首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodine-129 is an important radionuclide released from nuclear facilities because of its long radioactive half-life and its environmental mobility. Its retention in surface soils has been linked to pH, organic matter, and Fe and Al oxides. Its inorganic solution chemistry indicates I will most likely exist as an anion. Three investigations were carried out to provide information on the role of the inorganic and organic chemistry during sorption of I by soil. Anion competition using Cl? showed that anion exchange plays a role in I sorption in both mineral and organic soils. The presence of Cl decreased the loss of I? from solution by 30 and 50% for an organic and a carbonated sandy soil respectively. The I remaining in solution was associated primarily with dissolved organic carbon (DOC). The loss rate from solution appears to depend on two reactions of I with the soil solids (both mineral and organic) creating both a release to and a loss from solution, and the reaction of I with the DOC (from very low to high molecular weight). Composition analyses of the pore water and the geochemical modelling indicate that I sorption affects the double-charged anion species in solution the most, particularly SO4 ?. Iodide introduced to natural bog groundwater at three concentrations (10?3, 10?1 and 10 meq L?1) remained as I? and was not lost from solution quickly, indicating that the association of I with DOC is slow and does not depend on the DOC or I concentration. If sorption of I to soil solids or DOC is not sensitive to concentration, then stable I studies, which by necessity must be carried out at high environmental concentrations, can be linearly extrapolated to radioactive I at much lower molar concentrations.  相似文献   

2.
L. M. MARAFA  K. C. CHAU 《土壤圈》2005,15(2):181-188
This research examined nitrogen mineralization in the top 10 cm of soils with a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the relationships between N mineralization and successional development of vegetation in the absence of fire. The sites including a newly burnt area (S1), short grassland (S2), tall grassland (S3), mixed tall grassland and shrubland (S4), and woodland (S5) were selected, with the in situ core incubation method used to estimate nitrogen mineralization. Throughout the 60-day incubation in four periods, more nitrogen was mineralized at the S3 and S4 sites, the predominantly grassland sites, which contained the highest levels of soil organic matter (SOM) and total Kjeldahl nitrogen (TKN), than the S1 site, while immobilization occurred at the S2 and S5 sites. Leaching loss decreased with successional development of the vegetation, in the order of S1 > S2 > S3 > S4 > S5. The pattern of nitrogen uptake with ecological succession was less conspicuous, being complicated by the immediate effect of fire and possibly the ability of the woodland species to extract nitrogen from the deeper ground. In the absence of fire for 3 to 6 years, the build-up of SOM and TKN was accompanied by active mineralization, thus paving the way for the invasion of shrub and tree species. A close relationship existed between nitrogen mineralization and ecological succession with this vegetation gradient. Inherent mechanisms to preserve nitrogen in a fire-prone environment including immobilization and uptake and the practical relevance of nitrogen mineralization to reforestation are discussed.  相似文献   

3.
4.
Factors affecting the sorption and fixation of caesium in acid organic soil   总被引:1,自引:0,他引:1  
Radioactive caesium deposited on upland Britain following the Chernobyl accident in 1986 remains available for uptake by plants, despite the potential of the contaminated soils to fix Cs. The minimum concentration of Cs+ required to cause Cs+ fixation is 0.60 to 0.75 mm , and this is unlikely to be reached in any contaminated upland soil. It is suggested that the fixation is caused by interlayer collapse of the illitic clay. The observed Cs+ fixation in lowland mineral soils and its absence from acidic upland soils is explained by the action of K+ ions, which can also induce interlayer collapse. Although Cs+ ions are unlikely to be fixed in acid organic soils, they can be strongly sorbed on any unoccupied Cs-specific sorption sites in the narrow parts of illitic wedge zones. A method for determining the number of such sites is described. For two of the soils studied the number of sites ranged between 8 × 10?8 and 1 × 10?5 mmol kg?1; for two others there appeared to be no unoccupied Cs-specific sites. Although Cs+ ions sorbed on such sites do not exchange with other ions, they can be desorbed if the concentration of Cs+ in solution is decreased. Thus, radioactive Cs in such soils will remain available for plant uptake, unless interlayer collapse can be induced.  相似文献   

