共查询到13条相似文献,搜索用时 65 毫秒
1.
基于改进YOLO v5的自然环境下樱桃果实识别方法 总被引:1,自引:0,他引:1
为提高对樱桃果实识别的准确率,提升果园自动采摘机器人的工作效率,使用采集到的樱桃原始图像以及其搭配不同数据增强方式得到的数据图像共1816幅建立数据集,按照8∶2将数据集划分成训练集与测试集。基于深度学习网络,利用YOLO v5模型分别对不同数据增强方式以及组合增强方式扩增后的樱桃数据集进行识别检测,结果表明离线增强与在线增强均对模型精度提升有一定的正向促进作用,其中采用离线数据增强策略能够显著且稳定的增加检测精度,在线数据增强策略能够小幅度提高检测精度,同时使用离线增强以及在线增强能够最大幅度的提升平均检测精度。针对樱桃果实之间相互遮挡以及图像中的小目标樱桃检测难等导致自然环境下樱桃果实检测精度低的问题,本文将YOLO v5的骨干网络进行改动,增添具有注意力机制的Transformer模块,Neck结构由原来的PAFPN改成可以进行双向加权融合的BiFPN,Head结构增加了浅层下采样的P2模块,提出一种基于改进YOLO v5的自然环境下樱桃果实的识别网络。实验结果表明:相比于其他已有模型以及单一结构改进后的YOLO v5模型,本文提出的综合改进模型具有更高的检测精度,使平均精度均值2提高了29个百分点。结果表明该方法有效的增强了识别过程中特征融合的效率和精度,显著地提高了樱桃果实的检测效果。同时,本文将训练好的网络模型部署到安卓(Android)平台上。该系统使用简洁,用户设备环境要求不高,具有一定的实用性,可在大田环境下对樱桃果实进行准确检测,能够很好地满足实时检测樱桃果实的需求,也为自动采摘等实际应用奠定了基础。 相似文献
2.
为准确高效地实现无接触式奶山羊个体识别,以圈养环境下奶山羊面部图像为研究对象,提出一种基于改进YOLO v5s的奶山羊个体识别方法。首先,从网络上随机采集350幅羊脸图像构成羊脸面部检测数据集,使用迁移学习思想预训练YOLO v5s模型,使其能够检测羊脸位置。其次,构建包含31头奶山羊3 844幅不同生长期的面部图像数据集,基于预训练的YOLO v5s,在特征提取层中引入SimAM注意力模块,增强模型的学习能力,并在特征融合层引入CARAFE上采样模块以更好地恢复面部细节,提升模型对奶山羊个体面部的识别精度。实验结果表明,改进YOLO v5s模型平均精度均值为97.41%,比Faster R-CNN、SSD、YOLO v4模型分别提高6.33、8.22、15.95个百分点,比YOLO v5s模型高2.21个百分点,改进模型检测速度为56.00 f/s,模型内存占用量为14.45 MB。本文方法能够准确识别具有相似面部特征的奶山羊个体,为智慧养殖中的家畜个体识别提供了一种方法支持。 相似文献
3.
为解决限位栏场景下经产母猪查情难度大、过于依赖公猪试情和人工查情的问题,提出了一种基于改进YOLO v5s算法的经产母猪发情快速检测方法。首先,利用马赛克增强方式(Mosaic data augmentation, MDA)扩充数据集,以丰富数据表征;然后,利用稀疏训练(Sparse training, ST)、迭代通道剪枝(Network pruning, NP)、模型微调(Fine tune, FT)等方式重构模型,实现模型压缩与加速;最后,使用DIOU_NMS代替GIOU_NMS,以提高目标框的识别精度,确保模型轻量化后,仍保持较高的检测精度。试验表明,优化后的算法识别平均精确率可达97.8%,单幅图像平均检测时间仅1.7 ms,单帧视频平均检测时间仅6 ms。分析空怀期母猪发情期与非发情期的交互行为特征,发现母猪发情期较非发情期交互时长与频率均显著提高(P<0.001)。以20 s作为发情检测阈值时,发情检测特异性为89.1%、准确率为89.6%、灵敏度为90.0%,该方法能够实现发情母猪快速检测。 相似文献
4.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y... 相似文献
5.
6.
