首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
天目山毛竹种群生物量结构   总被引:2,自引:0,他引:2  
天目山毛竹个体各器官的生物量分配依次为:竿62.9%、篼13.6%、枝8.8%、鞭6.9%、根4.4%和叶3.6%。胸径与基径、竹竿和总体生物量之间都有着很高的相关性,而基径则与竹篼有着极高的相关性。总体看来,胸径和基径与地上部分各器官有着较好的正相关性,而与地下部分的竹鞭和根没有什么相关性。用胸径与基径对各器官生物量的回归拟合的显著度都在0.9以上,说明通过对毛竹胸径或基径的测量就可较准确的推知各器官生物量。毛竹各器官含水量依次为:根鞭篼竿枝叶;即越靠近叶,则水分含量越低。竹叶N、P含量居首位,而竹竿的N、P含量最低,但其有机碳的含量最高。毛竹种群的有机碳储量为34.483 t.hm-2,其中地上部分碳储量为26.478 t.hm-2,地下部分碳储量为8.005 t.hm-2。毛竹的碳储量相当于每公顷固定了大气CO2126.438 t。而地上与地下部分N的总贮量约为0.306 t.hm-2,P的总贮量约为0.017 3 t.hm-2。  相似文献   

2.
研究喀斯特地区4种植被恢复模式幼林生态系统碳含量、碳储量及其空间分布特征。结果表明:不同树种同一器官中的碳含量存在差异;同一树种不同器官中的碳含量也不同,除楸树外,3种树地上部分各器官的碳含量普遍高于地下部分(根);不同树种各器官碳含量的变异系数为0.88%~7.02%;林下灌木层、草本层、死地被物层的平均碳含量分别为309.70~461.02,335.44~569.61和307.01~400.88g·kg-1,植被恢复初期,柏木林地、楸树林地土壤有机碳含量分别比对照地提高了56.37%和33.49%,而花椒林地下降了2.09%;不同林地土壤有机碳含量均随土壤深度的增加而逐渐下降;4种林分乔木层的碳储量表现为楸树林>车桑子林>花椒林>柏木林;楸树、花椒和柏木林地0~20cm土层碳储量分别为113.061,82.424和126.841t·hm-2,与对照地相比,楸树和柏木林地土壤碳储量分别提高了31.14%和47.13%,而花椒林地却下降了4.39%,车桑子林地0~10cm土层碳储量为50.517t·hm-2;楸树林、花椒林、柏木林和车桑子林生态系统碳储量分别为117.207,84.117,127.919和53...  相似文献   

3.
科学准确的碳计量是评价森林减缓大气CO2浓度增加、应对气候变化能力的关键,而竹林特殊的生物学与生态学特性使得竹林碳汇计量较其他森林生态系统更为复杂。采用生物量法研究蜀南苦竹林生态系统的碳密度、碳储量及其空间分配格局,并对苦竹林生态系统碳汇能力进行估算。结果表明:1)立竹平均含碳率为450.792g·kg-1,不同龄级苦竹各器官含碳率差异不显著。土壤有机碳含量为19.410g·kg-1,不同土层差异极显著;2)苦竹林生态系统总碳储量为156.823t·hm-2,其中土壤碳库是最大的碳库,为132.568t·hm-2,占总碳储量的84.53%,枯落物碳库为最小的碳库(4.823t·hm-2),只占总碳储量的3.08%;3)苦竹立竹碳储量为19.432t·hm-2,占总碳储量12.39%,其中近半(49.13%)贮藏于竹秆中。竹秆、竹枝、竹叶3部分地上碳储量总计达13.346t·hm-2,占立竹总碳储量的68.68%,地上部分碳储量为地下部分碳储量的2.19倍;4)苦竹林生态系统植被层年固碳量为8.262t·hm-2,相当于每年固定30.294t·hm-2CO2,固碳能力强于毛竹。  相似文献   

