首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Effects of β‐cyclodextrin diallyl maleate (CD‐M) on methane production, ruminal fermentation and digestibility were studied both in vitro and in vivo. In in vitro study, diluted ruminal fluid (30 mL) was incubated anaerobically at 38°C for 6 and 24 h with or without CD‐M using hay plus concentrate (1.5:1) as a substrate. The CD‐M was added at different concentrations (0, 1.25, 2.5, 5.0 and 7.5 g/L). The pH of the medium and numbers of protozoa were not affected by the addition of CD‐M. Total volatile fatty acids were increased and ammonia‐N was decreased, molar proportion of acetate was decreased and propionate was increased (P < 0.05) by CD‐M. Methane was inhibited (P < 0.05) by 14–76%. The effect of CD‐M on methane production and ruminal fermentation was further investigated in vivo using four Holstein steers in a cross‐over design. The steers were fed Sudangrass hay and concentrate mixture (1.5:1) with or without CD‐M (2% of feed dry matter) as a supplement. Ruminal proportion of acetate tended to decrease and that of propionate was increased (P < 0.05) 2 h after CD‐M dosing. Total viable counts, cellulolytic, sulfate reducing, acetogenic bacteria and protozoa were unaffected while methanogenic bacteria were decreased (P < 0.05) by CD‐M. The plasma concentration of glucose was increased, whereas that of urea‐N was decreased (P < 0.05). Methane was inhibited (P < 0.05) from 36.4 to 30.1 L/kg dry matter intake by the addition of CD‐M. Apparent digestibilities of dry matter and neutral detergent fiber were not affected while that of crude protein was increased (P < 0.05) in the medicated steers. These data suggested that dietary supplementation of CD‐M decreased methane production and improved nutrient use.  相似文献   

2.
Six Japanese Black (Wagyu) steers (average initial weight 467 ± 45 kg) fitted with a ruminal cannula were used in a split‐plot design experiment comprising a 3 × 3 Latin square design (whole‐plot) and a randomized block design (subplot). The whole‐plot treatments were three different feeding levels of urea‐treated potato pulp (PP) silage‐based concentrate: 1.00%, 1.75% and 2.50% of body weight (BW) (on a dry matter (DM) basis). The subplot treatments consisted of the concentrate formulated to contain either soybean meal (SBM) as a rapidly rumen‐degraded protein source or corn gluten meal (CGM) as a slowly degraded protein source. Dry matter intake tended to be lower (P = 0.071) for CGM (8.9 kg/day) than for SBM (9.4 kg/day). Protein sources had no significant effect on digestibility and in situ degradation. Ruminal ammonia nitrogen (NH3‐N) was lower (P = 0.033) for CGM (7.5 mg/dL) than for SBM (9.5 mg/dL). Protein sources did not affect ruminal pH and the total volatile fatty acids (VFA) concentrations. The molar proportions of ruminal acetate and valerate were higher (P = 0.032) for CGM than for SBM. The maximum daily intake of the PP silage‐based concentrate expressed as a percentage of BW was approximately 1.4% of BW. Dry matter intake was higher (P = 0.046) for steers fed at 1.0% of BW of the PP silage‐based concentrate than for steers fed at 1.75% or 2.5% of BW of the concentrate. The feeding levels of the PP silage‐based concentrate had no effect on DM and nutrients digestibility, except for crude protein (CP) digestibility. CP digestibility tended to be lower (P = 0.071) for steers fed at 1.75% of BW of the PP silage‐based concentrate than for steers fed at 1.0% or 2.5% of BW of the concentrate. The feeding levels of the PP silage‐based concentrate also did not affect the in situ degradation parameter of hay and PP silage. The feeding levels of the PP silage‐based concentrate did not affect ruminal pH, NH3‐N and total VFA concentrations. The molar proportion of acetate was highest for steers fed at 1.0% of BW of the concentrate. In conclusion, in the urea‐treated PP silage‐based concentrate, CGM seems to be more effective than SBM for stabilizing the ruminal NH3‐N concentration and to be advantageous for fiber digestion in the rumen. The feeding levels of the PP silage‐based concentrate did not change the amount of VFA production in the rumen and the DM digestibility.  相似文献   

