首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 625 毫秒
1.
为了研究黑土区施加生物炭的施用模式,以东北黑土区3°坡耕地田间径流小区为研究对象,进行了为期3年的观测。2015年按照生物炭的施加量共设置C0(0 t/hm~2)、C25(25 t/hm~2)、C50(50 t/hm~2)、C75(75 t/hm~2)、C100(100 t/hm~2)5个处理,2016、2017分别连续施加等量的生物炭。分析了黑土区连续3年施加生物炭后土壤理化性质、水土保持效应、节水增产效应等指标的变化规律,并建立改进的TOPSIS模型对生物炭的施用模式进行综合评价。结果表明:土壤有机碳密度、p H值与施炭量均呈线性递增趋势,土壤容重与施炭量呈线性递减趋势,且使用年限越久,作用越明显;施用1年时田间持水量与施炭量呈线性递增趋势,C100处理田间持水量最大,为35.48%,连续施用2年、3年时田间持水量与施炭量呈先增后减的二次抛物线变化,均在C50处理达到最大,分别为36.20%、36.24%;3年的年径流量和年土壤侵蚀量与施炭量均呈先减后增的二次抛物线变化,连续施加2年50 t/hm~2的生物炭减流效果和抗土壤侵蚀效果最优;连续3年施加生物炭均提高了大豆产量和水分利用效率,各年份产量和水分利用效率提高最大的分别为C75(27.16%、25.3%)、C50(33.3%、27.6%)、C50(24.1%、19.8%);在不同施炭量和施用年限的条件下,改进的TOPSIS模型能客观、清晰地描述土地生产力变化过程,并总结出建议的生物炭施用模式,即连续施加2年50 t/hm~2的生物炭对土地生产能力的提升最优,其次是施加1年75 t/hm~2的生物炭。研究结果可为实际生产提供理论依据。~2  相似文献   

2.
黑土区坡耕地连年施加生物炭的最佳模式研究   总被引:1,自引:0,他引:1  
为探讨东北黑土区连续多年施加生物炭的应用效果及其综合影响,寻找最佳的施碳量以及施加年限,于2015年在位于黑龙江省北安市的红星农场开展了生物炭最佳施用模式的研究。按照生物炭的施加量设置Y0(0 t/hm~2)、Y25(25 t/hm~2)、Y50(50 t/hm~2)、Y75(75 t/hm~2)、Y100(100 t/hm~2) 5个处理,每个处理重复两次,连续施加4年(2015—2018年),对土壤理化性质、水土保持效应以及节水增产效应等指标进行观测,建立基于优化遗传算法的投影模型,对指标进行了综合评价。结果表明:随着生物炭施加量、施加年限的增加,土壤容重呈现降低趋势,土壤p H值、土壤碳氮比则呈现上升趋势,且生物炭的累积施加量越大,这种趋势就越明显。Y25、Y50处理下的田间持水率随着施加年限的增加呈现逐年升高趋势,Y75处理则呈现出先升高、后降低的趋势,Y100处理则呈现逐年下降趋势,其中2018年Y25处理下的田间持水率为37. 33%。径流系数与土壤侵蚀量均与施炭量呈现先降低、后升高的趋势,连续施加两年50 t/hm~2生物炭的径流减少效果与抗侵蚀效果最优。连续施加4年25 t/hm2生物炭的玉米产量在所有处理中最高,为10 350 kg/hm~2。水分利用效率(WUE)的最优处理为2015年的Y50,为32. 85 kg/(mm·hm~2)。通过综合评价模型得出,连续3年施加32. 63 t/hm~2生物炭为东北黑土区最佳生物炭施用模式。该研究结果可为生物炭对黑土区土壤改良提供理论依据。  相似文献   

