the control wine. Better results were obtained with egg proteins for short kinetics particularly. Wine fining with gluten was always better than gelatin treatments. The differences between the five glutens became very small when the dose incorporated in the wine increased. The volumes of lees generated by fining with gluten are situated between the values obtained with egg proteins and gelatin. After fining, immunodetection with gluten polyclonal antibodies failed to detect residual deamidated gluten.  相似文献   

2.
Proteins have proven to play a major role in the stabilization of foam in Champagne wines despite their low concentration that ranges from 4 to 20 mg/L. The aim of this study was to evaluate the effect of fining on total protein and grape invertase contents of champenois base wines and their foaming properties. Data showed that fining and especially the use of bentonite at doses ranging from 10 to 50 g/hL leads to a significant decrease in the total protein content of wines together with that of the grape invertase content, with such a decrease being very detrimental to the foaming properties of the treated wines in terms of foam height (HM) and foam stability (HS). Only a slight decrease in the total protein content, in the grape invertase concentration, and in the foam quality of wines was observed when using casein (10 and 20 g/hL) or bentonite combined with casein (both at 20 g/hL). Our study thus clearly establishes the good correlation existing between the wine protein concentration and its foaming properties. A remarkable correlation was observed between the decrease in the grape invertase content and the total protein content of wines, following bentonite treatments, suggesting that the grape invertase (which represents at least 10-20% of the wine proteins) follows a similar behavior upon fining to other proteins of Champagne wines, despite the high molecular mass and the highly glycosylated structure of this particular protein. Moreover, the decrease in total protein and grape invertase contents of wine after fining with bentonite was found to be correlated with a decrease in the foaming properties of the corresponding wines (with respectively R(2) = 0.89 and 0.95).  相似文献   

3.
Recently, wheat gluten has been proposed as technological adjuvant in order to clarify wines. However, the possibility that residual gluten proteins remain in treated wines cannot be excluded, representing a hazard for wheat allergic or celiac disease patients. In this work, commercial wheat glutens, in both partially hydrolyzed (GBS-P51) and nonhydrolyzed (Gluvital 21000) forms, were used as fining agents in red wine at different concentrations. Beside immunoenzymatic analyses using anti-gliadin, anti-prolamin antibodies and pooled sera of wheat allergic patients, a method based on liquid chromatography coupled to mass spectrometry has been proposed to detect residues of gluten proteins. Residual gluten proteins were detected by anti-prolamin antibodies, anti-gliadin antibodies and sera-IgE only in the wine treated with GBS-P51 at concentration 50, 150, and 300 g/hL, respectively, whereas no residual proteins were detected by these systems in the wine treated with Gluvital 21000. In contrast liquid chromatography-mass spectrometry analyses allowed the detection of proteins in red wines fined down to 1 g/hL of Gluvital 21000 and GBS-P51. Our results indicate that MS methods are superior to immunochemical methods in detecting gluten proteins in wines and that adverse reactions against gluten treated wines cannot be excluded.  相似文献   

4.
Influence of lysozyme treatments on champagne base wine foaming properties   总被引:1,自引:0,他引:1  
The objective of this study was to estimate the effect of lysozyme on the foaming characteristics of Champagne base wine. Lysozyme additions were made to the musts and also to the wines before and after bentonite or charcoal treatments, which remove endogenous proteins. Treatments with bentonite diminished foamability and foam stability of wines, whatever the dose (30 or 80 g/hL) and variety [Chardonnay, -28%; Pinot noir, -20% (at 30 g/hL)]. An addition of lysozyme in must raised Pinot noir wine foamability by 21%, whereas the difference is hardly perceptible for Chardonnay wine (+3%). Pinot noir and Chardonnay wines, originating from lysozyme-treated musts, in addition to bentonite treatment on the wine, presented higher foamability than wines treated only with bentonite. Lysozyme was removed (91-100%) by the bentonite treatment. Then, it was not responsible for the increase in foamability but seemed to have a protective effect on the wine proteins. When wines were initially treated with bentonite (150 g/hL) and then enriched with 80 g/hL lysozyme, this enzyme was not able to restore foaming properties. Treatments with charcoal always diminished foamability. The average increase in foamability due to an addition of lysozyme after charcoal treatment (80 g/hL) was 23%. Results showed a real positive effect of lysozyme on foam stability when wines have to be treated with charcoal (+25% and +56% for the Pinot noir wine and the Chardonnay wine, respectively, at 30 g/hL).  相似文献   