3.
The objective of the present study was to investigate the effects of α‐cyclodextrin‐allyl isothiocyanate (CD‐AI) on ruminal microbial methane production and rumen fermentation of corn starch, soluble potato starch or hay plus concentrate (1.5:1) by mixed rumen microorganisms. Diluted rumen fluid (30 mL) was incubated anaerobically at 38°C for 6 and 24 h with or without CD‐AI (0, 0.4, 0.8, 1.6 and 3.2 g/L). The pH of the medium was unchanged by CD‐AI in all substrates. The molar proportion of acetate was decreased and propionate was increased with a corresponding decrease in acetate : propionate ratio (P < 0.05). Total volatile fatty acids and butyrate were increased (P < 0.05). Ammonia‐N was decreased (P < 0.05). Except with soluble potato starch, numbers of protozoa were unchanged after 6 h. As concentration of CD‐AI increased from 0 to 3.2 g/L, fermentation of corn starch, soluble potato starch and hay plus concentrate resulted in decreased (P < 0.05) methane production of 49–100% (6 h) and 14–100% (24 h); 39–100% (6 h) and 16–100% (24 h); and 45–100% (6 h) and 17–100% (24 h), respectively. When hay plus concentrate was used as substrate, methanogenic bacteria were decreased (P < 0.05) with 0.8 g/L of CD‐AI after 6 h. Excluding the lower dose level (0.4 g/L) of CD‐AI, digestibility of neutral detergent fiber of hay plus concentrate was decreased (P < 0.05) after 24 h. A suitable level of CD‐AI could therefore be used as a supplement to inhibit methane production and improve rumen fermentation without detrimental effects on fiber digestion.  相似文献   

4.
Six Wagyu (Japanese Black) steers fitted with a ruminal cannula were used in a split‐plot design experiment comprising a 3 × 3 Latin square design (whole plot) and a randomized blocks design (subplot) to determine the effect of the treatment of potato pulp (PP) with urea and the effect of inclusion levels of PP silage in feed supplement on digestibility, ruminal in situ degradation and ruminal fermentation. The whole plot consisted of 20%, 50% and 80% PP silage (dry matter (DM) basis), with PP silage replacing formula feed. The subplot included untreated or 0.5% (on an as‐fed basis) urea‐treated PP. The treatment of PP with urea showed no effect on DM intake and digestibility. The percentage of the rapidly degradable DM fraction of the urea‐treated PP silage was higher (P < 0.01) and the percentage of its slowly degradable DM fraction was lower (P < 0.01) than for the untreated PP silage. Ruminal ammonia concentration was greater (P < 0.01) for steers fed urea‐treated PP silage than that for steers fed the untreated PP silage. The treatment of PP with urea caused a decrease in the molar proportion of acetate and an increase in the proportion of propionate in ruminal fluid after feeding. The rate of DM degradations in hay (linear, P < 0.01) and in PP silage decreased (linear, P < 0.01) as the inclusion level of PP silage increased. Increasing the inclusion level of PP silage in supplement decreased the effective degradability of DM in hay (linear, P < 0.05) and in PP silage (linear, P < 0.05). An increase in the amount of PP silage increased the molar proportion of acetate (linear, P < 0.01) and decreased the butyrate proportion (linear, P < 0.05) in ruminal fluid. The results suggest that urea treatment of PP facilitates microbial access to starch of PP silage in the rumen and that surplus level of PP silage in supplement have adverse effect on ruminal digestion.  相似文献   

5.
The objective of this experiment was to determine if ruminal temperature rise coincides with pH reduction using an acidosis challenge model. Twelve ruminally cannulated steers (518 ± 28 kg BW) were administered ruminal temperature-monitoring devices that recorded temperature every 2 min. Steers were fed a 63% concentrate diet at 1.6% BW for 20 d before being randomly assigned to 1 of 3 acidosis challenge treatments: no dietary change (CON), one-half of daily DMI replaced with cracked corn (HALF), or all of daily DMI replaced with cracked corn (CORN). The challenge was initiated by ruminally dosing steers with their treatment diets. Ruminal pH and rectal temperatures (T(rec)) were recorded every 3 h for 72 h. All steers were offered CON diets at 24 and 48 h after challenge. Ruminal pH showed a treatment × day effect (P = 0.01). Ruminal pH of CORN steers was lower (P = 0.03) than that of HALF steers on d 1, was lower (P ≤ 0.004) than that of HALF and CON steers on d 2, and tended to be lower (P ≤ 0.10) than that of HALF and CON steers on d 3. Treatment did not affect (P ≥ 0.42) RecT. Ruminal temperature (T(rum)) showed a treatment · d(-1) · h(-1) after feeding interaction (P < 0.01). At 3 h after challenge, T(rum) of CORN and HALF steers was higher (P ≤ 0.01) than that of CON steers. On d 2, T(rum) of CORN steers was higher (P ≤ 0.03) than that of CON between 6 and 12 h after feeding. From 15 to 21 h after feeding on d 2, T(rum) of HALF steers was higher (P < 0.01) than that of CORN and CON steers. On d 3, at the time of feeding until 3 h later, T(rum) of CORN steers was lower (P ≤ 0.04) than that of all other steers. Rectal temperature was correlated (P ≤ 0.01) with T(rum) on all days for CON and CORN steers. Ruminal pH was negatively correlated (P ≤ 0.04) with T(rec) on d 2 and T(rum) on d 1 in CORN steers, and T(rum) was negatively correlated (P ≤ 0.02) with ruminal pH in HALF and CON steers on d 1 and 3, respectively. The amount of time above T(rum) of 39.0°C or 39.45°C was correlated (P ≤ 0.05) with the time spent below a ruminal pH of 5.5 in CORN steers; however, time above T(rum) of 39.0°C did not differ (P = 0.87) among treatments. Results indicate that there is a negative relationship between T(rum) and ruminal pH during an acidotic episode; therefore, T(rum) monitoring can detect a potential acidotic episode.  相似文献   

