首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
高光谱遥感森林叶面积指数估测方法研究   总被引:1,自引:1,他引:1  
叶面积指数(LAI)是反映植物叶片数量、冠层结构变化、植物群落生命活力及其环境效应的重要参数,其定义为植株所有叶片单面面积总和与植株所占的土地面积的比值。文中总结国内外利用高光谱遥感数据估测森林叶面积指数的研究进展,并对众多的估测方法进行比较,最后分析了高光谱遥感森林叶面积指数估测研究的发展趋势。    相似文献   

2.
观赏植物叶面积测定及相关分析   总被引:5,自引:1,他引:4  
采用扫描仪采集鹅掌柴、仙客来、三角梅、非洲茉莉、桂花和绿萝6种植物叶片图像,利用像素得到叶片真实面积,与叶面积仪测定的叶面积相比较,结果表明叶面积仪能够完全反映叶片的真实面积;确定了6种植物的叶面积、比叶面积、叶形指数和叶面积指数,并对叶面积与叶宽进行了相关性分析,结果表明叶面积和叶宽的相关性显著,进一步回归分析得出叶宽和叶面积的一元二次方程,即只需测量叶宽就可推算叶面积的简便方法;通过对比叶面积进行聚类分析,得出6种植物适宜的栽培环境,为合理管理观赏植物提供了可靠的参考依据。  相似文献   

3.
叶面积指数的主要测定方法   总被引:17,自引:0,他引:17  
简要地介绍了叶面积指数的概念和研究的意义,总结了当前叶面积指数(LAI)的主要测定方法有直接和间接方法两大类,分析了各种方法的优缺点.认为未来叶面积指数测定的发展趋势是光学仪器法和遥感法的相互结合.  相似文献   

4.
叶面积指数(LAI)是一个量化植物绿色指数的重要参数之一。精确测量叶面积指数对研究生态系统的功能结构特性具有重要的意义。植物生存环境影响植物叶子的形态,叶舒展、卷曲、病虫害引起缺损等几何形态的变化,对于测量带来很大不便。本论文鉴于在传统的叶面积指数的测量方法存在许多弊端,借助于流形学习方法,将三维数据降为二维数据,在二维空间进行数据的精确测量,得到相当准确的叶面积指数,从而获得植物精确的参数有了一定科学依据。  相似文献   

5.
使用PROSPECT-5与4SAIL相结合的PROSAIL模型,以高分一号卫星数据为基础数据,进行叶面积指数反演。由于实验区受冰雹灾害影响,玉米长势不一,因此通过对健康叶片和枯黄叶片的实测光谱进行线性混合,模拟不同长势玉米叶片的实际光谱。将混合系数和LAI划分成若干等级,使用PROSAIL模型建立叶片生理参数、叶面积指数和高分一号4个波段反射率值的查找表。研究结果表明,叶面积指数反演的平均精度为60.59%,并且反演叶面积指数与实测叶面积指数具有线性回归关系。  相似文献   

6.
为研究橡胶树无性系植株生长发育进程中叶面积变化及规模化种质资源鉴定中叶面积测定的简易方法,以20个橡胶树无性系为材料,测定各无性系叶片参数,找出合适系数回归法测算橡胶树无性系叶面积的最佳叶片参数。结果表明:干重法和叶面积仪法测定不同无性系叶面积的差异较大,两种方法相对差值较小的无性系仅9个;直尺法和叶面积仪法测定的叶长差异较大,两种方法测得的叶宽高度一致。各叶片参数相关性分析得出,直尺法测算出的叶长宽积X1与其它所有叶片参数均达到了极显著正相关(P≤0.01),且与叶面积仪测定的叶面积S1相关系数最大(r=0.986);其次,干重法测算的叶面积S2与S1相关系数在所有叶片参数中也最大(r=0.899)。选择X1和S2分别与S1进行回归分析,得出大部分无性系X1的回归决定系数都比S2的更高,故在叶片规整的情况下,特别是研究植株叶片生长发育规律时,推荐使用直尺法测定的叶长宽积与叶面积仪测定的叶面...  相似文献   

