首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time course of accumulation of two phytoalexins, the terpenoid rishitin and the polyacetylene cis-tetradeca-6-ene-1,3-diyne-5,8-diol, was determined in near-isogenic susceptible and resistant tomato lines inoculated with either Verticillium albo-atrum or Fusarium oxysporum f.sp. lycopersici.Cultivars containing the Ve gene for verticillium wilt resistance accumulated phytoalexins at a rate similar to that in susceptible plants following stem inoculation with V. albo-atrum. Higher amounts of phytoalexins were isolated from susceptible than from resistant plants at 11 days after inoculation. Inoculum concentrations of 105, 106, 107 and 108 conidia ml−1 had no differential effect on phytoalexin accumulation at 3 days after inoculation. Also, no differences were observed between fungal growth in susceptible and resistant cultivars during that period.A cultivar containing the I-1 gene for fusarium wilt resistance contained more rishitin than did susceptible plants at 2 and 3 days after inoculation with 107 conidia of F. oxysporum f.sp. lycopersici ml−1, but at 7 and 11 days after inoculation more rishitin had accumulated in the susceptible plants.No difference was observed between the rate of accumulation of phytoalexin in stem segments from resistant and susceptible plants inoculated by vacuum-infiltration.To estimate the concentration of phytoalexins in the xylem fluid, sap was expressed from vascular tissue and amounts of phytoalexins were determined in the sap and in the expressed tissue. Less than 5% of the phytoalexins present in stem segments was recovered from the sap, indicating that their concentration in the xylem fluid may be relatively low.The role of phytoalexins in resistance to verticillium and fusarium wilt is discussed.  相似文献   

2.
小麦品种C591的抗条锈性遗传分析   总被引:1,自引:0,他引:1  
李勇  牛永春 《植物保护》2006,32(6):39-41
C591是原产于印度的普通小麦品种,苗期和成株期均对中国小麦生产上流行的条锈菌(Puccinia striiformis f.sp.tritici)主要生理小种表现良好抗性。本文以感病品种Taichung29作母本、C591作父本通过杂交制备了F1代、F2代和BC1代种子,用人工接种方法研究了C591及其杂交后代对小麦条锈菌不同生理小种的苗期抗性并进行了遗传分析。结果显示,C591与Taichung29杂交F1代植株对小麦条锈菌条中19号、条中29号和条中32号小种均表现出与C591相似的高抗,说明C591中的抗条锈基因主要为显性表达。根据杂交F2代、BC1代植株的抗性分离情况和F1代植株及亲本的抗性表现,说明C591中至少具有3对抗条锈基因,针对条锈菌不同的生理小种其有效性是不同的。对条中32号小种的抗性受1对显性基因控制,对条中29号小种的抗性受1对显性基因和2对隐性基因的独立控制,对条中19号小种的抗性受2对显性基因独立控制。结果表明,C591作为抗源在我国小麦抗锈育种中具有较大应用价值。  相似文献   

3.
Adzuki bean cultivar Acc259, which is resistant to races 1 and 2 of Phialophora gregata f. sp. adzukicola, was used as a breeding resource for resistance to brown stem rot (BSR). During the third year after two successive cultivations of Acc259, a severe outbreak of BSR occurred in an experimental plot at the Tokachi Agricultural Experiment Station, Hokkaido, Japan. The isolates obtained from diseased plants were virulent to Erimo-shozu (susceptible to all races) and Acc259 but avirulent to Kita-no-otome (resistant to race 1 but susceptible to race 2). The existence of a new race of P. gregata f. sp. adzukicola, designated race 3, was determined; and its frequency in the plot soil was shown to increase from 16.7% before planting Acc259 to 100% after the third year. Of 140 isolates from the commercial production area that were formerly identified as race 1, 13 were actually race 3 and were restricted to certain limited fields.  相似文献   

