首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poor physical, chemical and biological properties make Stagnic Luvisol highly susceptible to water erosion on sloping terrains. The objective of this paper is to estimate the effect of different tillage treatments and crops (maize, soybean, winter wheat, spring barley, oilseed rape) on water erosion. The highest erosion in investigation period (1995–2014) was recorded in the control treatment with fallow, followed by the treatment that involved ploughing and sowing up and down the slope. Significantly, lower soil losses were recorded in no-tillage and treatments with ploughing and sowing across the slope. Regarding the crops significantly higher soil losses were recorded in spring row crops (maize and soybean) compared to high-density winter crops (wheat and oilseed rape) and double crop (spring barley with soybean). In the studied period, an average loss of 46 mm of the plough layer was recorded in the control treatment, while in treatment with ploughing and sowing up and down the slope average annual soil loss was 10 mm. According to the results of this study no-tillage and tillage across the slope are recommended as tillage which preserves soil for the next generations in agro-ecological conditions of continental Croatia.  相似文献   

2.
Tillage and crop management effects on soil erosion in central Croatia   总被引:4,自引:0,他引:4  
Soil erosion continues to be a primary cause for soil degradation and the loss of soil quality throughout the world. Our objectives were to quantify soil erosion (referred to as erosional drift) and to assign erosion risk to six tillage and crop management treatments evaluated from 1995 to 1999 for a 5-year maize (Zea mays L.), soybean (Glycine hyspida L.), winter wheat (Triticum aestivum L.), oil-seed rape (Brassica napus var. oleifera L.), and spring barley (Hordeum vulgare L.) plus double-crop soybean rotation on Stagnic Luvisols in central Croatia. Standard black fallow (tilled, unsown, and without any vegetative cover) Universal Soil Loss Equation (USLE) plots were used to establish the erosion potential associated with the rainfall pattern for each year. Soil loss from the check plots was several times greater than the T value, which is estimated to be 10 t ha−1 per year. During the 2 years when spring seeded maize or soybean were grown (1995 and 1996) erosion risk was extremely high, especially for treatments where tillage and planting (row direction) were up and down the slope. When autumn seeded winter wheat or oil-seed rape were grown (1996/1997 or 1997/1998), soil erosion was insignificant. Also, except when plowing and sowing were up and down slope, erosion loss for the spring barley plus double-crop soybean crops in 1999 was insignificant. With no-tillage, soil erosion from the maize and soybean crops was reduced 40 and 65% compared to plowing up and down slope, even though the planting direction was still up and down the slope. With the exception of maize in 1995, erosion losses were moderate to insignificant when plowing and planting were performed across the slope. We conclude that erosion risk can be used as a reliable indicator of sustainable land management and that using no-tillage or plowing and planting perpendicular to the predominant slope are effective soil conservation practices for this region.  相似文献   

3.
Soil tillage is an agricultural practice that directly affects the global carbon cycle. Our study sought to assess the implications of adopting sunn hemp cover crops with different tillage practices on CO2 emissions for two soil types (clayey and sandy soil) cultivated with sugarcane in Brazil. The experimental design was a split‐plot with randomized blocks, with the main plots being with cover crop or fallow and sub‐plots being under conventional or minimum tillage. Our results indicate that during the first 50 days after soil tillage, the variation in soil CO2 emissions was stimulated by cover crop and soil tillage, while after that, it became dominated by the root respiration of sugarcane plants. We also found that over the first 97 days after the tillage, the clayey soil showed differences between minimum tillage with cover crop and fallow. Conversely, for sandy soil over the first 50 days following, there were differences between the tillage systems under cover cropping. Emissions from sugarcane rows were found to be greater than those from inter‐row positions. We concluded that soils under different textural classes had distinct patterns in terms of soil CO2 emissions. The correct quantification of CO2 emissions during the sugarcane renovation period should prioritize having a short assessment period (~50 days after soil tillage) as well as including measurements at row and inter‐row positions.  相似文献   