3.
黑土区坡耕地施加生物炭对水土流失的影响   总被引:7,自引:0,他引:7  
为了探索生物炭对黑土区坡耕地的水土保持作用效果,于2015年在东北黑土区典型黑土带上的黑龙江省北安市红星农场3°坡耕地上的径流小区内,开展了不同生物炭施用量(0、25、50、75、100 t/hm~2)对土壤结构、持水性能、径流泥沙控制等影响的试验研究。结果表明:生物炭可有效改善黑土区土壤结构,随着生物炭添加量的增加,土壤容重随之减小,而土壤孔隙度则会明显提高;土壤饱和含水率、田间持水量和土壤储水能力均随生物炭施用量的增加而增加;适当施加生物炭对黑土区坡耕地降雨径流及水土流失具有较好的控制作用,75 t/hm~2处理具有最好的径流泥沙控制效果,其中径流控制效果好于泥沙控制;施加生物炭还可以不同程度地减少黑土区坡耕地土壤养分流失,并可以改善养分的空间分布,4种生物炭用量处理的养分含量不仅在数量上高于对照处理,而且在均匀程度上有较大的改善,减缓了坡度对土壤养分造成的坡上与坡下的差异。研究结果为东北黑土区秸秆资源的高效、绿色、循环利用提供了一条新的途径,可为黑土区坡耕地水土流失防治提供理论依据和技术支撑,对该区农业可持续发展具有重要意义。  相似文献   

4.
秸秆生物炭对黑土区坡耕地生产能力影响分析与评价   总被引:4,自引:0,他引:4  
采用径流小区试验,选取不施用生物炭(CK)、生物炭施用量25 t/hm~2(T1)、50 t/hm~2(T2)、75 t/hm~2(T3)和100 t/hm~2(T4)5个处理,分析生物炭施用量对土壤理化性质、持水能力、水土保持效应、节水增产效应等能够反映土地生产能力的指标的影响,建立基于Gumbel Copula函数的不同生物炭施用量下黑土区坡耕地生产能力评价模型,结果表明:随着生物炭施用量的增加,土壤容重降低,孔隙度增大,养分分布更为均匀,土壤有效P、速效K、pH值和有机质含量呈线性递增趋势,土壤铵态N含量呈指数增长;土壤饱和含水率、田间持水量、凋萎系数和有效水最大含量均与生物炭施用量正相关,且高施炭量处理对于土壤水分的影响程度明显高于低施炭量处理;随着生物炭施用量的增加,年径流深和土壤侵蚀量均呈线性递减,减流率和减沙率均呈对数函数递增,而大豆产量和水分利用效率则先增后减,呈抛物线型变化。基于Gumbel Copula函数计算的土地生产能力评价结果较为理想,计算的土地生产能力指数随生物炭施用量的增加呈S型曲线递增,土壤理化性质、持水能力和水土保持效应指数均呈线性递增,而节水增产效应指数则呈抛物线型先增后减。  相似文献   

5.
施加生物炭对黑土区坡耕地改土培肥效应的持续影响   总被引:8,自引:0,他引:8  
为探明施加生物炭对黑土坡耕地的持续影响,以东北黑土区1.5°、3°、5°的坡耕地田间径流小区为研究对象,对土壤结构及其养分进行为期4年的观测。于2016年试验开始前,按75 t/hm2一次性施加玉米秸秆生物炭,各坡度均设置不施加生物炭的对照组,共计6个小区,后续年份不再施加生物炭。结果表明,单次施加生物炭能够提高土壤气相、液相比例,提高通气性和持水能力,改善土壤三相比例,较对照组土壤孔隙度提高2.83%~5.56%,土壤容重降低1.89%~3.62%。施炭后土壤中有机质、铵态氮、速效钾含量显著提高,分别提高9.54%~18.21%、21.35%~28.02%、11.99%~22.71%。各项指标均随着时间的推移有所降低。采用随机森林回归模型评估得出综合肥力等级指数,并拟合回归方程预测2020—2022年等级指数,比较肥力变化情况得出单次施用生物炭对培肥土壤作用的有效年限为6~7年。  相似文献   