7.
几种常用的树木叶面积测量方法比较   总被引:1,自引:0,他引:1       下载免费PDF全文
以随机采集的6种延安市区绿化植物(白蜡、刺槐、紫丁香、五角枫、银杏和月季)新鲜叶片为材料,分别用激光叶面积仪、AutoCAD和ENVI进行测量。通过统计比较发现,激光叶面积仪测量结果平均偏大,精度最低;AutoCAD与ENVI在测量结果上差异不显著,但在精度上AutoCAD高于ENVI。AutoCAD测量叶片面积的平均耗时为139.6 s,是ENVI方法的3~4倍。通过AutoCAD测量方法测定以上6种树木叶片的长度、宽度和叶面积,并拟合出6种树木的叶面积线性方程,相关系数与决定系数均达到极显著水平。经过验证,这6个叶面积线性方程均是可靠的,可以用于延安市这6种植物叶片面积的测量和叶面积衍生指标的估算。  相似文献   

8.
松科针叶植物单位叶片鲜重光合速率的测定方法   总被引:2,自引:0,他引:2  
松科针叶植物的叶面积不易估算,其单位面积叶片光合速率的测定过程繁琐且不准确,而用单位鲜重叶片的光合速率表示松科针叶植物的光合强度具有简单、快速、准确等优点,测定结果也更符合针叶光合作用的实际情况。本文介绍了单位鲜重叶片光合速率的测定及计算方法,为松科植物光合研究提供参考。  相似文献   

9.
园林植物叶面积指数研究进展   总被引:5,自引:0,他引:5  
本文对园林植物叶面积指数(LAI)研究的进展进行了综述,详细介绍了LAI的定义、LAI的主要测定方法、LAI与枝干的相关关系、LAI的应用现状,并对园林植物叶面积指数的研究前景进行了讨论。  相似文献   

10.
叶面积指数(Leaf area index)是描述叶片生长过程的重要参数之一。为探讨我国帽儿山地区落叶阔叶林长时间序列叶面积指数变化规律,利用LAI-2200对帽儿山林场老爷岭试验站12块样地生长季叶面积指数进行测量,使用生长方程对离散LAI值进行拟合,计算不同时间的叶面积指数生长速率和生长季累积叶面积指数,分析不同立地条件下不同林分叶面积指数生长情况,对其动态变化规律进行研究。研究表明:生长季4月到8月,12块落叶阔叶林叶面积指数均随时间呈单峰变化。以杨树有优势树种的样地用Mitscherlich生长方程拟合其LAI效果最优,以色木和白桦为优势树种的样地采用logistic生长方程拟合效果最优,其它样地Gompertz生长方程拟合最优,各样地生长方程拟合R2均高于0.962。杨树林叶面积指数增速最快,胡桃楸林增速缓慢,6月初到8月中下旬为冠层LAI生长速度趋于平稳。空间位置相近的阴阳坡样地叶面积指数生长规律差别较大,最高累计叶面积指数相差17.6%。此研究结果为帽儿山地区阔叶林叶面积指数动态变化规律提供数据基础,为该地区林冠植被的空间异质性及其造成影响,以及提升日步长碳循环、水循环生态机理模型精度提供更为准确的数据支持。  相似文献   

11.
We compared leaf area index (LAI) estimates of a broad-leaf tropical hardwood, Metrosideros polymorpha Gaud (‘Ōhi’a), using a optical method (LI-COR LAI-2000) and direct determination (harvest and allometry). There was a strong correlation between LAI estimates by the two methods, but direct estimates were higher than the optical estimates by a factor of 2.44. The ratio of harvest leaf area to projected leaf area within twigs was similar (2.42) to that of whole plots, suggesting that aggregation of leaves at this scale of branching may account for most of the underestimate by the optical method. The within-branch ratio of actual to projected leaf area did not differ among three sites on three islands of varying land surface age but similar climate, suggesting that a correction factor determined by harvest could be used to adjust optical estimates of LAI in other M. polymorpha forests.  相似文献   