6.
Twelve Angus steers (BW 452.8 ± 6.1 kg) fitted with ruminal cannulae were used to determine the impact of trace mineral (TM) source on digestibility, ruminal volatile fatty acid (VFA) composition, ruminal soluble concentrations of Cu, Zn, and Mn, and relative binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed a medium-quality grass hay diet (DM basis: 10.8% CP, 63.1% neutral detergent fiber [NDF], 6.9 mg Cu/kg, 65.5 mg Mn/kg, and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of either sulfate (STM) or hydroxy (HTM) sources (n = 6 steers/treatment) to provide 20, 40, and 60 mg supplemental Cu, Mn, and Zn/kg DM, respectively. Following a 21-d adaptation period, total fecal output was collected for 5 d. Dry matter (P < 0.07) and CP (P < 0.06) digestibility tended to be reduced, and NDF (P < 0.04) and acid detergent fiber (ADF) (P < 0.05) digestibility were reduced in STM- vs. HTM-supplemented steers. On day 6, ruminal fluid was collected at 0, 2, and 4 h post-feeding and analyzed for VFA. There were no treatment x time interactions for VFA. Steers receiving HTM had less (P < 0.02) molar proportions of butyric acid and greater (P < 0.05) total VFA concentrations than STM-supplemented steers. Steers were then fed the same diet without supplemental Cu, Zn, or Mn for 14 d. On day 15 steers received a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM (n = 6 steers/treatment). Ruminal samples were obtained at 2-h intervals starting at −4 and ending at 24 h relative to dosing. There was a treatment x time interaction (P < 0.03) for ruminal soluble Cu, Mn, and Zn concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 6, 8, 10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post-dosing in STM compared with HTM-supplemented steers. Copper concentrations were greater (P < 0.05) at 12 and 24 h and Zn concentrations in ruminal solid digesta were greater at 24 h in HTM-supplemented steers. Upon dialysis against Tris-EDTA, the percent Zn released from digesta was greater (P < 0.05) at 12 h (P < 0.03) and 24 h (P < 0.05), and the percent Cu released was greater (P < 0.02) at 24 h post-dosing in HTM steers when compared with STM-supplemented steers. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM. The lower ruminal soluble concentrations of Cu and Zn in steers given HTM were associated with greater fiber digestibility.  相似文献   

7.
Crossbred steers (n = 20; 316 +/- 4 kg BW), each fitted with a ruminal cannula, were used to evaluate the effects of acute acidosis (AA) and subacute acidosis (SA) on DMI, ruminal fermentation, blood chemistry, and endocrine profiles. Animals were blocked by BW and assigned to treatments including 1) intraruminal (via cannula) steam-flaked corn (3% of BW; AA); 2) intraruminal dry-rolled wheat:dry-rolled corn (50:50; 1.5% of BW; SA); 3) offering forage-adapted steers ad libitum access to a 50% concentrate diet (AA control; AC); and 4) offering 50% concentrate diet-adapted steers ad libitum access to a 50% concentrate diet (SA control; SC). Samples of ruminal fluid and whole blood were collected on the day of the challenge (d 0) and 3, 7, 10, and 14 d after the challenge. Daily DMI responded quadratically (P < 0.01) through d 7 for AA and SA steers and increased linearly (P < 0.01) for AC steers. Dry matter intake by AA steers reached a nadir (< 3 kg/d) on d 3 and gradually increased to a level similar to other treatments (7 kg/d) by d 10, whereas DMI by SA steers increased through d 3. Blood pH, bicarbonate, base excess, and total CO2 were decreased (P < 0.03) for AA steers and increased (P < 0.03) for SC steers through d 7. Ruminal pH decreased quadratically (P < 0.01) in AA and AC steers and increased (P = 0.01) in SA steers through d 7. Ruminal total lactate concentration and osmolality responded quadratically (P < 0.01) for AA and AC steers. Ruminal total lactate peaked on d 3 for AA steers and on d 0 for AC and decreased to basal concentrations by d 7. Plasma NEFA concentration increased (P < 0.04) on d 3 and 7 for AA steers. Serum Na decreased (P < 0.05) on d 0 for AA and SA steers and on d 7 and 14 for AA steers. Serum P decreased (P = 0.01) for AA steers through d 7 and decreased quadratically (P = 0.01) for AC steers through d 7. Serum albumin and cholesterol decreased (P < 0.02) for AA and AC steers through d 7. Area under the GH curve decreased (P = 0.02) for AA and AC steers through d 7. Considerable variation was evident in the ability of an animal to cope with a carbohydrate challenge. Results of data modeling generally suggest that serum amylase activity, cholesterol and potassium concentrations, and plasma NEFA concentrations were useful in distinguishing between steers classified as experiencing subacute acidosis or not affected by a carbohydrate challenge.  相似文献   