5.
The presence in wine of the fungal metabolite, ochratoxin A (OTA), represents a serious risk for consumer health. A variety of fining agents, including activated carbon, silica gel, potassium caseinate, egg albumin, and gelatin, was evaluated in relation to their abilities to remove OTA in fortified wines. Freundlich adsorption isotherms were used to model the adsorption behavior between ochratoxin A and the fining agent. Potassium caseinate and activated carbon were found to be the best fining agents that could be used to remove OTA in wine. Potassium caseinate removed up to 82% of OTA when used at 150 g/hL, whereas activated carbon showed the highest specific adsorption capacity due to a high surface area per mass and low adsorption of total polyphenols.  相似文献   

6.
The effect of different protein sources (soy flour, lupin flour, egg albumin, gelatin powder, protein‐rich beer yeast flour) on wheat dough functionality was tested by determining gluten index, texture properties, and thermomechanical parameters. Transglutaminase (TG) was also added to improve the dough functionality by forming cross‐links. The presence of protein sources had a significant effect on the gluten index, with the exception of lupin flour. Gelatin and the presence of TG resulted in significant single effects on the texture properties of the wheat‐protein dough. All the protein sources significantly modified the mixing characteristics of the dough or the thermal behavior. Capillary electrophoresis studies of the water‐soluble, salt‐soluble, and glutenin proteins indicated that interactions were mainly within proteins, thus homologous polymers. Scanning electron microscopy studies of the doughs made from blends of wheat and protein sources doughs supported the formation of heterologous structures in the wheat‐lupin blends. The combination of TG and lupin would be a promising method to be used on the treatment of insect‐damaged or weak flours, to increase the gluten strength.  相似文献   

7.
Bread made from a mixture of wheat and lupin flour possesses a number of health benefits. The addition of lupin flour to wheat flour during breadmaking has major effects on bread properties. The present study investigated the lupin and wheat flour protein interactions during the breadmaking process including dough formation and baking by using proteomics research technologies including MS/MS to identify the proteins. Results revealed that qualitatively most proteins from both lupin and wheat flour remained unchanged after baking as per electrophoretic behavior, whereas some were incorporated into the bread gluten matrix and became unextractable. Most of the lupin α-conglutins could be readily extracted from the lupin-wheat bread even at low salt and nonreducing/nondenaturing extraction conditions. In contrast, most of the β-conglutins lost extractability, suggesting that they were trapped in the bread gluten matrix. The higher thermal stability of α-conglutins compared to β-conglutins is speculated to account for this difference.  相似文献   

8.
Bayberry juice was fined with the methods of xanthan/chitosan (XC) or gelatin/bentonite (GB), and then filtered with diatomaceous earth filtration (DF) or ultrafiltration (UF, MWCO 100 kDa). Their effects on juice haze formation were investigated. The XC fining method was more effective than the GB method in removal of the total monomeric anthocyanin, total phenolics, and protein, with less haze formed in the XC fined juice. The DF reduced 2-5% of the total phenolics and 21-23% of protein, while UF reduced 19-24% of the total phenolics and 34-38% of protein, respectively. The results showed that fining and then UF can reduce but cannot eliminate haze formation in bayberry juice. The storage temperature was a critical factor affecting haze formation, and the juice was more stable when stored at lower temperature (4 degrees C).  相似文献   

9.
Wheat starch is used to make baked products for celiac patients in several European countries but is avoided in the United States because of uncertainty about the amounts of associated grain storage (gluten) proteins. People with celiac disease (CD) must avoid wheat, rye, and barley proteins and products that contain them. These proteins are capable of initiating damage to the absorptive lining of the small intestine in CD patients, apparently as a consequence of undesirable interactions with the innate and adaptive immune systems. In this study, starch surface-associated proteins were extracted from four commercial wheat starches, fractionated by high-performance liquid chromatography and gel electrophoresis, and identified by tandem mass spectrometry analysis. More than 150 proteins were identified, many of which (for example, histones, purothionins, and glutenins) had not been recognized previously as starch-associated. The commercial starches were analyzed by the R-5 enzyme-linked immunosorbent assay method to estimate the amount of harmful gluten protein present. One of these starches had a low gluten content of 7 ppm and actually fell within the range proposed as a new Codex Alimentarius Standard for naturally gluten-free foods (maximum 20 ppm). This low level of gluten indicates that the starch should be especially suitable for use by celiac patients, although wheat starches with levels up to 100 ppm are deemed safe in the proposed Codex standards.  相似文献   