4.
兴安落叶松林3个类型生物及土壤碳储量比较研究   总被引:2,自引:3,他引:2  
运用森林生态学典型样地法设立标准地并获取野外数据,采用重铬酸钾—硫酸氧化湿烧法测定了生物、土壤中的碳。通过对兴安落叶松林3个类型生物及土壤碳储量的比较研究表明:兴安落叶松不同器官中碳素密度变化范围为0.4946~0.5352g/g;杜香落叶松林、草类落叶松林、杜鹃落叶松林生态系统总的碳储量分别为173.21t/hm2、207.81t/hm2、118.95t/hm2,其中生物碳储量分别为53.41t/hm2、86.23t/hm2、33.76t/hm2,土壤碳储量分别为119.80t/hm2、121.58t/hm2、85.19t/hm2;兴安落叶松林有机碳年净固定量为3.51t/(hm2.a)。  相似文献   

5.
大兴安岭1980-1999年乔木燃烧释放碳量研究   总被引:7,自引:1,他引:6  
在黑龙江省大兴安岭森林火灾时空格局研究的基础上,通过野外调查采样和室内试验分析相结合的方法研究主要乔木树种1980-1999年间的碳释放量.结果表明:1)大兴安岭林区20 a间各林型过火面积分别为:兴安落叶松林437 947.34 hm2,樟子松林20 938.70 hm2,针阔混交林142 526.95 hm2,白桦林168 531.57 hm2,蒙古栎林1 374.97 hm2.2)通过MultiC/N3000测定得出各树种地上部分含碳率平均数值,兴安落叶松为42.34%,樟子松为41.20%,白桦为42.01%,山杨为39.21%,蒙古栎为39.79%,2种针叶树平均含碳率为41.77%,3种阔叶树种林分平均含碳率为40.30%.主要乔木树种地上部分平均含碳率值均小于目前国际通用的0.45. 3)大兴安岭林区20 a间各类型森林火灾乔木损失生物量为7.31×106~11.57×106 t.其中,落叶松林乔木损失量占总损失生物量的61.80%~62.38%;其次为白桦林,占总损失生物量的26.53%~26.81%.4)大兴安岭林区20 a森林火灾乔木释放碳量为3.04×106~4.78×106 t,平均每年释放碳量为1.52×106~2.39×106 t,占全国森林火灾释放碳量的7.51%~11.81%.各乔木树种中落叶松火灾释放碳的比例最高,约占总释放量的2/3左右;其次为白桦,占总释放量的1/4左右;其他树种释放较少,共占1/12左右.研究结果将为正确认识大兴安岭森林火灾碳平衡及评价森林火灾对全球生态环境影响提供科学依据.  相似文献   

6.
利用标准样方法研究毛竹林碳含量和碳储量以及空间分布.研究表明,毛竹地上部分各器官的含碳率波动范围为428.373 0 ~ 480.079 0 g/kg,平均为459.546 1 g/kg,其中竹叶的含碳率最低,竹秆的含碳率最高.毛竹地上部分碳储量为28.98 t/hm2,地下部分碳储量为14.27 t/hm2.从各组分分布来看,竹秆占总碳储量的51.84%,竹枝占10.27%,竹叶占4.90%,地下部分占总碳储量的33.00%.毛竹林生态系统总碳储量为173.93 t/hm2,其中土壤层碳储量为91.95 t/hm2,占总碳储量的67.44%.毛竹林地上部分年固定碳量为8.28 t/(hm2 ·a),相当于同化二氧化碳的量30.36t/(hm2·a).  相似文献   

7.
九龙江口秋茄红树林储碳固碳功能研究   总被引:1,自引:0,他引:1  
以福建九龙江口24年生、48年生的秋茄红树林为研究对象,通过测定秋茄林木层各器官、凋落物层、土壤层含碳率和土壤呼吸,结合各组分生物量和年净生产量,计算秋茄红树林的碳储量和年净固碳量。结果表明:24年生、48年生秋茄林碳储量分别为183.31、244.45 t·hm-2,其中林木层碳储量分别为162.45、222.95 t·hm-2,凋落物层碳储量分别为15.05、16.99 t·hm-2,土壤层和林木层碳储量在生态系统碳储量中的比例均随林龄增大而升高。24年生、48年生秋茄林均表现出了碳汇功能,其中24年生秋茄林年净固碳量较大,为18.51 t·hm-2·a-1;而48年生秋茄林的碳汇功能较低,为7.01 t·hm-2·a-1。  相似文献   