8.
The effects of being fed lauric acid on rumen characteristics were evaluated in a double 3 × 3 Latin square design using six Holstein steers with ruminal cannulas on a high grain diet. The steers were fed commercial concentrate (8.7 kg/day/steer) with one of three levels of lauric acid (0, 25 or 50 g/day/steer) and timothy hay (1.8 kg/day/steer). The feed intake and digestibility were determined. Ruminal fluid was collected at 3 h after feeding to determine chemical, physical and microbial parameters. An in vitro pure culture study was performed to determine the effects of lauric acid on Streptococcus bovis, a potent bloat‐ and acidosis‐promoting rumen bacterium. There were no differences in feed intake and digestibility among the treatments. The proportion of butyrate and the viscosity of the rumen fluid tended to be lowered (P < 0.08 and P < 0.09, respectively) and the stable ingesta volume increase was significantly decreased (P < 0.01) by the lauric acid feed. The abundance of protozoa and bacteria did not differ among the treatments. In the in vitro study, the growth of S. bovis was inhibited by the lauric acid (100 nmol/L) but it showed an adaptive growth to lauric acid in long‐term subculturing. The S. bovis that had adapted to lauric acid showed decreased viscosity and lactate production (P < 0.01) in culture with sucrose. These results indicate that supplemental lauric acid added to a high grain diet improves physical properties, possibly by altering the metabolic activity of S. bovis, and it may prevent the occurrence of feedlot bloat and acidosis in beef cattle.  相似文献   

9.
In a previous study, preparations of polyclonal antibodies (PAP) against Fusobacterium necrophorum (PAP-Fn) or Streptococcus bovis (PAP-Sb) were successful in decreasing ruminal counts of target bacteria and increasing ruminal pH in steers fed high-grain diets. The objective of this study was to evaluate the effects of feeding PAP-Fn or PAP-Sb on performance, carcass characteristics, and ruminal fermentation variables of feedlot steers. In Exp. 1, during 2 consecutive years, 226 or 192 Angus and Angus crossbred steers were fed a high-grain diet containing either PAP-Sb or PAP-Fn, or both. When measured on a BW basis, steers fed only PAP-Sb had a greater G:F (P < 0.05) than those fed no PAP. Nevertheless, when both PAP were fed, feed efficiency was similar (P > 0.10) to steers fed no PAP or only PAP-Sb. Steers receiving PAP-Fn (alone or in combination with PAP-Sb) had a decreased (P < 0.05) dressing percentage. Steers receiving PAP-Fn (alone or in combination with PAP-Sb) had a decreased severity of liver abscess (P < 0.05). No differences (P > 0.10) were observed in any other carcass characteristics. In Exp. 2, sixteen ruminally cannulated Angus crossbred steers (BW = 665 +/- 86 kg) were fed a high-grain diet containing either PAP-Sb or PAP-Fn, or both. Feeding only PAP-Fn or PAP-Sb for 19 d decreased (P < 0.05) ruminal counts of S. bovis when compared with steers fed both or no PAP. The ruminal counts of F. necrophorum in steers fed PAP-Fn alone or in combination with PAP-Sb were decreased by 98% (P < 0.05) after 19 d, when compared with the counts in control steers. Mean daily ruminal pH was greater (P < 0.05) in steers fed both PAP when compared with feeding either or no PAP. Ruminal pH in the first 4 h after feeding was greater (P < 0.05) for steers receiving PAP-Fn alone or in combination with PAP-Sb. Steers receiving either PAP alone or in combination had less (P < 0.05) ruminal NH(3)-N concentrations in the first 4 h after feeding when compared with those of control steers. Polyclonal antibody preparations against S. bovis were effective in enhancing G:F of steers fed high-grain diets, but dressing percentage was decreased. Mechanisms of enhancement of G:F remain unknown but may be related to changes in ruminal counts of target bacteria and associated effects on ruminal fermentation products.  相似文献   

10.
The objectives of the present study were to determine the effect of ruminal dosing of mechanical stimulating brush (Rumen faibu; RF) on digestibility and on rumen fermentation status in Holstein steers fed high concentrate and low rice straw. Eight steers (461 kg in average bodyweight) were used. Four steers were orally dosed three RF per head (RF‐dosing) and the other four were not dosed (non‐RF). All steers were fed enough concentrate and rice straw to gain 1.4 kg/day in bodyweight. Rice straw was cut 2 cm and 30 cm. The organic cell wall content of feeding diets was 17% in dry matter basis. Digestibility and nutritive value were not affected by RF dosing and length of rice straw. Ruminal pH was significantly lower in RF‐dosing group than in non‐RF group after feeding, and tended to be higher in long rice straw than in short rice straw throughout the day. There were no clear difference on total volatile fatty acid concentration and molar proportion of volatile fatty acid by RF dosing and length of rice straw throughout examined period. These present results suggest that digestibility and rumen fermentation status are not affected by RF dosing when organic cell wall content of feeding diets is approximately 17% in dry matter with rice straw over 2 cm.  相似文献   