10.
Influence of prefermentary clarification on the composition of apple musts   总被引:1,自引:0,他引:1  
The polyphenol contents and colors of cider apple juices were compared before (NCM, not clarified must) and after five clarification treatments: enzymatic depectinization by pectinases followed by (i) sedimentation (depectinized and decanted juice), (ii) tangential microfiltration (microfiltered juice) or (iii) fining using gelatin (gelatin-treated juice); (iv) enzymatic gelification of pectin by pectin methylesterase followed by natural keeving by a cider manufacturer (producer keeved juice), or (v) flotation (floated with nitrogen gas juice). The pressing of the apples led to the highly selective extraction of the flavan-3-ols with the lowest molecular weights: In the apples, the number average degree of polymerization of the flavanols was 14.7, and it dropped to 2.2 in the NCM. Keeving had the highest impact on the reduction of both flavanol content and number average degree of polymerization. The flavanol concentrations were decreased in the permeate by fining (30%) much more than by depectinization. The clarification step led to a further decrease of the number average degree of polymerization. Hydroxycinnamic acids were less affected by the extraction process (with extraction yields >50%) and not affected by clarification. The color evolved with all treatments: L*, a*, b*, and chromaticity distance index measures indicated a reduction of orange-yellow saturation except after sedimentation.  相似文献   

11.
《Journal of plant nutrition》2013,36(12):1885-1900
Increases in yield due to applications of phosphorus (P) (0, 5, 10, 15, 20, and 40 kg P/ha) applied as single (ordinary) superphosphate were measured for canola (Brassica napus), lupin (Lupinus angustifolius) and wheat (Triticum aestivum) in a field experiment on a deep sandy soil near Esperance, south-western Australia (WA). There are no data comparing the P requirements of these species grown at the same time, which was done by determining the amount of P required to produce 90% of the maximum yield for each species. The amount of P required was about 50% less for canola than wheat and about 10% more for lupin than wheat (60% more than canola). For each amount of P applied, the concentration of P in shoots and grain was greater for canola, followed by lupin and then wheat, suggesting that canola and lupin roots were better at accessing soil P than wheat. The critical concentration of P (diagnostic) required for 90% maximum yield of dried shoots measured in September was about 2.3 g/kg P for wheat, 2.8 g/kg P for lupin, and 3 g/kg P for canola. Similar critical values were obtained when P concentration in the shoots was related to grain yield (prognostic).  相似文献   

12.
脱酰胺与双酶协同作用提高小麦面筋蛋白酶解效率   总被引:2,自引:2,他引:0  
为了探讨了不同脱酰胺处理和双酶协同作用方式对小麦面筋蛋白酶解效率及其产物抗氧化活性的影响,该文研究了小麦面筋蛋白在各种预处理方式和酶解条件下的蛋白回收率、水解度、抗氧化性能及肽分子量分布情况。结果显示,单独热处理(90℃,30 min)小麦面筋蛋白对其酶解效率无显著影响,而采用添加0.5 mol/L柠檬酸溶液进行热处理(质量分数为5%,90℃,30 min)可显著(P0.05)提高其蛋白回收率。此外,酶制剂添加顺序及双酶共同水解作用时间对酶解效率均具有较大影响:加入谷氨酰胺酶预先水解对小麦面筋蛋白的深度水解有促进作用;一定时间内的双酶协同作用有利于酶解的进行,但较长时间的双酶作用反而会抑制酶解效率。采用谷氨酰胺酶(质量分数为0.2%)对经柠檬酸加热处理的小麦面筋蛋白作用12 h后再加入胰酶(质量分数为0.6%)共同作用7 h可使蛋白回收率达70.74%,水解度达到9.88%;另外,酶解产物的自由基清除能力ABTS+(2,2’-Azinobis-(3-ethylbenzthiazoline-6-sulphonate)+)值与氧化自由基吸收能力(ORAC,oxygen radical absorbance capacity)值分别达到478.95 mmol/g和213.85μmol/g,提示该酶解产物是一种潜在优秀食品抗氧化剂。研究结果可为拓宽小麦面筋蛋白的应用领域,以及高效制备抗氧化活性肽提供方法和理论指导。  相似文献   