8.
以江西大岗山5种林龄(6、15、25、32和50年生)杉木人工林为对象,对林地土壤有机碳和全氮含量及储量的变化特征进行了研究,并讨论了碳氮储量之间的关系。结果表明:在0~20 cm土层,随着林龄的增加,土壤有机碳和全氮含量变化一致,均呈先下降后上升的趋势;在20~40 cm土层,土壤有机碳含量仍呈先下降后上升的趋势;土壤全氮含量则先上升后下降。随着林龄的增加,有机碳和全氮储量均呈现先下降后上升的趋势,在幼龄林阶段碳氮储量最高。各林龄0~40 cm土层有机碳储量分别为:幼龄林85.38 t·hm-2,过熟林79.77 t·hm-2,成熟林71.62 t·hm-2,中龄林62.30 t·hm-2,近熟林60.97 t·hm-2。各林龄氮储量分别为:幼龄林5.83 t·hm-2,过熟林5.50 t·hm-2,成熟林5.47 t·hm-2,近熟林5.10 t·hm-2,中龄林4.62 t·hm-2。碳氮储量之间呈极显著正相关关系。本研究可为不同林龄杉木人工林的合理管理以及固碳能力的提升提供理论依据。  相似文献   

9.
依据全国碳汇专项调查的理论和方法,对福建省霞浦县不同林龄阔叶混交林生态系统各组分的碳、氮含量及碳、氮储量格局进行调查分析,结果表明:灌木层各器官碳含量从大到小依次为枝干根叶,氮含量为叶干根枝;草本层碳、氮含量从大到小均为地上部分地下部分;土壤碳、氮含量均随土层深度增加而降低,随林龄的增大而上升;系统各组分C/N从大到小依次为枝根干枯落物叶土壤;12年生、19年生和28年生阔叶混交林生态系统的碳储量分别为164.066、231.751和290.985t!hm-2,氮储量分别为15.011、23.503和31.236t!hm-2,其中,土壤层碳储量所占比重分别为60.27%、46.50%和39.50%,氮储量所占比重分别为45.94%、33.09%和28.67%;乔木层、灌木层、枯落物层和土壤层碳、氮储量均随林龄的增大而增加。  相似文献   

10.
不同年龄巨桉人工林枯落物和细根碳储量研究   总被引:9,自引:2,他引:7       下载免费PDF全文
以巨桉工业人工林为对象,采用"空间换时间法",研究一个轮伐期巨桉林枯落物和细根碳储量,结果表明,1~6年生巨桉林枯落物碳储量为0.641~6.648 t·hm-2,不同年龄巨桉林枯落物碳储量1年为2.263±1.022 t·hm-2,2年为3.414±1.873 t·hm-2,3年为2.270±1.262 t·hm-2,4年为2.305±1.664 t·hm-2,5年为3.011±1.630 t·hm-2,6年为4.139±2.509 t·hm-2,6年生巨桉林枯落物碳储量最大.枯落物凋落量在年龄序列中表现为"高-低-高"的趋势;1~6年生巨桉林细根碳储量为0.101~0.637 t·hm-2,不同年龄巨桉细根碳储量1年为0.318±0.109 t·hm-2,2年为0.308±0.139 t·hm-2,3年为0.255±0.154 t·hm-2,4年为0.263±0.076 t·hm-2,5年为0.390±0.128 t·hm-2,6年为0.438±0.199 t·hm-2,6年生巨桉林细根碳储量最大,3、4年生较小,这与细根生物量的年龄变化趋势相一致.  相似文献   