肉牛目标检测和数量统计是精细化、自动化、智能化肉牛养殖要解决的关键问题,受肉牛个体颜色及纹理相近和遮挡等因素的影响,现有肉牛目标检测方法实用性较差。本研究基于YOLO v5s网络与通道信息注意力模块(ECABasicBlock),提出了一种融合通道信息的改进YOLO v5s网络(ECA-YOLO v5s),在YOLO v5s模型的骨干特征提取网络部分添加了3层通道信息注意力模块。ECA-YOLO v5s网络实现了重度遮挡环境下多目标肉牛的准确识别。对养殖场监控视频分帧得到的肉牛图像采用了一种基于结构相似性的冗余图像剔除方法以保证数据集质量。数据集制作完成后经过300次迭代训练,得到模型的精确率为89.8%,召回率为76.9%,全类平均精度均值为85.3%,检测速度为76.9 f/s,模型内存占用量为24 MB。与YOLO v5s模型相比,ECA-YOLO v5s的精确率、召回率和平均精度均值分别比YOLO v5s高1.0、0.8、2.2个百分点。为了验证不同注意力机制应用于YOLO v5s的性能差异,本研究对比了CBAM(Convolutional block attention mo... 相似文献
7.
羊只站立、行走、采食等日常行为与其健康状况密切相关,高效、准确的羊只行为识别有助于疾病检测,对实现羊只健康预警具有重要意义。针对目前羊只多行为识别检测大多基于传感器等接触式设备,羊只活动受限,行为具有局限性,且群体养殖环境下,羊只行为多样、场景复杂、存在遮挡等造成的行为识别精度低等问题,提出了一种基于改进YOLO v8s的羊只行为识别方法。首先,引入SPPCSPC空间金字塔结构增强了模型的特征提取能力,提升了模型的检测精度。其次,新增P2小目标检测层,增强了模型对小目标的识别和定位能力。最后,引入多尺度轻量化模块PConv和EMSConv,在保证模型识别效果的同时,降低了模型参数量和计算量,实现了模型轻量化。实验结果表明,改进YOLO v8s模型对羊只站立、行走、采食、饮水、趴卧行为平均识别精度分别为84.62%、92.58%、87.54%、98.13%和87.18%,整体平均识别精度为90.01%。与Faster R-CNN、YOLO v5s、YOLO v7、YOLO v8s模型相比,平均识别精度分别提高12.03、3.95、1.46、2.19个百分点。研究成果可为羊只健康管理和疾病预警提供技术支撑。 相似文献
8.
山羊的脸部检测对羊场的智能化管理有着重要的意义。针对实际饲养环境中,羊群存在多角度、分布随机、灵活多变、羊脸检测难度大的问题,以YOLO v5s为基础目标检测网络,提出了一种结合坐标信息的山羊脸部检测模型。首先,通过移动设备获取舍内、舍外、单头以及多头山羊的图像并构建数据集。其次,在YOLO v5s的主干网络融入坐标注意力机制,以充分利用目标的位置信息,提高遮挡区域、小目标、多视角样本的检测精度。试验结果表明,改进YOLO v5s模型的检测精确率为95.6%,召回率为83.0%,mAP0.5为90.2%,帧速率为69 f/s,模型内存占用量为13.2 MB;与YOLO v5s模型相比,检测精度提高1.3个百分点,模型所占内存空间减少1.2 MB;且模型的整体性能远优于Faster R-CNN、YOLO v4、YOLO v5s模型。此外,本文构建了不同光照和相机抖动的数据集,来进一步验证本文方法的可行性。改进后的模型可快速有效地对复杂场景下山羊的脸部进行精准检测及定位,为动物精细化养殖时目标检测识别提供了检测思路和技术支持。 相似文献
9.
为在保证识别性能前提下,对叶片病害检测模型进行有效轻量化,基于主干替换、模型剪枝以及知识蒸馏技术构建了一种模型轻量化方法,对以YOLO v5s为基础的叶片黄化曲叶病检测模型开展轻量化试验。首先,通过常见的性能优异的轻量级主干特征提取神经网络结构(Lightweight convolutional neural networks,LCNN)替换YOLO v5s主干对模型主体进行缩减;然后利用模型稀疏化训练和批归一化层(Batch normalization layer)的缩放因子分布状况,筛选并删减不重要的通道;最后,通过微调重新训练以及知识蒸馏,将模型精度调整到接近剪枝前的水平。试验结果表明,经轻量化处理的模型精确率、召回率和平均精度分别为91.3%、87.4%和92.7%,模型内存占用量为1.4 MB,台式机检测帧率81.0f/s,移动端检测帧率1.2f/s,相比原始YOLO v5s叶片病害检测模型,精确率、召回率和平均精度下降3.7、4.6、2.7个百分点,内存占用量仅为处理前的10%,台式机和移动端检测的帧率分别提升近27%和33%。本文所提出的方法在保持模型性能的前提下对模型有效轻量化,为移动端叶片病害检测部署提供了理论基础。 相似文献
10.