12.
Leaf area index (LAI) is a key ecophysiological parameter in forest stands because it characterises the interface between atmospheric processes and plant physiology. Several indirect methods for estimating LAI have been developed. However, these methods have limitations that can affect the estimates. This study aimed to evaluate the accuracy and applicability of a visual method for estimating LAI in clonal Eucalyptus grandis × E. urophylla plantations and to compare it with hemispherical photography, ceptometer and LAI-2000® estimates. Destructive sampling for direct determination of the actual LAI was performed in 22 plots at two geographical locations in Brazil. Actual LAI values were then used to develop a field guide with photographic images representing an LAI range of 1.0–5.0 m2 m?2 (leaf area/ground area). The visual LAI estimation guide was evaluated with 17 observers in the field. The average difference between actual LAI and visual LAI estimation was 12% and the absolute difference between the two methods was less than or equal to 0.5 m2 m?2 in 77% of plots. Pearson’s correlation coefficients were high between actual LAI and hemispherical photographs (0.8), visual estimation (0.93) and LAI-2000® (0.99) and low for the ceptometer (0.18). However, absolute values differed among methods, with the average difference between the actual and estimated LAI of [12]% for visual estimation, 28% for the LAI-2000®, 37% for the ceptometer and ?43% for hemispherical photographs. The LAI-2000® and ceptometer overestimated LAI in all plots, whereas hemispherical photographs underestimated the values in all measurements, showing that these methods need calibration to be used. No differences were observed between actual LAI and visual estimates across stand ages of 2–8 years and LAI of 1.5–5.3 m2 m?2 (P > 0.05). The results show that visual estimation of LAI in Eucalyptus stands is a practical method that is unaffected by atmospheric characteristics and can be used on an operational scale.  相似文献   

13.
通过破坏性抽样、相片网格法和落叶采受器法,获得了印度Shoolpaneshwar野生动物禁猎区内生长的柚木和印度实竹叶面积指数。建立了一个异速生长方程来决定两个树种的叶面积指数。结果表明,异速生长方程获得的叶面积指数与破坏性抽样、相片网格法和落叶采受器法评估得到的指数值相近;2种测定方式下,柚木的均方根误差分别是0.90和1.15,印度实竹的均方根误差分别为0.38和0.46。估计的和计算获得的叶面积指数值匹配性较好,说明用建立的方程计算得到的2个树种叶面积指数的准确性较好。总之,冠幅伸展是一个估计树木叶面积较好的且敏感的参数。本文所提出的方程可以用作估计热带柚木和印度实竹叶面积指数。图4表1参22。  相似文献   

14.
We evaluated several optical methods for in situ estimation of leaf area index (LAI) in a Belgian Scots pine (Pinus sylvestris L.) stand. The results obtained were compared with LAI determined from allometric relationships established in the same stand. We found high correlations between branch cross-sectional area, diameter at breast height (DBH) and basal area as dependent variables, and leaf mass, needle area and crown projection as independent variables. We then compared LAI estimated by allometry with LAI determined by three optical methods (LAI-2000, TRAC and digital hemispherical photography) both before and after corrections for blue light scattering, clumping and non-leafy material. Estimates of stand LAI of Scots pine ranged from 1.52 for hemispherical photography to 3.57 for the allometric estimate based on DBH. There was no significant difference (alpha = 0.01) between the allometric LAI estimates and the optical LAI values corrected for blue light scattering, clumping and interception by non-leafy material. However, we observed high sensitivity of the optical LAI estimates to the various conversion factors, particularly to the clumping factor, indicating the need for caution when correcting LAI measured by optical methods.  相似文献   