11.
森林生物量和生产力直接关系到森林生态系统的固碳能力。该文以冰砬山3个年龄阶段的蒙古栎次生林为研究对象,采用标准木收获法建立了生物量与胸径的相对生长方程,推算了各林龄的生物量、生产力及其分配规律。结果表明:幼龄林、中龄林和近熟林的乔木层生物量分别为112.09 t.hm^-2、224.92 t.hm^-2和276.18 t.hm^-2。蒙古栎林分配到其地上生物量的比例,随着林龄的增加而增大,与此同时分配到根系生物量的比例从幼龄林的36%下降到28%。蒙古栎林乔木层的年平均净生产力在中龄林达到最大12.13 t.hm^-2.a^-1,比幼龄林和近熟林分别高3.43 t.hm^-2.a^-1和1.42 t.hm^-2.a^-1。在所有不同年龄阶段,各器官的生产力占总生产力的比例平均为叶(45%)〉树干(30%)〉根(18%)〉枝(7%)。  相似文献   

12.
森林生物量、碳储量是评价森林生长状况的重要指标。通过野外样地调查及室内烘干称重等方法,研究了苏木山林场不同林龄华北落叶松人工林乔木层、灌木层、草本层生物量以及乔木层净生产力、碳储量积累特点和变化趋势。结果表明:幼龄林、中龄林、近熟林平均木的生物量分别为26.41 kg、32.70 kg、107.81 kg;林分生物量分别为43.66 t·hm^-2、79.88 t·hm^-2、125.83 t·hm^-2;灌木层和草本层生物量之和分别为1.44 t·hm^-2、1.19 t·hm^-2、0.95 t·hm^-2;乔木层净第一生产力分别为2.56 t·hm^-2·a^-1、3.07 t·hm^-2·a^-1、3.40 t·hm^-2·a^-1,碳储量分别为22.20 t·hm^-2、40.55 t·hm^-2、63.80 t·hm^-2。苏木山华北落叶松人工林生物量、碳储量随林龄增加而增大,各器官碳储量从大到小依次为干>根>枝>皮>叶。  相似文献   

13.
以吉林省西部地区2010年森林资源面积、蓄积量及生长量、消耗量为基础数据,按IPCC清单法测算了该区域森林植被生物量、碳储量和年固碳量。结果表明:吉林西部森林植被生物量为3 015.91万t,单位面积生物量为55.65 t·hm^-2;森林植被碳储量为1 494.67万t,森林植被碳密度为27.58 t·hm^-2,森林植被年固碳量为26.89万t·a^-1。  相似文献   

14.
中国林业科学研究院热带林业实验中心从2008年开始进行人工林近自然经营,为了评价经营效果对森林固碳能力的影响,以热林中心2011年、2013年、2015年对238块系统抽样样地数据为基础,采用现有的生物量方程和碳转换系数乔木林碳储量进行估算。结果表明,乔木林碳储量由2011年的605826.95t增加到2015年的721847.04t,年平均增加29005.02t,碳密度由2011年的35.94t·hm^-2增加到2015年的42.34t·hm^-2,但仍小于全国和世界的平均数。针叶林碳储量高于阔叶林,由2011年的413753.07t增加至2015年的479611.05t,年均增加16464.50t,栎类的增长幅度最大,年均增长率64.00%,碳储量最大的树种是马尾松,占总碳储量的62.92%。证明近自然经营能够有效促进森林固碳能力。  相似文献   

15.
采用人工清理和计划烧除相结合的方法建立并维护改培型蒙古栎生物防火林带,对建设前后防火林带的林分结构、可燃物载量及土壤环境等因子对比分析的结果表明:防火林带内优势树种基本都是耐火树种,建设和维护防火林带的过程中,胸径〉2cm的乔木树种未发生明显变化;林带下土壤物理性质和养分含量未产生显著影响;可燃物载量大幅减少,一般在2t/ha以下;卫生条件有了显著改善,可有效地阻隔低强度地表火和地下火的蔓延,并可以此为依托采取适当措施有效控制高强度森林大火的发生和蔓延。  相似文献   