4.
Thirty-four isolates ofFusarium oxysporum f.sp.melonis (F.o.m.) obtained from 205 fields in melon-producing areas in the southeastern Anatolia Region of Turkey were identified on the basis of colony morphology and pathogenicity by the root dip method. In this region the mean prevalence of wilt disease was 88.1% and the mean incidence of disease was 47.5%. Physiologic races 0, 1, 2, and 1,2 of the pathogen were determined by their reactions on differential melon cultivars ‘Charentais T,’ ‘Isoblon’, ‘Isovac’ and ‘Margot’ in the greenhouse. Race 1,2, representating 58.8% (20/34) of all isolates, was widely distributed. Of the other pathogenic isolates, eight were identified as race 0, five as race 1, and one as race 2. This is the first report of physiologic races ofF.o.m. in Turkey. Of 44 melon cultivars tested in the greenhouse for resistance toF.o.m. races, 36 were found to be moderately resistant to race 0, 17 were susceptible to race 1,2, 34.1% were highly resistant to race 1, and 52.2% had moderate resistance to race 2. http://www.phytoparasitica.org posting July 16, 2002.  相似文献   

5.
Two diseases of adzuki bean, brown stem rot (BSR, caused by Cadophora gregata f. sp. adzukicola) and adzuki bean Fusarium wilt (AFW, caused by Fusarium oxysporum f. sp. adzukicola), are serious problems in Hokkaido and have been controlled using cultivars with multiple resistance. However, because a new race of BSR, designated race 3, was identified, sources of parental adzuki bean for resistance to race 3 were needed. Therefore, we examined 67 cultivars and lines of cultivated and wild adzuki bean maintained at the Tokachi Agricultural Experiment Station using a root-dip inoculation method. Consequently, nine adzuki bean cultivars, one wild adzuki bean accession and 30 lines (including two lines resistant to all the three races of BSR and AFW) were confirmed to be resistant or tolerant to race 3 of BSR, and we found a cultivar Akamame as well as a wild adzuki bean Acc2515 to be a new source for a resistance gene to the race 3. This cultivar also holds promise as a source of resistance against other races of BSR and AFW.  相似文献   

6.
The inheritance of resistance toFusarium oxysporum f.sp.cucumerinum race 1 was determined in the cucumber cv. WIS-248 by analyzing segregation of F1, F2, and BC populations of crosses with the susceptible cv. Straight-8. Resistance was conferred by a single dominant gene. In an allelism test, it was proven that theFcu-1 gene, which confers resistance toF. oxysporum f.sp.cucumerinum races 1 and 2 in cucumber cv. SMR-18 and theFoc gene, which confers resistance toF. oxysporum f.sp.cucumerinum race 2 in cucumber cv. WIS-248, are indistinguishable.  相似文献   

7.
小麦品种绵麦37成株期抗条锈性的遗传分析   总被引:3,自引:0,他引:3  
绵麦37是绵阳市农业科学研究所育成,含有CIMMYT材料血缘的小麦品种,2004年通过四川省品种审定后在生产上大面积推广应用,表现高抗条锈病且抗性稳定。为明确绵麦37抗条锈性遗传基础,本试验选用5个抗病品种(系)和3个感病品种(系),分别与绵麦37组配成抗×抗、抗×感组合进行遗传分析。结果表明,绵麦37成株期对条中32号小种的抗性主要受1对显性基因的控制,同时受另2对隐性基因的影响。其抗源来自于CIMMYT材料96EW37(SW2148),并且与川麦42、5563及MR168的抗源相似,其抗性基因不同于贵农系统。绵麦37作为综合性状优良的新品种,既可在生产上推广应用,也可作为抗源材料在育种上加以利用。  相似文献   

8.
Several black rot-resistant varieties of Brassica oleracea showed a race-specific hypersensitive response (HR) to inoculation with Xanthomonas campestris pv. campestris isolates of different races. In progenies of cabbage line PI436606, Portuguese kale ISA454 and Chinese kale SR1 the HR to race 1 of the pathogen was controlled by a dominant gene named R1, when a recessive gene r5 was responsible for the HR to race 5. Genes with a similar race-specific reaction were assumed on the basis of gene-for-gene interaction in black rot-resistant Japanese cabbage cultivars and double haploid lines obtained from them. Homology of gene r5 in cabbage lines PI436606, Fujiwase 01 and kale ISA454 was postulated in crosses between those lines or their progenies. In a cross between SR1 and PI436606, interaction between resistance to race 1 and non-specific resistance localized in the stem vascular system was found. On the basis of pedigree information and homology of resistance genes in the cultivars of East-Asian cabbage and Portuguese kales, the probable origin of race-specific resistance to black rot of cole crops was suggested to be in heading Mediterranean kale. Some evidence was found for a gene conferring resistance to race 4 in B. oleracea.  相似文献   