为方便调查宁夏全区荒漠草原植物种类及其分布,需对植物识别方法进行研究。针对YOLO v5s模型参数量大,对复杂背景下的植物不易识别等问题,提出一种复杂背景下植物目标识别轻量化模型YOLO v5s-CBD。改进模型YOLO v5s-CBD在特征提取网络中引入带有Transformer模块的主干网络BoTNet(Bottleneck transformer network),使卷积和自注意力相结合,提高模型的感受野;同时在特征提取网络融入坐标注意力(Coordinate attention, CA),有效捕获通道和位置的关系,提高模型的特征提取能力;引入SIoU函数计算回归损失,解决预测框与真实框不匹配问题;使用深度可分离卷积(Depthwise separable convolution, DSC)减小模型内存占用量。实验结果表明,YOLO v5s-CBD模型在单块Nvidia GTX A5000 GPU单幅图像推理时间仅为8 ms,模型内存占用量为8.9 MB,精确率P为95.1%,召回率R为92.9%,综合评价指标F1值为94.0%,平均精度均值(mAP)为95.7%,在VOC数据集... 相似文献
11.
为实现作物病害早期识别,本文提出一种基于红外热成像和改进YOLO v5的作物病害早期检测模型,以CSPD-arknet为主干特征提取网络,YOLO v5 stride-2卷积替换为SPD-Conv模块,分别为主干网络中的5个stride-2卷积层和Neck中的2个stride-2卷积层,可以提高其准确性,同时保持相同级别的参数大小,并向下阶段输出3个不同尺度的特征层;为增强建模通道之间的相互依赖性,自适应地重新校准通道特征响应,引入SE机制提升特征提取能力;为减少模型计算量,提高模型速度,引入SPPF。经测试,改进后YOLO v5网络检测性能最佳,mAP为95.7%,相比YOLO v3、YOLO v4、SSD和YOLO v5网络分别提高4.7、8.8、19.0、3.5个百分点。改进后模型相比改进前对不同温度梯度下的作物病害检测也有提高,5个梯度mAP分别为91.0%、91.6%、90.4%、92.6%和94.0%,分别高于改进前3.6、1.5、7.2、0.6、0.9个百分点。改进YOLO v5网络内存占用量为13.755MB,低于改进前基础模型3.687MB。结果表明,改进YOLO v5可以准确快速地实现病害早期检测。 相似文献
12.
基于Jetson Nano+YOLO v5的哺乳期仔猪目标检测 总被引:1,自引:0,他引:1
针对仔猪个体小、易被遮挡且仔猪目标检测方法不易在嵌入式端部署等问题,提出一种适用于Jetson Nano端部署的哺乳期仔猪目标检测方法,在准确检测哺乳期仔猪目标的同时,使模型实地部署更加灵活。使用哺乳期仔猪图像建立数据集,数据量为14000幅,按8∶1∶1划分训练集、测试集和验证集。利用深度学习网络提取哺乳期仔猪特征,构建仔猪目标检测模型。融合推理网络中的Conv、BN、Activate Function层,合并相同维度张量,删除Concat层,实现网络结构量化,减少模型运行时的算力需求。将优化后模型迁移至Jetson Nano,在嵌入式平台进行测试。实验结果表明,在嵌入式端,量化后YOLO v5中4种模型的单帧图像平均运行时间分别为65、170、315、560ms,检测准确率分别为96.8%、97.0%、97.0%和96.6%,能够在Jetson Nano设备上对哺乳期仔猪目标实现精准检测,为仔猪目标检测的边缘计算模式奠定基础。 相似文献
13.
花椒树产果量大,枝干纵横交错,树叶茂密,给花椒的自动化采摘带来了困难。因此,本文设计一种基于改进YOLO v5的复杂环境下花椒簇的快速识别与定位方法。通过在主干提取网络CSPDarknet的CSPLayer层和Neck的上采样之后增加高效通道注意力ECA(Efficient channel attention)来简化CSPLayer层的计算量,提升了特征提取能力。同时在下采样层增加协同注意力机制CA(Coordinate attention),减少下采样过程中信息的损失,强化特征空间信息,配合热力图(Grad-CAM)和点云深度图,来完成花椒簇的空间定位。测试结果表明,与原YOLO v5相比较,改进的网络将残差计算减少至1次,保证了模型轻量化,提升了效率。同帧数区间下,改进后的网络精度为96.27%,对比3个同类特征提取网络YOLO v5、YOLO v5-tiny、Faster R-CNN,改进后网络精确度P分别提升5.37、3.35、15.37个百分点,连株花椒簇的分离识别能力也有较大提升。实验结果表明,自然环境下系统平均识别率为81.60%、漏检率为18.39%,能够满足花椒簇识别... 相似文献