15.
Woody materials (woody area index, WAI) is a key error source in estimating leaf area index (LAI) by optical methods, but how to correct the error caused by WAI during different seasons has not reached consensus. In this study, effective plant area index (PAIe) was first estimated using two indirect optical methods (digital hemispherical photography, DHP, and LAI-2000) in a deciduous needleleaf forest, and then four different schemes for correcting the contribution of WAI to PAIe were tested here. We also directly estimated the seasonality of LAI by a litter collection method and an allometric method. Directly subtracting WAI from PAI resulted in a greater degree of uncertainty in correcting seasonal changes of PAIe from both DHP and LAI-2000. Therefore, we introduced a new correction factor, the stem-to-total area ratio, which was reasonable and useful for quantifying seasonal changes in the contribution of WAI to PAIe. We finally recommend a practical scheme for correcting PAIe from both DHP and LAI-2000, with accuracies as high as 88% and 87% during most growing seasons, respectively. Additionally, LAI values estimated from allometry were concordant with those estimated from litter collection, indicating that the allometry method is useful for tracking seasonal changes in LAI.  相似文献   

16.
The leaf area index (LAI) of 16 sample plots was estimated based on terrestrial three-dimensional laser scanning. The point-cloud data of stand canopy were first scaled and projected onto a hemisphere according to Lambert azimuthal equal-area projection or stereographic projection, and the resulting hemispherical point-cloud images were used to extract the canopy porosity coefficients. Then, single-angle inversion and Miller formula inversion methods were used, respectively, to calculate the effective leaf area indices with canopy porosity coefficients. Results showed that the effective LAIs estimated by single-angle inversion method with Lambert projection and stereographic projection were within the range of 2.14~5.36 and 1.83~4.67, respectively. The effective LAIs obtained by Miller formula inversion method with Lambert projection and stereographic projection were within the range of 1.84~4.67 and 1.68~4.34, respectively. As a comparison, the LAI measured with a fish-eye camera ranged from 1.55 to 3.87. The LAI values estimated with four different calculation methods were linearly correlated with those measured by a fish-eye camera. The highest coefficient of determination (R2) 90.28% was obtained by the Miller formula inversion method combined with stereographic projection, and Duncan’s new multiple range test also further showed that this method had a relatively higher precision compared to other three methods.  相似文献   

17.
园林植物形态特征与叶面积指数关系研究   总被引:1,自引:0,他引:1  
作者研究了武汉市18种园林植物的形态特征与叶面积指数(LAI)的相关性,结果表明:树木整形方式对LAI无显著影响,且LAI与树高(H)和冠高(H')呈正相关关系(多枝闭心形除外),与胸(基)径(D)呈负相关关系,与冠幅(C)的相关性没有明显规律。在4种植物类型中(乔木、灌木、常绿植物和落叶植物),LAI与H和H'呈正相关关系(灌木除外),与D和C呈负相关关系(常绿植物与灌木除外)。乔木和落叶植物的LAI分别高于灌木和常绿植物。  相似文献   

18.
A simple measure of the amount of foliage present in a forest is leaf area index (LAI; the amount of foliage per unit ground surface area), which can be determined by optical estimation (gap fraction method) with an instrument such as the Li-Cor LAI-2000 Plant Canopy Analyzer. However, optical instruments such as the LAI-2000 cannot directly differentiate between foliage and woody components of the canopy. Studies investigating LAI and its calibration (extracting foliar LAI from optical estimates) in tropical forests are rare. We calibrated optical estimates of LAI from the LAI-2000 with leaf litter data for a tropical dry forest. We also developed a robust method for determining LAI from leaf litter data in a tropical dry forest environment. We found that, depending on the successional stage of the canopy and the season, the LAI-2000 may underestimate LAI by 17% to over 40%. In the dry season, the instrument overestimated LAI by the contribution of the woody area index. Examination of the seasonal variation in LAI for three successional stages in a tropical dry forest indicated differences in timing of leaf fall according to successional stage and functional group (i.e., lianas and trees). We conclude that when calculating LAI from optical estimates, it is necessary to account for the differences between values obtained from optical and semi-direct techniques. In addition, to calculate LAI from litter collected in traps, specific leaf area must be calculated for each species rather than from a mean value for multiple species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号