16.
针对四川省沐川县天然林和人工林开展了枯落物蓄积量调查分析和持水特性的研究.结果表明:枯落物蓄积量为天然林>人工林为25.7 t·hm 2>18.1 t·hm-2,最大持水量为天然林>人工林为75.0t·hm-2>47.0t· hm-2,最大持水率为天然林>人工林,各时段吸水量、吸水速率表现为天然林>人工林,有效拦蓄量表现为天然林>人工林为28.6 t· hm-2>17.0 t· hm-2.初步研究结果表明:天然林落物层保水功能相对要比人工林好.  相似文献   

17.
利用标准样方法研究了孝顺竹林生态系统碳含量、碳储量及其空其间分配格局。结果表明:孝顺竹林乔木层各器官碳含量介于0.4893 g.g-1~0.5222 g.g-1之间,从高到低排序依次为竹秆(0.5222 g.g-1)竹根(0.5177 g.g-1)竹蔸(0.5041 g.g-1)竹叶(0.4967 g.g-1)竹枝(0.4893 g.g-1);土壤层碳含量随深度增加而降低,0~20 cm为0.0104 g.g-1,20 cm~40 cm为0.0046 g.g-1;生态系统各组分碳含量表现为乔木层(0.5148 g.g-1)枯落物层(0.4837 g.g-1)土壤层(0.0076 g.g-1);孝顺竹林生态系统碳储量为44.8599 t.hm-2,空间分布序列为土壤层(41.2518 t.hm-2)乔木层(3.5965 t.hm-2)枯落物层(0.0116 t.hm-2),分别占91.95%,8.02%和0.03%。  相似文献   

18.
凋落物是森林生态系统的重要组成部分,其分解过程是森林生态系统养分循环的重要环节。准确测定凋落物的分解动态,对研究森林生态系统的格局和过程非常重要。本文的工作在贡嘎山高山生态系统观测试验站开展,对海拔3 000 m的峨眉冷杉(Abies fabri)林进行定位观测,并对峨眉冷杉林凋落物分解过程进行了长期测定。研究结果表明:(1)凋落物的分解速率是阔叶>针叶>枯枝,峨眉冷杉林的阔叶、针叶和枯枝等凋落物分解一半所需要的时间分别为6.8年、10.5年和14.5年,分解95%所需时间分别为29.3年、45.6年和63.1年;(2)无论阔叶还是针叶、枯枝,其有机碳含量均随着时间的推移而下降,而有机碳分解率均随着时间而增高;利用指数衰减模型,获得凋落物有机碳的分解系数是阔叶>针叶>枯枝;(3)在每年凋落物输入峨眉冷杉林林地时,其中的阔叶、针叶和枯枝已经开始分解,当年可释放的有机碳分别为52.18 kg·hm^-2、4.32 kg·hm^-2和0.67 kg·hm^-2,各类凋落物每年有机碳释放总量为61.13 kg·hm^-2,占凋落时有机碳量的6.58%。  相似文献   

19.
对九台市上河湾林场1997年营造的长白落叶松人工林进行抚育间伐试验,结果表明:间伐3 a后,间伐和未间伐的林分密度分别为2 150株·hm-2和3 150株·hm-2,平均胸径分别为11.0 cm和9.3 cm,总蓄积分别为119.6 m3·hm-2和89.0 m3·hm-2。对长白落叶松人工林进行合理抚育间伐,可显著提高林分质量和生长量及经济效益。  相似文献   

20.
辽河源国家森林公园的蒙古栎林   总被引:1,自引:0,他引:1  
对辽河源国家森林公园蒙古栎林的结构、林木蓄积、死地被物贮量及其最大持水量等进行了调查与研究。结果表明:蒙古栎林的植物种数为22种;林木蓄积量为47.955 m3/hm2,死地被物贮量为25.3 t/hm2;最大持水量为72.2t/hm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号