6.
根据多年水土保持观测和田间观测的结果,分析计算彰武县黑土区坡耕地采取水平梯田、等高垄作和地埂植被3种水土保持措施后所获得的保水、保土和经济效益.结果表明,3种措施均具有较好的水土保持效果,其中以水平梯田效果最好,等高垄作和地埂植被带次之.  相似文献   

7.
为探究一次性施加生物炭后对黑土区坡耕地生产力的可持续效应,以东北黑土区3°坡耕地径流小区为研究对象,设置CK(不施用生物炭)和BC(2016年施用75 t/hm~2生物炭,2017、2018年不再施用生物炭)两个处理,于2016—2018年开展了试验研究。结果表明:一次性施入生物炭3年内,土壤容重显著降低(P0.05),第1年降低最明显,为3.87%,孔隙度和总有机碳、铵态N、有效P、速效K含量显著提高(P0.05),p H值则是施炭后前两年显著提高(P_(2016)=0.034、P_(2017)=0.038),分别提高了0.9、0.6,第3年与未施炭处理无显著差异(P_(2018)=0.067);施用生物炭显著提升了土壤的持水能力和保水保土性能,土壤饱和含水率、田间持水率、凋萎系数均显著提高(P0.05),最大增长率分别为5.58%、4.78%、7.29%,年径流深和土壤侵蚀量显著降低(P0.05),年径流深最大减少量为4.92 mm,土壤侵蚀量最大减小率为5.71%;大豆产量和水分利用效率显著提高(P0.05),最大增长率分别为29.01%、16.92%。但生物炭对土地生产力的持续效应逐年减弱,随着生物炭施用年限的延长,BC处理土壤容重线性递增,p H值和总有机碳含量呈幂函数递减,孔隙度和铵态N、有效P、速效K含量线性递减,饱和含水率、田间持水率、凋萎系数线性递减,年径流深和土壤侵蚀量线性递增,大豆产量和水分利用效率分别呈幂函数递减和线性递减。采用改进的TOPSIS(Technique for order preference by similarity to an ideal solution)模型和GM(1,1)模型测算并预测土地生产力指数,结果显示,BC处理的土地生产力指数均高于CK处理,但其值逐年下降,预计到2021年与CK处理十分接近,表明一次性施用75 t/hm~2生物炭对土地生产力的影响可持续5~6年。研究结果可为东北黑土区生物炭应用提供理论依据。  相似文献   

8.
生物炭对黑土区坡耕地水土保持及大豆增产效应研究   总被引:1,自引:0,他引:1  
针对东北黑土区坡耕地水土流失严重,农业用水量不足的问题,研究生物炭对该地区的水土保持及作物增产效应,并寻求最优生物炭施用量。2015年,以黑龙江农垦北安分局红星农场3°坡耕地为研究对象,研究不同生物炭施用量对大豆生育期土壤水分动态、表径流、土壤侵蚀、产量和作物水分利用效率的影响。结果表明,生物炭对坡耕地水土保持及大豆节水增产有较好的效果,其中对于水土保持方面,生物炭施用量越高,水土保持效果越好;而对于大豆产量与水分利用效率方面,则生物炭施用量为75 t/hm~2的处理效果最为明显。  相似文献   

9.
为探明在寒地黑土区不同生物炭添加量对玉米生物性状指标及耗水规律的影响,于2014年在北安市红星农场通过盆栽试验设置6个处理(CK-0g/kg、C1-20g/kg、C2-40g/kg、C3-60g/kg、C4-80g/kg、C5-100g/kg)进行研究。结果表明:适量施加生物炭(处理C1、C2)可以有效促进玉米生长发育,提高玉米的产量,也有效增加了玉米的日耗水量、全生育期耗水量及水分利用效率,处理C1、C2分别比对照CK增产20.95%、26.07%,水分利用效率增加14.62%和18.01%。而过量施加生物炭(处理C4、C5)则会抑制玉米的生长发育,导致减产,同时也降低了玉米的日耗水量、全生育期耗水量及水分利用效率。生物炭量与玉米单株产量和水分利用效率之间成二次抛物线关系,相关系数分别为0.812 2和0.772 1,当生物炭施加量为36.13和39.25g/kg时,产量和水分利用效率达到最大值150.95g/株和3.92g/kg。  相似文献   