13.
Wheat gluten proteins are considered to have the unique ability to form viscoelastic matrices that are essential for breadmaking. This study shows that maize seed storage protein (zein), if properly treated, can be made to function similarly to gluten at the protein secondary structure level with concomitant improved viscoelasticity. Here, we propose the concept of a small amount of coprotein (high molecular weight glutenin or casein) acting to stabilize a build-up of β-sheet structure in a zein-based dough, thus creating a viscoelastic matrix that is retained over time. This discovery is relevant to the need for gluten replacement viscoelastic proteins for wheat intolerant individuals and as well opens possibilities of creating wheatlike cereal varieties that could more cheaply substitute for wheat imports in developing countries.  相似文献   

14.
For a number of applications, gluten protein polymer structures are of the highest importance in determining end‐use properties. The present article focuses on gluten protein structures in the wheat grain, genotype‐ and environment‐related changes, protein structures in various applications, and their impact on quality. Protein structures in mature wheat grain or flour are strongly related to end‐use properties, although influenced by genetic and environment interactions. Nitrogen availability during wheat development and genetically determined plant development rhythm are the most important parameters determining the gluten protein polymer structure, although temperature during plant development interacts with the impact of the mentioned parameters. Glutenin subunits are the main proteins incorporated in the gluten protein polymer in extracted wheat flour. During dough mixing, gliadins are also incorporated through disulfide‐sulfhydryl exchange reactions. Gluten protein polymer size and complexity in the mature grain and changes during dough formation are important for breadmaking quality. When using the gluten proteins to produce plastics, additional proteins are incorporated in the polymer through disulfide‐sulfhydryl exchange, sulfhydryl oxidation, β‐eliminations with lanthionine formation, and isopeptide formation. In promising materials, the protein polymer structure is changed toward β‐sheet structures of both intermolecular and extended type and a hexagonal close‐packed structure is found. Increased understanding of gluten protein polymer structures is extremely important to improve functionality and end‐use quality of wheat‐ and gluten‐based products.  相似文献   

15.
Modifications of mechanical properties of wheat dough during thermal treatments depend mainly on the capacity of wheat gluten proteins to establish intra- and intermolecular interactions when subjected to high-temperature processing. The present study investigates the effect of thermal treatments on the mechanical properties and protein solubility of wheat gluten-based network. The increase in treatment temperatures (from 80 to 135 C) induces an increase in mechanical resistance of the gluten network (tensile strength increases from 0.26 to 2.04 MPa) and a decrease in deformability (elongation decreases from 468 to 236%). The increase in temperature (from 80 to 135 C) also induces a very strong reduction of protein solubility in 2% SDS (from 68 to 0%) that could be correlated to the mechanical changes observed. It was concluded that the modifications of the wheat gluten network properties seem to depend mainly on the temperature level, as temperatures >108-116 C allow activation of thermosetting reactions.  相似文献   

16.
Wine proteins play an important role in a wine's quality as they affect taste, clarity, and stability. To enhance our understanding of the proteins in wine, nano-high-performance liquid chromatography (HPLC)/tandem mass spectrometry was used to profile soluble proteins in wine. Twenty proteins were identified from a Sauvignon Blanc wine including five proteins derived from the grape, 12 from yeast, two from bacteria, and one from fungi. The findings are somewhat peculiar at first glance, but reasonable explanations can account for the results. The grape proteins identified are less in number, which may be due to the availability of an incomplete database and possibly bentonite fining. The relatively large number of identified yeast proteins may be due to their complete protein database. The identified bacterial and fungal proteins could possibly be attributed to sources in the vineyard including natural infections and improper handling during harvest. The use of nano-HPLC/tandem mass spectrometry is an important tool for identifying wine proteins and understanding how they affect its characteristics.  相似文献   

17.
Intermediate wheatgrass (IWG) (Thinopyrum intermedium) is a perennial grass with desirable agronomic traits and positive effects on the environment. It has high fiber and protein contents, which increase the interest in using IWG for human consumption. In this study, IWG flour was blended with refined wheat at four IWG‐to‐wheat ratios (0:100, 50:50, 75:25, and 100:0). Samples were analyzed for proximate composition, microstructure features, pasting properties (Micro Visco‐Amylo‐Graph device), protein solubility, and total and accessible thiols. Gluten aggregation properties (GlutoPeak tester) and mixing profile (Farinograph‐AT device) were also evaluated. IWG flour enrichment increased the pasting temperature and decreased the peak viscosity of blended flours. IWG proteins exhibited higher solubility than wheat, with a high amount of accessible and total thiols. The GlutoPeak tester highlighted the ability of IWG proteins to aggregate and generate torque. Higher IWG flour enrichment resulted in faster gluten aggregation with lower peak torque, suggesting weakening of wheat gluten strength. Finally, the addition of IWG to refined wheat flour resulted in a decrease in dough development time and an increase in consistency, likely because of the higher levels of fiber in IWG. The 50% IWG flour enrichment represents a good compromise between nutritional improvement and maintenance of the pasting properties, protein characteristics, and gluten aggregation kinetics.  相似文献   