4.
Proper management of soil organic matter is an important issue in the context of sustainable agriculture. The intensification of production and the loss of organic carbon associated with agriculture reduce the efficiency of production and the quality of the environment, especially in relation to areas exposed to erosion. The aim of this study was to determine the impact of specific tillage systems and plant cover on the organic carbon losses, as well as on runoff and soil losses, over a 6-year study period following the introduction of no-till. The first factor in the experiment was the tillage system: conventional tillage (CT) and no-till (NT). The second factor was plant cover: horse bean, spring wheat and winter oilseed rape. The results showed that runoff was 4.3 ± 0.6% higher under NT than under CT, while soil loss was 66.8 ± 2.7% lower under NT than under CT. Compared to CT, NT limited the total organic carbon losses by an average of 46.0 ± 2.9% and organic carbon bound with sediment losses by 53.2 ± 0.7%, whereas for dissolved organic carbon, there were no significant differences for the tillage systems. The anti-erosion effectiveness of NT was lower in the first year, but it increased in subsequent years after the introduction of this tillage system. Plant cover also had a significant impact on organic carbon losses and soil protection. The crops were ranked according to runoff, soil losses and organic carbon losses in the following order from lower to higher losses: winter oilseed rape > spring wheat > horse bean.  相似文献   

5.
Current interest in soil‐conserving tillage in China has developed from the concern that Chinese agricultural land loses 73·8 Mg C annually. Previous research has shown that changing from conventional tillage to conservation tillage field management increases soil C sequestration. The aim of this study is to determine if no tillage with stubble retention can reduce soil carbon loss and erosion compared with conventional tillage for a cornfield in northern China. We found that soil organic C storage (kg m−2) under conservation tillage in the form of no post‐harvest tillage with stubble retention increased from 28% to 62% in the soil depths of 0–30 cm (p < 0·01) compared with the conventional tillage. Retaining post‐harvest stubble with a height of 30 cm and incorporating the stubble into the soil before seeding the next spring increased soil organic carbon the most. Carbon storage (kg ha−1) in aboveground and belowground biomass of the corn plants in seedling and harvest stages was significantly greater (p < 0·01) with stubble retention treatments than with conventional tillage. Carbon content in root biomass in all treatments with stubble retention was significantly greater than that with conventional tillage. Soil erosion estimates in the study area under conservation tillage with stubble retention was significantly lower than that under conventional tillage during the monitoring period. Given the complexities of agricultural systems, it is unlikely that one ideal farming practice is suitable to all soils or different climate conditions, but stubble retention during harvesting and incorporation of the stubble into soil in the next spring appears to be the best choice in the dry northern China where farmlands suffer serious wind erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
研究了加拿大南部冬小麦田在轮作、耕作和行距共同作用下的土壤温度动态。田间裂区试验主区为3个轮作(冬小麦连作、冬小麦/油菜轮作和冬小麦/夏休闲),副区包括两种耕作技术(免耕和常规耕作),小裂区包括两种种植行距(等行距和大小行)。结果表明,免耕处理下秸秆覆盖有效地降低了冬季土壤的冻结深度。在1993~1994年度,连作小麦免耕土壤的-5℃等温线要比常规耕作浅22cm。免耕秸秆覆盖的温度效应在冬小麦连作和冬小麦/油菜两种轮作上比在冬小麦/夏休闲上更为明显。在冬小麦连作和冬小麦/油菜轮作下,免耕土壤2.5cm的春季温度连续4个月显著低于常规耕作土壤。1994年4月8日,免耕和常规耕作农田2.5cm处的温差在冬小麦连作处理上达到4.1℃。对于冬小麦/夏休闲处理,由于秸秆覆盖量较少,耕作措施对土壤温度的影响不太明显。在1994年春季,大小行种植的土壤温度显著高于等行距种植的土壤温度。因此,免耕主要通过秸秆覆盖来改变土壤的温度状况。通过轮作、耕作和行距等措施,可以在一定程度上实现土壤温度的人为调节  相似文献   

7.
垄作方式对薄层黑土区坡面土壤侵蚀的影响   总被引:6,自引:2,他引:4  
定量评价垄作方式对坡面土壤侵蚀的影响,可为坡面土壤侵蚀防治提供理论参考。基于2012—2015年哈尔滨市野外径流小区监测资料,探讨了顺坡垄、横坡垄、无垄作(裸地休闲对照)垄作方式对坡面土壤侵蚀的影响,分析了不同垄作方式下坡面水沙关系。结果表明:不同垄作方式下径流量和侵蚀量均具有显著差异,坡面径流量和侵蚀量均表现为无垄顺坡垄横坡垄;与无垄作试验处理相比,横坡垄作使坡面径流量和侵蚀量平均减少了92.4%和98.3%,顺坡垄作使坡面径流量和侵蚀量平均减少66.4%和72.2%。当坡度由3°增加到5°时,无垄作、顺坡垄作、横坡垄作坡面侵蚀量分别增加了0.8,8.2,5.5倍。3种垄作方式下坡面水沙关系均呈现出良好的相关关系,顺坡垄作和无垄作坡面侵蚀量随径流量的增加幅度远大于横坡垄作坡面,当坡面径流量10.0mm时,二者坡面侵蚀量急剧增加。  相似文献   

