首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 421 毫秒
1.
本研究采用层次灰色综合评价模型,结合动态生物气候分室模型预估的长江口和黄河口鱼类资源密度增量分布结果,对不同气候变化情景(RCP2.6、RCP6.0和RCP8.5)对长江口和黄河口渔业生态系统健康的潜在影响进行了分析.从生态环境、生物群落结构和生态系统功能三个层面构建了长江口和黄河口渔业生态系统健康评价体系.2015-2050年,长江口和黄河口渔业生态系统健康水平随着温室气体排放程度的增加而降低,即RCP2.6情景下健康水平最高,RCP6.0情景次之,RCP8.5情景最低.两个河口的健康水平随时间推移在RCP2.6情景下呈现出“高-低-高”的变化趋势;在RCP6.0情景下呈现出“低-高-低”的变化趋势;在RCP8.5情景下两个河口略有差异,黄河口呈“高-低-高”的变化趋势,长江口呈“低-高-低”的变化趋势.若以2050年渔业生态系统健康水平作为“最终状态”,两个河口RCP2.6情景下的健康水平高于RCP6.0和RCP8.5情景:长江口RCP2.6情景下的健康评价值为0.61,是RCP6.0和RCP8.5情景下健康评价值的1.9倍和1.8倍;黄河口RCP2.6情景下的健康评价值分别是RCP6.0和RCP8.5情景的2.8倍和2.2倍.  相似文献   

2.
径流量是体现流域水量特征的重要指标。旬河作为汉江上游的主要支流,其径流量变化直接关系到丹江口水库(南水北调中线工程水源地)的储水量。以历史时期(1995-2015年)旬河流域实测径流量数据为基础,选择驱动SWAT水文模型,定量探究旬河流域径流量对气候变化的响应。结果表明,校准期和验证期决定系数(R~2)分别为0.85和0.87,Nash-Sutteliffe效率系数(NSE)分别为0.85和0.84,SWAT水文模型对旬河流域径流量模拟结果良好。采用英国Hadley气候中心预测的未来气候模式RCP2.6、RCP4.5、RCP6.0、RCP8.5,对2036-2055年的气象数据进行4种未来气候情景模拟,发现在历史气候情景下,三季度降水量对全年径流量贡献度最大,且四季度的径流量对三季度的降水量存在一定滞后效应;在RCP8.5情景下,雨季将提前且持续周期延长。研究结果可为政策部门在水资源宏观调控、极端气候预防和防洪减灾等方面提供参考。  相似文献   

3.
气候变化对长江口鱼类资源密度分布的重塑作用   总被引:1,自引:0,他引:1       下载免费PDF全文
本研究以2012-2013年长江口鱼类资源密度分布为基础,通过动态生物气候分室模型(DBEM)预估了不同气候变化情景下(IPCC,RCP2.6、RCP6.0和RCP8.5)长江口鱼类资源密度增量分布的变化.在RCP2.6、RCP6.0和RCP8.5这3种气候变化情景下,鱼类资源密度增量、底层鱼类资源密度增量随着时间推移均呈递增趋势,且递增程度和增量重心分布范围随着温室气体排放的增加而扩大(RCP8.5>RCP6.0>RCP2.6).鱼类资源密度增量重心主要分布在长江口崇明岛沿岸水域,长江口外侧水域资源密度增量相对较低,并且资源密度增量重心有向南迁移的趋势.  相似文献   

4.
以黄姑鱼(Nibea albiflora)为研究对象,根据IPCC 2013典型浓度排放路径(RCP)对2100年海洋温度和p H的预测值,分别选择减缓温室气体排放情景(RCP 2.6)和高温室气体排放情景(RCP8.5),设置温度和p H两个因素,在实验室条件下模拟气候变化,探究海洋暖化和酸化对黄姑鱼早期生长、发育的影响。结果显示,在基础温度24.0℃条件下,黄姑鱼进入稚鱼期的时间为25 d,高温处理(26.0℃~28.0℃)生长加快,仅为22 d,同时,随着温度升高(26.0℃、26.6℃和28.0℃),生长率逐渐增加(0.73、0.74和0.78 mm/d),并且各处理组之间生长率存在显著差异(P0.05),但死亡率在26.6℃最高,26.0℃最低。黄姑鱼死亡率在p H为7.80、7.73和7.49时分别为3.9%、19.4%和21.7%,各处理组死亡率差异显著(P0.05),但p H对黄姑鱼早期生长率影响不显著(P0.05)。通过逻辑斯蒂生长方程拟合,结合IPCC对2100年温度和p H的预测,到2100年,在RCP 2.6情景下,黄姑鱼早期生长率为0.71 mm/d,死亡率为31.1%;在RCP 8.5情景下,黄姑鱼生长率最高达到0.76 mm/d,死亡率为23.9%。在海洋酸化和暖化的共同作用下,黄姑鱼的早期补充将会受到影响。  相似文献   