10.
黑土区坡耕地几种耕作措施水土保持效益研究   总被引:2,自引:0,他引:2  
我国东北黑土区作为全国水土流失重点区域,其坡耕地的水土流失问题早已备受关注。【目的】采取保护性耕作措施可以大大降低坡耕地的水土流失强度,起到保水保肥的作用。【方法】在10°坡径流小区上,对比分析了黑土区不同耕作措施对坡耕地坡面产流、土壤侵蚀以及土壤养分的影响。【结果】竹节垄Ⅱ与横坡耕作相比,产流起始时间延长38 min,单次降雨径流量减少57.1%,产沙量减少51.9%;0~20 cm土层土壤有机质、碱解氮、速效磷、速效钾平均质量分数分别提高5.89%、11.48%、16.54%、21.75%。【结论】在相同降雨条件下,横坡耕作、竹节垄Ⅰ、竹节垄Ⅱ较顺坡耕作均有不同程度的减流减沙作用,竹节垄Ⅱ效果最为明显。  相似文献   

11.
黑土区坡耕地施加生物炭对土壤结构与大豆产量的影响   总被引:2,自引:0,他引:2  
为探明黑土区施加生物炭对土壤结构、土壤肥力和作物产量及其可持续性的影响,以东北黑土区3°坡耕地田间径流小区为研究对象,进行了为期4年的观测。2015年按照生物炭的施加量共设置C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)、C100(100 t/hm2) 5个处理,2016—2018年分别连续施加等量的生物炭。结果表明:连续4年随施炭量的增加土壤容重呈逐渐降低趋势、孔隙度呈逐渐升高趋势,且施用年限越长,作用越明显;连续4年广义土壤结构系数(GSSI)随施炭量的增加呈先增大后减小的变化趋势,土壤三相结构距离指数(STPSD)呈先减小后增大的变化趋势,均在第2年C50处理取得最大(小)值(98. 31、4. 87),同时土壤三相比最接近理想状态;连续4年大于0. 25 mm的土壤团聚体含量(R0. 25)、平均质量直径(MWD)、几何平均直径(GMD)随施炭量的增加均呈先增大后减小的变化趋势,均在第2年C50处理取得最大值;连续4年土壤速效钾、有机质含量随施炭量的增加逐渐升高,土壤碱解氮和有效磷含量先增加后减小,各年份土壤碱解氮和有效磷含量提高最多的分别为C50(46. 1%、76. 6%)、C50(46. 4%、85. 4%)、C25 (33%、100. 7%)、C25 (23. 9%、103. 2%);连续4年施加生物炭均可提高大豆产量、单株荚数、单株粒数和百粒质量,在第2年C50处理增产最大,增产率为33. 3%,同时产量可持续性最强,产量可持续性特征指数(SYI)为0. 871。  相似文献   

12.
连年施加生物炭对黑土区土壤改良与玉米产量的影响   总被引:1,自引:0,他引:1  
为研究连年施加生物炭对黑土区坡耕地的土壤结构、持水性能、玉米产量及可持续性的影响,从2015年开始,在黑土区3°坡耕地径流小区内,将玉米作为试验作物连续进行4年生物炭效应试验。共设置C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)和C100(100 t/hm2) 5种生物炭的施用量处理。结果表明:4年中土壤容重随生物炭的增加有减小的倾向,孔隙度有逐渐增加的倾向;适量生物炭可有效降低土壤固相比例,提高气相和液相比例,除2015年外,连续3年广义土壤结构指数(GSSI)随施炭量的增加先增大后减小,土壤三相结构距离指数(STPSD)随施炭量的增加先减小后增大,均在第3年C50处理达到最优(99.96、0.63),同时土壤三相比偏离值R最小(1.03),三相比最接近理想状态;连续4年大于0.25 mm团聚体含量R0.25、平均质量直径(MWD)和几何平均直径(GMD)随着生物炭的增加有先增加后减小的倾向;连...  相似文献   