8.
F.A. Gumbs   《Soil & Tillage Research》1993,27(1-4):341-354
This review describes the tillage methods and soil conservation methods currently utilized in the Commonwealth Caribbean on a range of slopes. A high percentage of the land has slopes which exceed 20° minimum. In these circumstances, tillage is carried out with hand tools and frequently combined with conservation contour drains or/and barriers of cut vegetation laid across the contour. Many farmers form ridges and furrows on the contour with hand tools and a significant number do not use any conservation measures. Tillage, on flat or gently sloping land, is done largely by tractor drawn implements and the tillage method is mainly determined by the crop to be grown and the soil type. The tillage methods used for the cultivation of sugar cane, rice, banana, vegetables and other small row crops are described. The agronomic, cultural and engineering practices used to conserve the soil against water erosion are also described.  相似文献   

9.
10.
Field and laboratory experiments were conducted on a crusting loess soil in the northern Negev (Israel) with the aim of improving the efficiency of the use of rain by row crops, either in dryland or irrigated farming, and to decrease erosion. The specific objective of the experiments described was to develop methods that enhance infiltration of rainfall during the winter fallow season in an area with a mean annual rainfall of 400 mm which is subject to wide variation.It was found that the traditional tillage system consisting of deep ploughing (35–45 cm) of dry soil in the fall followed by disking, smoothing and ridging is the worst choise as it could result in runoff losses of as much as 60% of the rainfall, accompanied by accelerated erosion. This water loss can be critical to the success of dryland cotton and also determines whether or not a pre-irrigation of about 25% of the total annual water allotment must be given to irrigated cotton.The traditional practice was compared with: deep ploughed land left fallow during the entire rainy season; ridging after subsoiling instead of deep ploughing; subsoiling and ridging carried out in one minimum tillage operation; direct ridging without primary tillage and basin tillage of ridges following either deep ploughing, subsoiling or minimum tillage.This study showed that by far the most effective method for enhancing infiltration and eliminating runoff was the basin tillage system. The method is adaptable both to mechanized farming and to farming based on animal power or manual labour, and its application can ensure success where rainfall is limiting.It was found that laboratory characterization of soil hydraulic properties with a static rainfall simulator allows prediction of runoff on crusting soils. This means that the need for, and the effectiveness of, conservation measures may be estimated using disturbed soil samples, which is quicker and cheaper than field tests.  相似文献   

11.
Large amounts of soil are eroded annually from tilled, hilly upland soils in the humid tropics. Awareness has been increasing that much of this erosion may be due to tillage operations rather than water-induced soil movement. This field study estimated soil translocation and tillage erosion for four tillage systems on Oxisols with slope gradients of 16–22% at Claveria, Misamis Oriental, Philippines. Soil movement was estimated using ‘soil movement tracers' (SMT) which consisted of painted 12-mm hexagonal steel nuts. The SMT were buried in three replicate plots of the following tillage treatments: (1) contour moldboard plowing in the open field (MP-open); (2) contour ridge tillage in the open field (RT-open); (3) contour moldboard plowing plus contour natural grass barrier strips (MP-strip); and (4) contour natural grass barrier strips plus ridge tillage (RT-strip). Two hundred SMT were placed at the 5-cm depth at 5-cm spacings on 10 rows and 20 columns in two microplots within each plot. The microplots were oriented with the boundaries running downslope and along the contour of each 8-m-wide × 38-m-long (downslope) tillage plot. After tilling the land for four successive corn (Zea mays L.) crops (20 tillage operations), the SMT were manually excavated and their positions recorded. Recovery of SMT ranged from 82% to 85%. Displacement of SMT was directly related to slope length, percent slope, and tillage method. Mean displacement distance of SMT during the four corn growing seasons was 3.3 m for MP-open, 1.8 m for RT-open, 1.5 m for the RT-strip, and 2.2 m for MP-strip. Based on tillage operations associated with two corn crops per year, mean annual soil flux was estimated to be 241, 131, 158 and 112 kg m−1 for MP-open, RT-open MP-strip, and RT-strip, respectively. Compared to the mean annual soil loss for MP-open of 63 Mg ha−1, soil loss was reduced by 30%, 45%, and 53% for the MP-strip, RT-open, and RT-strip systems, respectively. Both ridge tillage and natural grass barrier strips reduced soil displacement, soil translocation flux, and tillage erosion rates.  相似文献   