11.
The effects of adding beet pulp or wheat bran to urea‐treated potato pulp (PP) in order to reduce moisture of PP silage and flake density of corn grain on digestibility and ruminal fermentation in beef steers were studied in a split‐plot design experiment. The whole‐plot treatments were PP silage mixed with 0% added pellets (CON), 9% (as‐fed basis) beet pulp pellets (BP) or 9% (as‐fed basis) wheat bran pellets (WB) as water‐absorbing materials. The subplot treatments consisted of supplements formulated to contain either high‐density corn (HDC) or low‐density corn (LDC). BP steers consumed more (BP vs WB, P = 0.011) concentrate than did WB steers, whereas hay intake did not differ between the treatments. Dry matter (BP vs WB, P = 0.023) and organic matter (BP vs WB, P = 0.029) digestibility were higher for BP steers than for WB steers. Starch digestibility was higher (P = 0.006) for LDC than for HDC. There were no differences in the concentration of ruminal ammonia nitrogen among the treatments. Molar proportions of ruminal acetate were higher for BP steers than for WB steers (BP vs WB, P = 0.030). Conversely, molar proportions of propionate were lower for BP steers than for WB steers (BP vs WB, P = 0.044). Flake density of corn did not affect ruminal characteristics. In conclusion, from the viewpoint of feed intake and digestibility, BP is superior to WB as a moisture control material for urea‐treated PP silage, and flake density of corn supplemented with urea‐treated PP silage does not alter ruminal fermentation.  相似文献   

12.
This study evaluated the effects of dietary concentrate levels and 2‐methylbutyrate (2MB ) supplementation on performance, ruminal fermentation, bacteria abundance, microbial enzyme activity and urinary excretion of purine derivatives (PD ) in steers. Eight ruminally cannulated Simmental steers (12 months of age; 389 ± 3.7 kg of body weight) were used in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement. Moderate‐concentrate (400 g/kg diet [MC ]) or high‐concentrate (600 g/kg diet [HC ]) diets were fed with or without 2MB (0 g/day [2MB ?] or 15.0 g/day [2MB +]). Dry matter intake and average daily gain increased, but feed conversion ratio decreased with the HC diet or 2MB supplementation. Ruminal pH decreased, but total volatile fatty acid increased with the HC diet or 2MB supplementation. Molar proportion of acetate and acetate‐to‐propionate ratio decreased with the HC diet, but increased with 2MB supplementation. Propionate molar proportion and ruminal NH 3‐N content increased with the HC diet, but decreased with 2MB supplementation. Neutral detergent fibre degradability decreased with the HC diet, but increased with 2MB supplementation. Crude protein degradability increased with the HC diet or 2MB supplementation. Abundance of Ruminococcus albus , Ruminococcus flavefaciens , Fibrobacter succinogenes and Bufyrivibrio fibrisolvens as well as activities of carboxymethyl cellulase, cellobiase, xylanase and pectinase decreased with the HC diet, but increased with 2MB supplementation. However, abundance of Prevotella ruminicola and Ruminobacter amylophilus as well as activities of α‐amylase and protease increased with the HC diet or 2MB supplementation. Total PD excretion also increased with the HC diet or 2MB supplementation. The results suggested that growth performance, ruminal fermentation, CP degradability and total PD excretion increased with increasing dietary concentrate level from 40% to 60% or 2MB supplementation. The observed diet × 2MB interaction indicated that supplementation of 2MB was more efficacious for improving growth performance, ruminal fermentation and total PD excretion with promoted ruminal bacteria abundance and enzyme activity in the MC diet than in the HC diet.  相似文献   