13.
生物炭对黑土区土壤水分扩散与溶质弥散持续效应研究   总被引:2,自引:0,他引:2  
为探究施用生物炭对黑土区坡耕地土壤水分扩散和溶质弥散的持续效应,于2016—2019年在1.5°、3°、5°的径流小区开展了生物炭持续效应试验,分析了单次施加生物炭对土壤容重、孔隙度、有机质含量、Boltzmann变换参数ξ、非饱和土壤水分扩散率D(θ)、非饱和土壤水动力弥散系数Dsh(θ)的持续作用。结果表明:土壤中单次添加生物炭后的4年内均可显著降低土壤容重、提高土壤孔隙度、增加土壤中有机质含量,且各指标变化率均随坡度增大、施炭年限延长而减小;坡度、年份、是否施用生物炭3个因素中,对土壤容重、孔隙度、有机质含量影响程度最大的均为是否施用生物炭;施用生物炭增大了ξ,且ξ随坡度增加、施炭后年限延长逐年减小。2016—2019年D(θ)与Dsh(θ)均随土壤含水率的增加而迅速增加。当土壤含水率小于等于042cm3/cm3时,生物炭抑制土壤水分扩散;当土壤含水率大于0.42cm3/cm3时,生物炭促进土壤水分扩散。当土壤含水率小于等于0.36cm3/cm3时,生物炭抑制土壤中NaCl溶液的弥散;当土壤含水率大于0.36cm3/cm3时,生物炭可以促进土壤中NaCl溶液的弥散。试验区θ处于0.20~0.35cm3/cm3,故施用生物炭对水分扩散、NaCl溶液弥散均具有抑制效果,且生物炭对水分扩散和溶液弥散抑制效果均随坡度增加、施炭后年限延长而减弱。  相似文献   

14.
为探寻黑土区坡耕地不同水土保持耕作措施对土壤理化性状的影响机理,开展了田间小区试验。设置横坡耕作(TP)、垄向区田(RF)、深松(SF)、横坡耕作+垄向区田(TP-R)、横坡耕作+深松(TP-S)、垄向区田+深松(RF-S)3种水土保持耕作措施及3种组合耕作措施,并以常规顺坡耕作(CK)为对照,分析了土壤孔隙度、土壤机械组成、水稳性土壤团聚体稳定性、土壤养分含量等指标,并采用TOPSIS模型对不同水土保持耕作措施进行了综合评价,筛选了土壤稳定性强且蓄水保肥效果良好的水土保持耕作措施。结果表明:在玉米的全生育期内,深松、垄向区田、横坡耕作均能提高土壤体积含水率。TP-S处理体积含水率最大,0~40cm土层平均体积含水率较CK处理增加29.47%;RF-S处理平均孔隙度最大,TP-S处理次之,平均孔隙度较CK处理分别增大10.68%、9.25%;TP-S处理能够显著提高土壤稳定性,其中平均质量直径(MWD)、几何平均直径(GMD)和大团聚体含量(R0.25)较CK处理分别增加12.30%、19.57%、13.97%;TP-S处理能够改善土壤机械组成,TP-S处理粗砂粒、粉粒、黏粒含量较CK处理增加15.40%、26.89%、1.90%,细砂粒含量较CK处理降低31.56%;TP-S处理IN(无机态氮)、AP(有效磷)、AK(速效钾)含量最高,较CK处理IN、AP、AK含量分别增加42.81%~55.32%、39.69%~40.68%、20.41%~25.45%。由TOPSIS模型综合评价结果可知,TP-S处理贴合度最高,土壤结构更稳定,且蓄水保肥效果更好,为适宜该地区的水土保持耕作措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号