9.
Progenies of 39 open-pollinated genotypes belonging to 26 Pyrus taxa were examined for pear decline resistance and pomological traits when used as rootstocks. Following graft inoculation and observation over 18 years, considerable differences in pear decline resistance between and within the progenies were observed. Not affected or little affected and moderately to severely affected trees were observed in all progenies. However, great quantitative differences among them were observed. In the progenies of about one third of the pollinated trees most of the individuals showed a high level of resistance to grafted trees. Significantly different from this group was another third of the progenies that mostly showed high susceptibility in grafted trees. Between these two groups there were progenies that statistically neither differed from the resistant nor from the susceptible group. These progenies were defined as moderately resistant. Significant differences in resistance were also observed between progenies of genotypes of the same species that originated from different locations. These data indicate segregation of the resistance trait and show that seedling progenies are unsuitable as rootstocks in commercial pear growing. Instead, careful selection of suitable genotypes for propagation is required. Great differences between and within the progenies examined were also observed in vigour and yield efficiency.  相似文献   

10.
The reactions of parents and F1 and F2 generations of crosses of chickpea cultivars K-850 with C-104 and JG-62 and F3 progenies of K-850 × C-104 to race 1 of Fusarium oxysporum f.sp. ciceri were studied. The results indicate that K-850 carries a recessive allele for resistance at a locus different from and independent of that carried by C-104 and recessive alleles at both loci together confer complete resistance. The possible contribution of this recessive gene to late wilting in K-850 is discussed. These observations have important implications in breeding for resistance to wilt in chickpea.  相似文献   

11.
我国地方品种是小麦白粉病抗性的重要来源之一,为了对地方品种抗源的利用奠定基础,采用常规杂交方法,以感病品种Chancellor分别与我国小麦抗病地方品种蚂蚱麦、小白冬麦、游白兰、红卷芒进行正交和反交,获得F1、F2代。根据白粉菌菌株的毒谱选用E09菌株对Chancellor与小白冬麦、游白兰、红卷芒的杂交后代进行苗期抗性鉴定和统计分析,选用E30菌株对Chancellor与蚂蚱麦的杂交后代进行苗期抗性鉴定和统计分析。结果表明4个品种在正、反交情况下均表现出由一对隐性基因控制的抗性,说明这4个地方品种属于核遗传,其抗性是由一对隐性基因控制的。  相似文献   

12.
Inheritance of resistance to bacterial blight in 21 cultivars of rice   总被引:1,自引:0,他引:1  
ABSTRACT Genetic analysis for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) of 21 rice (Oryza sativa L.) cultivars was carried out. These cultivars were divided into two groups based on their reactions to Philippine races of bacterial blight. Cultivars of group 1 were resistant to race 1 and those of group 2 were susceptible to race 1 but resistant to race 2. All the cultivars were crossed with TN1, which is susceptible to all the Philippine races of X. oryzae pv. oryzae. F(1) and F(2) populations of hybrids of group 1 cultivars were evaluated using race 1 and F(1) and F(2) populations of hybrids of group 2 cultivars were evaluated using race 2. All the cultivars showed monogenic inheritance of resistance. Allelic relationships of the genes were investigated by crossing these cultivars with different testers having single genes for resistance. Three cultivars have Xa4, another three have xa5, one has xa8, two have Xa3, eight have Xa10, and one has Xa4 as well as Xa10. Three cultivars have new, as yet undescribed, genes. Nep Bha Bong To has a new recessive gene for moderate resistance to races 1, 2, and 3 and resistance to race 5. This gene is designated xa26(t). Arai Raj has a dominant gene for resistance to race 2 which segregates independently of Xa10. This gene is designated as Xa27(t). Lota Sail has a recessive gene for resistance to race 2 which segregates independently of Xa10. This gene is designated as xa28(t).  相似文献   