5.
为全面了解气候变化下黄海中南部近海海域斑鰶的产卵场适宜性变动规律,为黄海中南部产卵场的保护提供科学依据,实验根据2014—2018年5—7月黄海中南部产卵场调查数据,并结合FVCOM (Finite-Volume Community Ocean Model)模型提取的表层水温、表层盐度、水深、离岸距离、海表流速以及NOAA数据中心的叶绿素a浓度等6种环境因子,基于随机森林(Random Forest,RF)模型构建黄海中南部斑鰶产卵场适宜性的分布模型,根据未来气候变化的情景,预测该鱼种产卵场在未来的潜在分布。结果显示,不同月份中影响斑鰶鱼卵分布的主要环境因素不同,主要因子在5—7月分别为水深、叶绿素a和表层水温,其偏差贡献率分别为24.49%、28.08%、26.26%。研究表明,在未来气候变化的情景下,斑鰶的适宜产卵场将向北迁移。此外,黄海中南部北部沿岸海域及南部远岸深水区的栖息地适宜性明显增加。因此,未来在产卵场保护以及资源开发利用等方面,应当充分考虑这一变动趋势。  相似文献   

6.
蓝点马鲛(Scomberomorus niphonius)是中国近海重要的大型中上层经济鱼类, 精准预测蓝点马鲛渔场分布对渔业资源评估与管理有重要意义。本研究利用蓝点马鲛捕捞数据与卫星遥感海表温度(sea surface temperature, SST) 和海表叶绿素浓度(chlorophyll-a concertation, Chl a)数据, 构建了基于自动机器学习的蓝点马鲛 CPUE 预测模型, 通过与 XGBoost 模型、随机森林模型和广义加性模型(generalized addictive models, GAM)对比, 自动机器学习模型的确定系数(coefficient of determination, R2 )分别提高了 51%、107%和 117%, 均方根误差(root mean squard error, RMSE)分别降低了 15%、28%和 32%。通过模型预测的蓝点马鲛 CPUE, 开发了渔场丰度指数, 分析了渔场丰度时空变动规律。结果显示: 蓝点马鲛渔场丰度高值区在春季由于受到 SST 的影响较大, 呈现向北及向近岸移动的趋势, 这种现象与蓝点马鲛索饵及产卵洄游路线一致; 同时, 蓝点马鲛渔场丰度高值区纬度重心的北移, 也与气候变暖影响下蓝点马鲛索饵和产卵的适宜温度区变动有关。通过气候事件指数分析发现, Ni?o 3.4 指数与蓝点马鲛渔场丰度高值区面积呈显著相关。结合 RCP2.6、RCP4.5、RCP6.0、RCP8.5 4 种情景, 分别预测了 2100 年蓝点马鲛的 CPUE 分布变动, 发现随着全球变暖, 蓝点马鲛 CPUE高值产区北移, 并相比 2010—2015年蓝点马鲛 CPUE预测平均值, 4 种 RCP 情景下分别上升了 0.1、2.2、2.41 和 17.3 kg/h。本研究结果可为中国近海经济鱼种的渔情预报研究提供参考。  相似文献   