12.
黑土区坡耕地横坡垄作措施防治土壤侵蚀的土槽试验   总被引:13,自引:3,他引:10  
为了研究黑土区坡耕地横坡垄作防治坡面土壤侵蚀的效应,该文利用8 m×1.5 m的试验土槽,设计3个降雨强度(50、75和100 mm/h)、1个典型坡度(5°)以及横坡垄作和无垄作(平坡裸地对照试验)的试验处理进行模拟降雨试验,研究东北黑土区横坡垄作坡面在不同降雨强度下的防治坡面侵蚀效应。结果表明:横坡垄作在50 mm/h降雨强度下坡面基本不发生土壤侵蚀,但在75和100 mm/h降雨强度下会发生断垄,造成防蚀效应急剧降低。横坡垄作坡面的径流和侵蚀过程均明显存在以断垄时间为界的突变,在3个降雨强度下,横坡垄作断垄前可使坡面径流量和侵蚀量分别减少97.7%和99.1%以上,坡面蓄渗率达到97.2%以上;而断垄后坡面径流量和侵蚀量分别增加23.3~25.9倍和136.8~171.5倍,蓄渗率下降至50%以下。试验研究表明横坡垄作在≤50 mm/h的降雨强度下具有很好的坡面防治侵蚀效应,但当遇到强降雨时易发生断垄,防蚀效应急剧降低。  相似文献   

13.
The soil structure of Luvisols and Podzols under forest and arable land In three loamy Luvisols from boulder marl and three sandy Podzols from glacial sand under forest, conventional and ecological farming the soil structure was investigated. The morphology, the cellulolytic activity, the aggregate stability and the soil resistance were investigated in spring and fall over two years. The aggregate stability was determined using a modified wet sieving technique and the soil resistance in the field using a simple falling cone probe. The effects of agricultural management are documented clearly. Annual changes are not uniform and not always significant. Aggregate stability and soil resistance are not decisive on actual erosion. The negative effect of low aggregate stability on erosion, caused by coarse soil texture, is reduced by agricultural management with permanent soil cover and intensive rooting.  相似文献   

14.
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

15.
Modeling spatial variation in productivity due to tillage and water erosion   总被引:5,自引:0,他引:5  
The advent of precision farming practices has heightened interest in managing field variability to optimize profitability. The large variation in yields across many producer fields demonstrated by yield–monitor–equipped combines has generated concern about management-induced causes of spatial variation in soil productivity. Soil translocation from erosion processes may result in variation in soil properties across field landscape positions that produce long-term changes in soil productivity. The objective of this study was to examine the relationships between soil redistribution caused by tillage and water erosion and the resulting spatial variability of soil productivity in a soil catena in eastern South Dakota. An empirical model developed to estimate tillage erosion was used to evaluate changes expected in the soil profile over a 50-year period on a typical toposequence found in eastern South Dakota and western Minnesota. Changes in the soil profile due to water erosion over a 50-year period were evaluated using the WEPP hillslope model. The tillage erosion model and the WEPP hillslope model were run concurrently for a 50-year period to evaluate the combined effect of the two processes. The resulting changes in soil properties of the root zone were evaluated for changes in productivity using a productivity index model. Tillage erosion resulted in soil loss in the shoulder position, while soil loss from water erosion occurred primarily in the mid to lower backslope position. The decline in soil productivity was greater when both processes were combined compared to either process acting alone. Water erosion contributed to nearly all the decline in soil productivity in the backslope position when both tillage and water erosion processes were combined. The net effect of soil translocation from the combined effects of tillage and water erosion is an increase in spatial variability of crop yields and a likely decline in overall soil productivity.  相似文献   

16.
Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover crop. Cover crop growth, soil mineral N dynamics, and other soil characteristics were recorded. Furthermore, soil concentrations of N2O were determined eight times during the monitoring period using permanently installed needles. There was little evidence for effects of the cover crop on soil mineral N. Following spring tillage and slurry application soil mineral N was dominated by the input from slurry. Nitrous oxide emissions during autumn, winter and early spring remained low, although higher emissions from +CC treatments were indicated after freezing events. Following spring tillage and slurry application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250-400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop and tillage was observed. Soil concentration profiles of N2O showed a significant accumulation of N2O in CT relative to RT and DD treatments after spring tillage and slurry application, and a positive interaction between slurry and cover crop residues. A comparison in early May of N2O emissions with flux estimates based on soil concentration profiles indicated that much of the N2O emitted was produced near the soil surface.  相似文献   