13.
Ascochyta blight caused by Ascochyta rabiei and fusarium wilt caused by Fusarium oxysporum. f. sp. ciceris are the two most serious diseases of chickpea (Cicer arietinum). Quantitative trait loci (QTL) or genes for ascochyta blight resistance and a cluster of resistance genes for several fusarium wilt races (foc1, foc3, foc4 and foc5) located on LG2 of the chickpea map have been reported independently. In order to validate these results and study the linkage relationship between the loci that confer resistance to blight and wilt, an intraspecific chickpea recombinant inbred lines (RIL) population that segregates for resistance to both diseases was studied. A new LG2 was established using sequence tagged microsatellite sites (STMS) markers selected from other chickpea maps. Resistance to race 5 of F. oxysporum (foc5) was inherited as a single gene and mapped to LG2, flanked by the STMS markers TA110 (6.5 cM apart) and TA59 (8.9 cM apart). A QTL for resistance to ascochyta blight (QTLAR3) was also detected on LG2 using evaluation data obtained separately in two cropping seasons. This genomic region, where QTLAR3 is located, was highly saturated with STMS markers. STMS TA194 appeared tightly linked to QTLAR3 and was flanked by the STMS markers TR58 and TS82 (6.5 cM apart). The genetic distance between foc5 and QTLAR3 peak was around 24 cM including six markers within this interval. The markers linked to both loci could facilitate the pyramiding of resistance genes for both diseases through MAS.  相似文献   

14.
 Pathogenic variation among 26 Japanese isolates of Fusarium oxysporum f. sp. lactucae (FOL) was tested using 21 lettuce cultivars to select commercial lettuce cultivars as race differential indicators. Cultivar Costa Rica No. 4 was resistant to race 1 but susceptible to race 2, consistent with the conventional standard differential line VP1010. Cultivar Banchu Red Fire was susceptible to race 1 but resistant to race 2, which showed an opposite type of reaction as another differential line VP1013. Cultivar Patriot was susceptible to both races. The resistance reactions of the three cultivars under field conditions were identical with that observed in the seedlings. Thus cv. Costa Rica No. 4 and cv. Banchu Red Fire can be used as differential hosts to identify pathogenic races of FOL. This differential system showed that all FOL isolates obtained from diseased butterhead lettuce in Fukuoka, Japan were new races (i.e., pathogenic to three cultivars). We propose that the new race be designated race 3. Isolates of FOL, the pathogen of Fusarium wilt in lettuce, obtained from California showed the same reaction as that of race 1. Furthermore, the Japanese isolate SB1-1 (race 1) and California isolate HL-2 belonged to the same vegetative compatibility group. Our results suggest that both of the fungi are the same forma specialis. Received: March 25, 2002 / Accepted: August 26, 2002  相似文献   

15.
It has been proposed that susceptibility of potato to Phytophthora infestans would be a consequence of suppression and /or delaying of defense reactions by a soluble glucan which is released by compatible races of the fungus. In this report, the reaction of potato tuber slices (Solanum tuberosum cv. Huinkul) infected with either race I (1,4,7,8,10,11) or C (1,4,10,11) of Phytophthora infestans was studied. Race C grew better on slices than race I. Glucans from both races were isolated and their effect on the accumulation of phytoalexins and glucanases in tuber slices was studied. The glucans from the less virulent race (I) did not affect the accumulation of phytoalexins and glucanases in tuber slices infected or elicited with eicosapentaenoic acid, whereas the glucans from race C produced 70% inhibition of phytoalexin accumulation and reduced by 50% the induction of glucanase activities. Purified glucanases from potato degraded the glucans from race C but not from race I. The results reported here show that, at least on this cultivar, glucans from both races affected defense responses in a different manner, which could reflect structural differences between these glucans.  相似文献   

16.
小麦条锈病是小麦生产中最重要的病害,培育抗病品种是防治条锈病最经济、有效、安全的措施。‘Cham-plein’引自法国,对条锈菌生理小种表现良好持久抗性。为了明确其抗性遗传特点,以感病品种‘铭贤169’与其杂交、自交和回交获得了F1、F2、F3和BC1代,人工接种小麦条锈菌生理小种CY32,在温室和田间对‘Champlein’进行遗传分析。结果表明:苗期‘Champlein’对CY32的抗病性由1对显性基因控制;成株期‘Champlein’对CY32的抗病性由2对显性和1对隐性抗条锈病基因以互补方式控制;系谱分析表明基因可能来源于‘Vilmorin27’。  相似文献   