7.
夏季极端高温是制约我国仿刺参(Apostichopus japonicus)池塘养殖发展的关键环境因素。本研究基于文献拟合了北方养殖区仿刺参存活率与水温的关系, 确定了仿刺参半致死温度; 收集了 1980—2020 年夏季每小时气温数据, 分析了仿刺参养殖区域极端高温的时空特征和仿刺参池塘养殖受灾频次; 根据受灾频次判定了仿刺参池塘养殖敏感区, 最终预测了 2046—2050 年 3 种 CMIP5 典型浓度路径(RCP)情景模式(RCP2.6、RCP6.0 和 RCP8.5)下仿刺参养殖高温敏感性。结果显示, 仿刺参半致死温度(LT50), 即致灾温度, 为(31.7±0.15) ℃; 中国北方沿海区域是气候变暖的显著响应区, 2011—2020 年中国北方沿海区域平均温度和最高温度分别以 1.27 ℃/10 a 和 2.15 ℃/10 a 的速率上升, 导致北方仿刺参养殖区普遍遭遇致灾温度, 其中渤海西南海域受灾频次最高; 在 3 种 RCP 情境下, 渤海大部分海湾仿刺参池塘养殖风险加大。结论认为, 仿刺参产业发展需因地制宜制定科学空间发展规划, 建立基于高温预警预报系统的应对策略, 保障产业可持续发展。  相似文献   

8.
温健  余为  陈新军 《中国水产科学》2020,27(12):1464-1476
茎柔鱼(Dosidicus gigas)为环境敏感型头足类,气候的多元变化促使茎柔鱼栖息地发生变动。本研究利用海表温度(SST)和海表面高度(SSHA)两个关键环境因子构建栖息地适宜性指数(HSI)模型,结合太平洋年代际涛动(PDO)指数,分析1950-2015年不同气候模态下秘鲁外海茎柔鱼栖息地的季节性分布规律。结果发现,PDO冷期茎柔鱼栖息地适宜性较高;而PDO暖期栖息地适宜性较低。相较于PDO冷期,PDO暖期下茎柔鱼适宜栖息地分布向东南移动。适宜栖息地的分布位置与适宜的SST和SSHA的重叠区域重合,表明两个关键环境因子与栖息地分布显著相关。此外,适宜栖息地指数距平值与PDO指数的年际变化呈显著负相关关系。春季茎柔鱼渔场栖息地适宜性高于冬季,且冬季适宜栖息地的分布相较春季偏东南方向。茎柔鱼渔场6-11月适宜的SST和最适宜的SST在经度和纬度上的分布存在显著差异,春季(9-11月)最适宜的SST分布逐月向西北方向移动;冬季(6-8月)最适宜的SST分布逐月向东南方向移动。推测不同气候模态下茎柔鱼栖息地季节性分布差异,可能是由于最适宜的SST显著的月间分布差异所致。研究表明,不同PDO时期下茎柔鱼栖息地适宜性具有显著季节性差异,其差异可由环境因子的月间变动来解释。  相似文献   

9.
水生植物种植是实现水鸟栖息地恢复的重要手段。目前面向湖泊的水生植物种植设计主要是针对水质治理,对水鸟栖息地的保护研究较少,且很少考虑植物种植对水位过程的适应性。本文将湖泊水位过程及植物生长特性相结合,提出一种满足鸟类栖息地恢复的水生植物种植设计新方案。以洪泽湖国家湿地自然保护区为例,根据当地鸟类栖息地的实际需求,将芦苇(Phragmites australis)等7种水生植物确定为种植对象。依据洪泽湖湖底高程,结合不同植物的生长水位要求以及植物发挥鸟类觅食及遮蔽两大功能的需求,探究了历史极端水位过程、历史平均水位过程及优化水位过程下的可种植水生植物种类及其可种植区域,并给出种植方案。结果表明:历史极端水位过程下,仅能种植芦苇1种水生植物,对鸟类栖息地恢复作用有限;历史平均水位过程下,可种植植物增加到4种,有利于扩展鸟类栖息地面积;优化水位过程下,能种植全部7种水生植物,并有效恢复鸟类栖息地面积。本研究面向洪泽湖湿地保护区鸟类栖息地保护,依据鸟类及植物对水位过程的需求提出植物种植方案,提高了方案的针对性,准确性,可为洪泽湖湿地植被恢复及鸟类栖息地保护提供借鉴。  相似文献   