17.
Four field trials (spring wheat and oats) were conducted (one on clay soil, one on loam soil and two on silt soil) for three years in important cereal growing districts, to investigate the influence of tillage regimes (ploughing versus reduced tillage in either autumn or spring) and straw management (removed and retained) on plant residue amounts, weed populations, soil structural parameters and cereal yields. The effect of tillage on soil structure varied, mainly due to the short trial period. In general, the amount of small soil aggregates increased with tillage intensity. Reduced soil tillage, and in some cases spring ploughing, gave significantly higher aggregate stability than autumn ploughing, thus providing protection against erosion. However, decreasing tillage intensity increased the amounts of weeds, particularly of Poa annua on silt soil. Straw treatment only slightly affected yields, while effects of tillage varied between both year and location. Reduced tillage, compared to ploughing, gave only small yield differences on loam soil, while it was superior on clay soil and inferior on silt soil. Our results suggest that shallow spring ploughing is a good alternative to autumn ploughing, since it gave comparable yields, better protection against erosion and was nearly as effective against weeds.  相似文献   

18.
在山西临汾、襄汾采用大区对比法研究了土壤质地、耕作方式及茬口对小麦播前土壤贮水量的影响。结果表明:夏闲制不同土壤质地的传统土壤耕作方式,小麦播前0-200cm的各主要土壤层面的贮水量为中粘土〉中壤土〉轻壤土;夏季复播制的土壤质地和复播作物对小麦播前贮水量的影响以土壤质地〉复播作物种类;夏闲制不同土壤耕作方式的小麦播前贮水量以浅旋灭茬〉免耕〉隔行深松〉传统耕作〉全耕层深松。不同春播作物茬口小麦播前的贮水量以地黄茬贮水量最高,其次为丹参茬,棉花茬较差。该项研究为小麦播前土壤贮水量的恢复选择夏季复播制的土壤质地、夏闲制合理的土壤耕作方式和春播作物茬口提供了理论依据。  相似文献   

19.
《Soil & Tillage Research》2007,92(1-2):75-81
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

20.
Soil degradation is the single most important threat to global food production and security. Wind and water erosion are the main forms of this degradation, and conservation tillage represents an effective method for controlling this problem. The objective of this study was to quantify the effects of three tillage methods [zero (ZT), minimum (MT) and conventional (CT)] and three four-year crop sequences [spring wheat (Triticum aestivum L.)–spring wheat–winter wheat–fallow; spring wheat–spring wheat–flax (Linum usitatissimum L.)–winter wheat; spring wheat–flax–winter wheat–field pea (Pisum sativum L.] on crop establishment, plant height, seed weight, soil water storage, crop water use, crop water use efficiency and grain yield over a 12-year period under Canadian growing conditions. Plant establishment was not adversely affected by tillage systems or crop sequences except for flax, where a small reduction was observed with ZT and MT. Conservation tillage showed a yield benefit over CT of 7%, 12.5% and 7.4% for field pea, flax and spring wheat grown on cereal stubble, respectively over the 12 years of the study. Much of the yield increase was due to an increase in soil water in the 0–30 cm soil layer with ZT and MT. However, tillage systems had no effect on grain yield for spring wheat grown on fallow and field pea stubble due to a lack of differences in spring soil water content. Flax grown in sequence with cereals only yielded higher than when it was grown in the sequence which included field pea, even though flax was seeded on spring wheat stubble in both cases. Winter wheat yielded higher when grown on flax stubble than on spring wheat stubble. The results indicate that a one-year non-cereal break crop was enough to alleviate the negative effects of consecutive cereal crops on winter wheat. Spring wheat grown on field pea stubble always yielded more than when grown on cereal stubble. A 10% increase in water use efficiency was observed with flax grown with ZT and MT management. Crop sequence improved water use efficiency in flax and spring wheat. Growing spring wheat on field pea stubble as opposed to growing it on cereal stubble resulted in a 10% increase in water use efficiency. Overall, rainfall accounted for 73%, 72%, 67% and 65% of total water used by field pea, flax, winter wheat and spring wheat, respectively. This explains the large year effect as a result of variation in growing (May–August) season precipitation. The non-significant tillage system by year interaction implies that the positive benefits of ZT and MT occur over a wide range of growing conditions, while the absence of a tillage system by crop sequence interaction suggests that knowledge developed under CT management also applies to ZT and MT. The results of this study support the large shifts towards in conservation tillage being observed in the Canadian prairies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号