13.
Six ruminally cannulated steers (345 +/- 20 kg initial BW) were used in a 6 x 6 Latin square to evaluate effects of diet and antibiotics on ruminal protein metabolism. Two diets and three antibiotic treatments were arranged factorially. One diet contained (DM basis) 72% dry-rolled corn, 12% soybean meal, 10% alfalfa hay, and 4% molasses (SBM), and the other contained 63% dry-rolled corn, 30% wet corn gluten feed, and 5% alfalfa hay (WCGF). Antibiotic treatments included control, virginiamycin (175 mg/d; VM), and monensin/tylosin (250 and 100 mg/d, respectively; MT). Steers were fed at 12-h intervals at a rate of 2.4% of empty BW daily. Each period included 18 d of adaptation and 3 d of ruminal fluid collections. Samples were collected at 0, 2, 4, 6, 8, and 10 h after the morning feeding on d 19 and 20. On d 21, rumens were dosed 2 h after the morning feeding with 350 g of solubilized casein to evaluate in vivo ruminal protease and deaminase activities. Ruminal fluid samples were collected 1, 2, 3, 4, and 6 h after the casein dose. On d 19 and 20, antibiotics had no effect on ruminal pH or concentrations of VFA, lactate, ammonia, ciliated protozoa, alpha-amino nitrogen (AAN), or peptide N, but VM reduced (P < 0.01) the concentration of isovalerate compared to MT and control. After casein dosing (d 21), peptide N concentration was unaffected by antibiotics, but AAN were higher (P < 0.01) for VM than MT and control. Relative to MT and control, VM reduced ruminal isovalerate (P = 0.05) and increased ruminal propionate (P < 0.01) on d 21. Ruminal pH was lower (P < 0.01) in steers fed SBM than in steers fed WCGF, but lactate concentrations were unaffected by diet. Steers fed SBM had higher (P < 0.05) ruminal concentrations of total VFA and propionate. Ammonia concentrations were lower before feeding and higher after feeding for steers fed WCGF (P < 0.01). Steers fed WCGF had higher counts of total ciliated protozoa than steers fed SBM (P < 0.05) due to greater Entodinium sp. (P < 0.05). Steers fed WCGF had higher (P < 0.01) ruminal AAN and peptide N concentrations than those fed SBM on d 19 and 20. After casein dosing, ruminal peptide N concentrations were similar, but AAN were lower (P < 0.01) for WCGF than SBM. Overall, VM appeared to depress ruminal deaminase activity, and MT had minimal effects on ruminal fermentation products. The protein in WCGF appeared to be more readily degradable than that in SBM.  相似文献   

14.
Nine crossbred beef steers (344 +/- 26 kg) fitted with ruminal cannulas were used in a randomized complete block design to evaluate the effects of feeding frequency and feed intake fluctuation on total tract digestion, digesta kinetics, and ruminal fermentation profiles in limit-fed steers. In Period 1, steers were allotted randomly to one of four dietary treatments: 1) feed offered once daily at 0800; 2) feed offered once daily at 0800 with a 10% fluctuation in day-to-day feed intake; 3) feed offered twice daily at 0800 and 1700; and 4) feed offered twice daily at 0800 and 1700 with a 10% fluctuation in a day-to-day feed intake. In Period 2, steers were reallocated across treatments. The 90% concentrate diet was fed at 90% of the ad-libitum consumption by each steer. Chromium-EDTA and Yb-labeled steam-flaked corn were intraruminally infused at 0800 on d 1 and 3 and Co-EDTA and Er-labeled steam-flaked corn were infused on d 2 and 4 of the 4-d collection period. Ruminal samples were collected at 0, 3, 6, 9, 12, 15, 18, and 24 h after the 0800 feeding, and total feces were collected for 4 d. Total tract digestibilities of OM, N, and starch were lowest (fluctuation x frequency, P < .05) when feed was offered twice daily with a 10% fluctuation in intake. Ruminal fluid volume and passage rate were not affected (P > .10) by feeding frequency or intake fluctuation. A frequency x fluctuation x sampling time interaction occurred (P < .01) for ruminal pH. Steers fed a constant amount of feed once daily had higher (P < .05) ruminal pH at 0, 3, 18, and 24 h than steers fed once daily with a 10% fluctuation in feed intake. Total VFA concentration was greater (P < .01) at 9 h after the 0800 feeding when feed was offered once vs twice daily. Feeding twice daily increased (P < .05) the molar proportion of acetate and decreased (P < .05) the molar proportion of propionate. Increasing feeding frequency resulted in a more stable ruminal environment; however, the increased acetate:propionate ratio with twice-daily feeding might result in lower efficiency of energy utilization by limit-fed steers.  相似文献   

15.
Effects of dried distillers grains plus solubles (DDGS) on ruminal fermentation, degradation kinetics, and feeding behavior of steers offered annual (Eragrostis tef; TEFF) or perennial (Bothriochloa bladhii; OWB) grass hay were evaluated. Ruminally cannulated Angus crossbred steers (n = 6; body weight [BW] = 304 ± 11 kg) were assigned to a 4 × 6 unbalanced Latin square design with four treatments arranged as a 2 × 2 factorial: hay type (OWB or TEFF) and DDGS supplementation (0% or 0.5% BW [dry matter {DM} basis]). Steers had ad libitum access to hay. Periods consisted of a 14-d adaptation followed by 7 d of collection. Residues from the in situ incubations (0, 3, 6, 12, 24, 36, 48, 72, and 96 h post-feeding) were fitted to a first-order kinetics model using the NLIN procedure of SAS. The DDGS decreased (P < 0.01) TEFF DM intake (DMI) by 11.3%, while not affecting DMI of OWB. The greatest DMI was observed for steers supplemented with DDGS, regardless of forage, and least in steers consuming OWB without DDGS (hay type × DDGS; P = 0.03). Non-supplemented steers spent more (P < 0.01) time eating hay. Digestibility of DM tended (P = 0.06) to increase with DDGS supplementation. A hay type × DDGS interaction was observed (P ≤ 0.05) on ruminal effective degradable fractions. The rate of degradation, soluble fraction, and the potentially degradable fraction of organic matter (OM), neutral detergent fiber, and acid detergent fiber (ADF) increased (P ≤ 0.05), while the undegradable fraction of all components decreased (P ≤ 0.01) when steers were offered TEFF compared to OWB. Ruminal DM, OM, and ADF degradation lag-time increased (P ≤ 0.02) in steers offered OWB. Ruminal degradation kinetics were not (P ≥ 0.17) independently affected by DDGS supplementation. Average ruminal pH of steers offered TEFF (P < 0.01) and those offered DDGS (P < 0.01) were lower than OWB and non-supplemented steers. Total concentration of VFA tended (P = 0.09) to increase when DDGS was provided with OWB, while decreasing when TEFF was offered. The acetate:propionate increased (P < 0.01) with DDGS supplementation due to a decrease (P = 0.03) in propionate. Ruminal NH3-N was greater (P = 0.03) in steers offered TEFF compared to OWB, and those supplemented with DDGS (P = 0.03). An annual, in place of a conventional, perennial hay improved intake and digestion of nutrients, without affecting feeding behavior. The supplementation with DDGS appears to affect forage intake, ruminal degradation, and feeding behavior, although not independent of forage quality.  相似文献   