10.
(Scomber japonicus)是一种重要的经济鱼种, 其栖息地环境易受到气候变化的影响。本研究依据 1950— 2015 年 2.5 m、25 m、50 m 水层温度数据以及 Ni?o3.4 指数, 计算东海鲐栖息地适宜性指数(HSI), 对比分析不同强度拉尼娜事件期间鲐栖息地的时空变动。结果表明, 拉尼娜事件期间鲐渔场适宜栖息地面积高于正常气候条件。 弱拉尼娜事件和中强度拉尼娜事件期间, 鲐渔场各水层温度偏低, 适宜的温度面积比例较高, 栖息地适宜性较高; 而强拉尼娜事件期间, 鲐渔场各水层温度偏高, 适宜的温度面积比例较低, 栖息地适宜性较低。相较于强拉尼娜事件, 弱拉尼娜事件和中强度拉尼娜事件期间, 适宜栖息地的经度重心偏东, 纬度重心偏南, 不适宜栖息地的经度重心偏西, 纬度重心偏北。此外, 鲐渔场各水层最适宜温度等值线在强拉尼娜事件下偏西北方向, 推测不同强度拉尼娜下鲐栖息地空间分布差异, 可能是由于各水层最适宜温度显著的月间分布差异所致。研究表明, 不同强度拉尼娜事件对东海鲐栖息地的影响具有显著差异。  相似文献   

11.
An assessment of climate change impacts on the habitat suitability of fish species is an important tool to improve the understanding and decision‐making needed to reduce potential climate change effects based on the observed relationships of biological responses and environmental conditions. In this study, we use historical (2010–2015) environmental sea surface temperature (SST), upwelling index (UI), chlorophyll‐a (Chl‐a) and biological (i.e., anchovy adults acoustic presence) data (i.e., Maxent) to determine anchovy habitat suitability in the coastal areas off central‐northern (25°S–32°S) Chile. Using geographic information systems (GIS), the model was forced by changes in regionalized SST, UI and Chl‐a as projected by IPCC models under the RPC (i.e., RCP2.6, RCP4.5, RCP6.0 and RCP8.5) emissions scenarios for the simulation period 2015–2050. The model simulates, for all RCP scenarios, negative responses in anchovy presence, reflecting the predicted changes in environmental variables, dominated by a future positive (warming) change in SST and UI, and a decrease in chlorophyll‐a (i.e., phytoplankton biomass). The model predicts negative changes in habitat suitability in coastal areas from north of Taltal (25°S) to south of Caldera (27°45′S) and in Coquimbo littoral zone (29°–30°12′S). The habitat suitability models and climate change predictions identified in this study may provide a scientific basis for the development of management measures for anchovy fisheries in the coastal areas of the South American coast and other parts of the world.  相似文献   

12.
Under future climate change, modification of temperature and salinity are expected to result in distribution shifts of marine organisms, including commercial fish and shellfish. Changes are anticipated everywhere, including in the seas of many important fishing nations. Species turnover will in turn result in both opportunities and threats to fishing industries. To determine the impacts for northwest European shelf fisheries, we project changes for 49 commercially important fish and shellfish species using an ensemble of five ecological niche models and three different downscaled climate change projections. The habitat suitability and latitudinal shifts projected from the recent past (1997–2016) to two futures (2030–2050; 2050–2070) were calculated for waters around the United Kingdom. Of the species examined, around half were projected to have consistently more suitable habitat in the future, including European seabass (Dicentrarchus labrax, Moronidae), sardine (Sardina pilchardus, Alosidae) and anchovy (Engraulis encrasicolus, Engraulidae). Conversely, it is suggested that UK waters will become less suitable for species including Atlantic cod (Gadus morhua, Gadidae) and saithe (Pollachius virens, Gadidae). Our comprehensive approach using a number of models and climate change scenarios shows that while there are differences in the magnitude of change between models, and while some models perform better for certain species compared with others, overall, the general trends in habitat suitability and abundance are robust across models and climate scenarios. This emphasises the value in using more than one modelling technique with different climate scenarios (i.e., an ensemble approach) to capture the uncertainty or agreement around climate change projections.  相似文献   

13.
环境因素影响物种的空间分布和动态, 全面了解环境与物种分布之间的关系对于其资源的管理和保护至关重要。绿海龟(Chelonia mydas)作为典型的长距离迁徙物种, 周期性地往返于索饵地和繁殖地之间, 迁徙距离可达数千千米。物种分布模型(species distribution model, SDM)是研究环境因子信息和物种分布关系的有效工具, 可以通过环境因子数据有效模拟物种潜在分布区域。本研究结合绿海龟物种出现记录点和环境变量, 应用物种分布模型预测不同时间段的绿海龟分布情况, 得出其分布区域的时空变化, 推断洄游路线。结果表明: 离岸距离、深度和海洋表层温度对绿海龟分布起重要作用; 太平洋西部、印度洋北部和大西洋西部为绿海龟主要适宜栖息范围; 大西洋-地中海以及印度洋-太平洋之间存在绿海龟洄游通道。同时, 基于气候变化模拟了绿海龟 2050 年和 2100 年的潜在分布区域, 分布范围在印度洋中部、太平洋中西部海域减少, 在大西洋中部海域增加, 在全球范围内呈现向高纬度海域扩散的趋势。  相似文献   