17.
Intermediate (I) biotypes for triazine herbicide resistance in Chenopodium album (as defined by a peculiar fluorescence curve), had the same ID50 values as resistant(R) plants for chloroplast response to atrazine, but proved to be more susceptible at lower doses. Furthermore, the lethal dose in seedling treatments was lower than that of the R plants, but six times higher than for susceptible (S) plants. These I characteristics of I biotypes were maternally inherited in crosses. I biotypes were isolated from various progenies of susceptible precursor (Sp) plants in two garden populations. This could be the first step in the occurrence of triazine herbicide resistance. However, Sp plants have not been observed in field populations. The significance of the presence of a single isozyme pattern for all Sp plants is discussed. The results suggest an evolutionary pathway from S to R plants via I biotypes.  相似文献   

18.
Inoculation of leaves of resistantPlatanus occidentalis and susceptiblePlatanus acerifolia leaves withCeratocystis fimbriata f. sp.platani, the canker stain disease agent, induced foliar necrosis and biosynthesis of two phytoalexins, scopoletin and umbelliferone. Foliar symptoms keep localized and accumulation of coumarin phytoalexins was rapid for incompatible interactions. Necrosis spread widely and accumulation of these phenolic compounds was much later and lower for compatible interactions. The differential response could be used in a genetic improvement program for resistance against canker stain.  相似文献   

19.
Proliferation and collapse of subcuticular hyphae of Venturia nashicola race 1 were studied ultrastructurally, after inoculation of susceptible Japanese pear cv. Kousui, resistant Japanese pear cv. Kinchaku, resistant Asian pear strain Mamenashi 12 and nonhost European pear cv. Flemish Beauty leaves, to understand the nature of the resistance mechanism. After cuticle penetration by the pathogen, the hyphae were observed at lower frequency in epidermal pectin layers and middle lamellae of leaves of the three resistant plants than in those of susceptible ones. This result suggested that fungal growth was suppressed in the incompatible interaction between pear and V. nashicola race 1. In the pectin layers of all inoculated plants, some hyphae had modifications such as breaks in the plasmalemma with plasmolysis, necrotic cytoplasm and degraded cell walls. More hyphae had collapsed in the leaves of the three resistant plants than in those of the susceptible cv. Kousui. In collapsed hyphae, the polymerized cell walls broke into numerous fibrous and amorphous pieces, showing that the scab resistance might be associated with cell wall-degrading enzymes from pear plants.  相似文献   

20.
Leaves of powdery mildew-susceptible barley (Hordeum vulgare cv. Ingrid) and related near-isogenic lines bearing various resistance genes (Mla12, Mlg or mlo5) were inoculated with Blumeria graminis f. sp. hordei race A6. Fungal attack induced several-fold increases in ethylene emission and electrolyte leakage in leaves of susceptible Ingrid beginning 3 days after inoculation. Activities of peroxidase, superoxide dismutase, glutathione S-transferase, ascorbate peroxidase and glutathione reductase enzymes were induced markedly in susceptible leaves 5–7 days after inoculation. Similar, but less pronounced pathogen-induced changes were detected in inoculated leaves of Mla-type resistant plants that show hypersensitive cell death upon inoculation, and, to an even lesser extent, in the Mlg and mlo lines, where no visible symptoms accompanied the incompatible interaction. Glutathione content increased only in susceptible barley 7 days after inoculation. Catalase activity, total ascorbate content and redox state were not influenced by inoculation in any of the genotypes. The activity of dehydroascorbate reductase was significantly reduced 3–5 days after inoculation in the susceptible parental plants and after 5 days in Mla and Mlg lines, while it was stable in the mlo barley. Slightly elevated levels of H2O2 were observed in the inoculated resistant plants. In contrast, H2O2 content decreased in the susceptible line 7 days after pathogen attack. These data indicate that high levels of antioxidants are involved in the compatible interaction of susceptible barley and powdery mildew by protecting the pathogen from oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号