16.
Six ruminally cannulated Wagyu (Japanese Black) steers (average initial bodyweight (BW) 387 ± 29 kg) were used in a split‐plot design experiment, comprising a 3 × 3 Latin square design (whole plot) and a randomized block design (subplot). The whole plot treatments were three different feeding levels of supplemental diet, fed at 0.2, 0.4 and 0.6% of BW, on a dry matter (DM) basis. Subplot treatments were two different supplemental diets: a potato pulp silage‐based diet (PPS) and a grain‐based diet (GRAIN). Chopped, medium‐quality cool‐season grass hay (predominately Timothy, Phleum pratense L) was fed daily at 0.7% BW (on a DM basis) as the basal diet. Each period consisted of 21 d, which included 11 d of adaptation to the diets and 10 d of the collection period. Chromium oxide was used as an indigestible marker. In situ forage degradation was measured using the nylon bag technique. The dry matter intake increased (linear; P < 0.01) as the feeding level increased and was not affected by the diet. Digestibility was not affected by any treatments. The GRAIN diet tended to decrease the rate of in situ forage degradation as the feeding level increased, but this trend was not found in the steers fed the PPS diet. Steers fed the GRAIN diet had a lower (P < 0.1) ruminal pH compared with steers fed the PPS diet. Ruminal pH was not significantly affected by feeding level; however, it was numerically higher for steers supplemented at 0.2% per BW than that for the steers supplemented above 0.4% per BW due probably to the higher starch intake. The total volatile fatty acids concentration numerically increased as the feeding level increased and was not affected by the diet. Increasing the feeding level decreased (linear, P < 0.01) the proportion of acetate. Neither diet nor the feeding level had any effects on the proportion of ruminal propionate. The results suggested that, for steers fed the PPS diet, there are not adverse effects on forage digestion in the rumen that occur as the feeding level is increased.  相似文献   

17.
Six ruminally cannulated Angus-cross steers (362 kg) were used in a replicated 3 x 3 Latin square design to determine effects of supplementing Maillard reaction products (MRP) on acid-resistant E. coli and coliform populations. Steers were fed roughage-based diets supplemented (DM basis) with either 10% soybean meal (SBM), 10% nonenzymatically browned SBM (NESBM), or 10% SBM top-dressed with 45 g of a lysine-dextrose Maillard reaction product (LD-MRP). Equal weights of dextrose, lysine hydrochloride, and deionized water were refluxed to produce the LD-MRP. The NESBM was manufactured by treating SBM with invertase enzyme, followed by heating to induce nonenzymatic browning. Steers were allowed slightly less than ad libitum access to diets fed twice daily and were adapted to their respective treatments within 10 d. On d 11, ruminal and fecal samples were collected at 0, 2, 4, 6, 8, and 12 h after feeding from each of the steers and transported to the laboratory for microbial analysis. Ruminal samples and feces were analyzed for pH and VFA, and both ruminal fluid and feces were tested for acid-resistant E. coli and total coliforms by incubating samples in tryptic soy broth adjusted to pH 2, 4, and 7. Ruminal pH and total VFA concentrations did not differ among treatments. The molar proportion of ruminal acetate was higher (P < 0.05) for steers receiving NESBM than for steers receiving SBM and LD-MRP. At pH 4, steers that received NESBM had lower (P < 0.05) ruminal populations of E. coli and total coliforms than steers that received SBM. No differences were observed for ruminal E. coli and total coliforms at pH 2 and 7. Fecal pH was lower (P < 0.05) for steers fed NESBM than for steers fed SBM or LD-MRP. Molar proportions of fecal acetate were lower (P < 0.05) and proportions of butyrate and isovalerate were higher (P < 0.05) for steers fed NESBM compared with steers fed SBM. Fecal E. coli at pH 4 was lower (P < 0.05) for steers fed NESBM than for steers fed LD-MRP. Fecal E. coli and total coliforms at pH 2 and 7 did not differ among treatments. Dietary MRP had limited effectiveness at decreasing acid-resistant coliforms in the rumen and feces of cattle. Acid resistance in coliforms may depend on protein availability.  相似文献   