18.
施氮量对不同品质类型小麦产量和加工品质的影响   总被引:15,自引:6,他引:9  
为了明确施氮量与不同品质类型小麦的产量和品质的关系,选用强筋小麦济麦20、 皖麦38和中筋小麦京冬8、 中麦8共2种品质类型4个小麦品种,研究了施氮量对其产量性状和加工品质的影响。结果表明,在施氮量N 0-360 kg/hm2的范围内,增加氮肥用量可以有效缓解叶绿素降解,抑制旗叶全氮含量降低,缓解叶片衰老,延长旗叶功能期; 强筋小麦品种比中筋小麦品种旗叶叶绿素含量和氮素含量下降缓慢。子粒产量和蛋白质产量随施氮量的增加逐渐提高,施氮N 270 kg/hm2时达到最大值,增加到360 kg/hm2时子粒产量和蛋白质产量均开始下降。强筋小麦蛋白质产量和子粒产量高,中筋小麦穗数、 穗粒数多,千粒重高。施氮有利于子粒出粉率、 硬度、 蛋白质含量和沉降值的提高。施氮N 180 kg/hm2时可以显著延长面团形成时间和稳定时间,降低吸水率,面包总体评分最高。强筋小麦硬度大,蛋白质含量、 出粉率和沉降值高,面团形成时间和稳定时间长,面包体积大、 评分高。  相似文献   

19.
Soil nitrogen (N) supply for wheat N uptake can be manipulated through legume and fertilizer N inputs to achieve yield potential in low‐rainfall sandy soil environments. Field experiments over 2 years (2015–2016) were conducted at 2 different sites in a low‐rainfall sandy soil to determine the soil N supply capacity relative to wheat N uptake at key growth stages, after a combination of crop residue (removed, wheat or lupin) and fertilizer N (nil, low or high N) treatments were manipulated to improve wheat yield. We measured the temporal patterns of the soil profile mineral N and PAW to 100 cm depth, wheat aerial biomass and N uptake in both years. In 2016 we also measured the disease incidence as a key environmental variable. There was 35 kg ha?1 more soil mineral N to 100 cm depth following lupin than wheat residues at the end of the fallow on average in both years. In a below average rainfall season, wheat biomass produced on lupin residues was responsive to N input with soil profile mineral N depleted by increased crop N uptake early in the season. In an above average rainfall season, a higher soil mineral N supply increased actual and potential grain yield, total biomass, N uptake, harvest index and water use efficiency of wheat, regardless of the source of N. Our study showed that the combination of lupin residues with high N rate increased soil profile mineral N at early growth stages, providing a greater soil N supply at the time of high wheat N demand, and the inclusion of a legume in the rotation is critical for improving the N supply to wheat, with added disease break benefits in a low‐rainfall sandy soil environment.  相似文献   

20.
The effects of amylose content on thermal properties of starches, dough rheology, and bread staling were investigated using starch of waxy and regular wheat genotypes. As the amylose content of starch blends decreased from 24 to 0%, the gelatinization enthalpy increased from 10.5 to 15.3 J/g and retrogradation enthalpy after 96 hr of storage at 4°C decreased from 2.2 to 0 J/g. Mixograph water absorption of starch and gluten blends increased as the amylose content decreased. Generally, lower rheofermentometer dough height, higher gas production, and a lower gas retention coefficient were observed in starch and gluten blends with 12 or 18% amylose content compared with the regular starch and gluten blend. Bread baked from starch and gluten blends exhibited a more porous crumb structure with increased loaf volume as amylose content in the starch decreased. Bread from starch and gluten blends with amylose content of 19.2–21.6% exhibited similar crumb structure to that of bread with regular wheat starch which contained 24% amylose. Crumb moisture content was similar at 5 hr after baking but higher in bread with waxy starch than in bread without waxy starch after seven days of storage at 4°C. Bread with 10% waxy wheat starch exhibited lower crumb hardness values compared with bread without waxy wheat starch. Higher retrogradation enthalpy values were observed in breads containing waxy wheat starch (4.56 J/g at 18% amylose and 5.43 J/g at 12% amylose) compared with breads containing regular wheat starch (3.82 J/g at 24% amylose).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号