14.
15.
The spectre of increasing impacts on exploited fish stocks in consequence of warmer climate conditions has become a major concern over the last decades. It is now imperative to improve the way we project the effects of future climate warming on fisheries. While estimating future climate‐induced changes in fish distribution is an important contribution to sustainable resource management, the impacts on European small pelagic fish—representing over 50% of the landings in the Mediterranean and Black Sea between 2000 and 2013—are yet largely understudied. Here, we investigated potential changes in the spatial distribution of seven of the most harvested small pelagic fish species in Europe under several climate change scenarios over the 21st century. For each species, we considered eight Species Distribution Models (SDMs), five General Circulation Models (GCMs) and three emission scenarios (the IPCC Representative Concentration Pathways; RCPs). Under all scenarios, our results revealed that the environmental suitability for most of the seven species may strongly decrease in the Mediterranean and western North Sea while increasing in the Black and Baltic Seas. This potential northward range expansion of species is supported by a strong convergence among projections and a low variability between RCPs. Under the most pessimistic scenario (RCP8.5), climate‐related local extinctions were expected in the south‐eastern Mediterranean basin. Our results highlight that a multi‐SDM, multi‐GCM, multi‐RCP approach is needed to produce more robust ecological scenarios of changes in exploited fish stocks in order to better anticipate the economic and social consequences of global climate change.  相似文献   

16.
Albacore tuna are widespread in the North Pacific Ocean and the basis of an important commercial fishery. These fish live mainly within a fairly narrow thermal niche range defined by sea surface temperature (SST) isotherms between 14 and 19°C. Because the fish's thermal range coincides with strong latitudinal temperature gradients off the northwest coast of North America, there is a great deal of seasonal and interannual variability in the distribution of these fish, and a significant potential for a new habitat in this region with anthropogenic climate change. We use historical catch and effort data from the Canadian troll fleet to define the fish's thermal niche, and document observed shifts in distribution associated with interannual climate variability. We then use an ensemble of climate model simulations from the Coupled Model Intercomparison Project to estimate northward extension of the potential habitat under anthropogenic warming scenarios. A potential new habitat is about half a million square kilometres even under a moderate mitigation scenario. Estimates are smaller for some months of the year in which the fishery is conducted, but as well as opening up new regions, the length of season in which the fishery is active may be extended in the northern part of the range. However, much of the potential new habitat will be in oceanic waters with relatively low productivity. Our estimated area of potential habitat is based on the fish's thermal niche and assumes that other biologically important factors such as food will not be limiting.  相似文献   

17.
  1. Climate change is causing shifts in the distribution patterns of freshwater fish at various spatio-temporal scales. Tropical freshwater fish are vulnerable, especially in areas where a high impact of climate change is predicted; thus, there is an increasing need to predict these shifts to determine conservation and adaptation strategies.
  2. Ecological niche models offer a reliable way to predict the effects of climate change on species distribution. Potential shifts in the distribution of tropical fish were tested under two scenarios (4.5 – moderate and 8.5 – extreme) with three general circulation models for years 2050 and 2070 using maximum entropy software using as models two predatory species – the tropical gar Atractosteus tropicus and the giant cichlid Petenia splendida.
  3. The potential distribution of both species was associated with warm and humid–sub-humid conditions. Future projections showed a higher availability of suitable areas for both species resulting from the expansion of warmer conditions in the middle and upper basins of the Central American mountain range and centre of the Yucatan Peninsula.
  4. Ecological niche models of keystone or umbrella species such as A. tropicus and P. splendida could be useful to support conservation plans of protected areas. The potential distribution of both species covers areas of high suitability including six important biosphere reserves in Mexico, three protected areas in Guatemala and part of the Mesoamerican biological corridor.
  5. Despite the potential expansion of the present distribution range suggested by the models, it is important to consider the biological and ecological requirements of the species and the ecological implications of these potential shifts in distribution. Both scenarios could have several implications at genetic, population, and ecosystem levels.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号