18.
The objective of this study was to evaluate the effects of dietary crude protein (CP ) levels and 2‐methylbutyrate (MB ) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD ) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW ), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP /kg dry matter [LP ] or high protein (128.7 g CP /kg dry matter [HP ]) diets were fed with MB supplementation (0 g [MB ?] or 16.8 g steer?1 day?1 [MB +]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM ] basis). The CP  × MB interaction was observed for ruminal total VFA , molar proportions of acetate and propionate, acetate to propionate ratio, ammonia‐N, effective degradability of neutral detergent fibre (NDF ) and CP , microbial enzyme activity, bacterial populations and total PD excretion (p  < .05). Ruminal pH decreased (p  < .05), but ruminal total VFA concentration increased (p  < .05) with increasing dietary CP level or MB supplementation. Acetate molar proportion increased (p  = .043) with MB supplementation, but was not affected by dietary CP level. Propionate molar proportion decreased (p  < .05) with increasing dietary CP level or MB supplementation. Consequently, acetate‐to‐propionate ratio increased (p  = .001) with MB supplementation, but was not affected by dietary CP level. Ruminal ammonia‐N content increased (p  = .034) with increasing dietary CP level, but decreased (p  = .012) with MB supplementation. The effective degradability of NDF and CP increased (p  < .05) with increasing dietary CP level or MB supplementation. Microbial enzyme activity, bacterial populations and total PD excretion also increased (p  < .05) with increasing dietary CP level or MB supplementation. The results indicated that ruminal fermentation, nutrient degradability, microbial enzyme activity, ruminal bacterial populations and microbial protein synthesis improved with increasing dietary CP level or MB supplementation in steers.  相似文献   

19.
This study aimed to examine the effects of feeding kraft pulp (KP) on the growth performance, feed digestibility, and rumen fermentation of Japanese Black fattening steers. Ten Japanese Black fattening steers (aged 26 months) were randomly divided into control and KP groups. The control group (n = 5) was fed concentrate feed without KP, and the KP group (n = 5) was fed concentrate feed containing 10% KP. Both the groups were provided rice straw as roughage. The experiment was conducted over a period of 12 weeks. There was no significant difference in dry matter intake, daily body weight gain, and nutrient digestibility between both groups. No difference was observed in the ruminal concentrations of volatile fatty acids among the groups. At weeks 8 and 12 after the onset of the experiment, the acetate‐to‐propionate ratio in the ruminal fluid of the KP group was significantly higher than that of the control group. The average daily pH of ruminal fluid and activity of ruminal lipopolysaccharide did not differ between the groups. Our results suggested that the growth performance and feed digestibility in the Japanese Black fattening steers were not influenced by replacing concentrate feed with KP.  相似文献   

20.
Objectives of this research were to evaluate effects of increasing level of barley supplementation on forage intake, digestibility, and ruminal fermentation in beef steers fed medium-quality forage. Four crossbred ruminally cannulated steers (average initial BW = 200 +/- 10 kg) were used in a 4 x 4 Latin square design. Chopped (5 cm) grass hay (10% CP) was offered ad libitum with one of four supplements. Supplements included 0, 0.8, 1.6, or 2.4 kg of barley (DM basis) and were fed in two equal portions at 0700 and 1600. Supplements were fed at levels to provide for equal intake of supplemental protein with the addition of soybean meal. Forage intake (kg and g/kg BW) decreased linearly (P < 0.01), and total intake increased linearly (P < 0.03) with increasing level of barley supplementation. Digestible OM intake (g/kg BW) increased linearly (P < 0.01) with increasing level of barley supplementation; however, the majority of this response was observed with 0.8 kg of barley supplementation. Treatments had only minor effects on ruminal pH, with decreases occurring at 15 h after feeding in steers receiving 2.4 kg of barley supplementation. Total-tract digestibility of DM, OM, NDF, and CP were increased (P < 0.04) with barley supplementation; however, ADF digestibility was decreased by 1.6 and 2.4 kg of barley supplementation compared with controls. Ruminal ammonia concentrations decreased linearly (P < 0.01) at 1 through 15 h after feeding. Total ruminal VFA concentrations were not altered by dietary treatments. Ruminal proportions of acetate and butyrate decreased (P < 0.10) in response to supplementation. Rate, lag, and extent (72 h) of in situ forage degradability were unaffected by treatment. Generally, these data are interpreted to indicate that increasing levels of barley supplementation decrease forage intake, increase DM, OM, and NDF digestibility, and indicate alteration of the ruminal environment and fermentation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号