5.
As a consequence of global warming, additional areas will become ice-free and subject to weathering and soil formation. The most evident soil changes in the Alps will occur in proglacial areas where young soils will continuously develop due to glacier retreat. Little is known about the initial stages of weathering and soil formation, i.e. during the first decades of soil genesis. In this study, we investigated clay minerals formation during a time span 0-150 years in the proglacial area of Morteratsch (Swiss Alps). The soils developed on granitic till and were Lithic Leptosols.Mineralogical measurements of the clay (< 2 μm) and fine silt fraction (2-32 μm) were carried out using XRD (X-ray Diffraction) and DRIFT (Diffuse Reflectance Infrared Fourier Transform). Fast formation and transformation mechanisms were measured in the clay fraction. The decreasing proportion of trioctahedral phases with time confirmed active chemical weathering. Since the start of soil formation, smectite was actively formed. Some smectite (low charge) and vermiculite (high charge) was however already present in the parent material. Main source of smectite formation was biotite, hornblende and probably plagioclase. Furthermore, irregularly and regularly interstratified clay minerals (mica-HIV or mica-vermiculite) were formed immediately after the start of moraine exposure to weathering. In addition, hydroxy-interlayered smectite (HIS) as a transitory weathering product from mica to smectite was detected. Furthermore, since the start of soil evolution, kaolinite was progressively formed. In the silt fraction, only little changes could be detected; i.e. some formation of an interstratified mica-HIV or mica-vermiculite phase.The detected clay mineral formation and transformation mechanisms within this short time span confirmed the high reactivity of freshly exposed sediments, even in a cryic environment.  相似文献   

6.
Microbial communities are important components of terrestrial ecosystems. The importance of their diversity and functions for natural systems is well recognized. However, a better understanding of successional changes of microbial communities over long time scales is still required. In this work, the size and composition of microbial communities in soils of a deglaciation chronosequence at the Damma glacier forefield were studied by fatty acid profiling. Soil fatty acid concentrations clearly increased with soil age. The abundances of arbuscular mycorrhizal fungi (AMF), bacteria and other soil fungi, however, were more affected by abiotic soil parameters like carbon content and pH than by soil age. Analysis of ratios of the different microbial groups (AMF, fungi, bacteria) along the soil chronosequence indicated that: i) the ratios of AMF to bacteria and AMF to fungi decreased with soil age; and ii) the ratio of fungi to bacteria remained unchanged along the soil chronosequence. These two pieces of evidence suggest that the evolution of this ecosystem proceeds at an uneven pace over time and that the role of AMF is less important in older, more organic and acidified soils than in mineral soils. In contrast to other studies, no successional replacement of bacteria with fungi in more acidified and organic soil was observed.  相似文献   

7.
The effects of phosphate on zinc sorption by a soil   总被引:6,自引:0,他引:6  
Zinc sorption curves were obtained after treatment of a soil with several rates of phosphate and with two rates of lime. The lime permitted evaluation of the effects of phosphate on Zn sorption via its effects on pH. The phosphate was either incubated with the soil at a high temperature before reaction with Zn or was supplied at the same time as the Zn. This produced treatments with similar concentration of phosphate in solution but different amounts of sorbed phosphate.
Two distinct effects of phosphate addition on Zn sorption were detected. One arose from effects of phosphate on pH. This effect could be large and could either increase or decrease Zn sorption depending on the direction of the pH effect. A second effect was correlated with the amount of sorbed phosphate and was assumed to operate through the effects of phosphate on charge. The effects were small at low levels of Zn but larger at higher levels. This suggested that Zn and phosphate were sorbed at opposite ends of a spectrum of electrostatic potentials and overlap only occurred when the level of application was high. A third possible effect, due to reaction of the soil with zinc phosphate complexes in solution, was not proved.  相似文献   

8.
Journal of Soils and Sediments - Soil organic carbon (SOC) dynamics are central to understanding the effects of environmental change on the carbon cycle of ecosystems. Vegetation and soil stable...  相似文献   

9.
Zheng  Xiaomei  Wu  Jianfu  Yan  Xiao  Qin  Guobing  Zhou  Rongwei  Wei  Zongqiang 《Journal of Soils and Sediments》2020,20(11):3846-3856
Journal of Soils and Sediments - The effects of soil properties on biochar-induced soil phosphate sorption and availability are not well investigated. An alkaline biochar-induced soil phosphate...  相似文献   

10.
Biology and Fertility of Soils - The aim of this study was to describe the decomposition of litter along a successive series of sites developed at a post-mining overburden deposit over 12, 21 and...  相似文献   

11.
12.
N.J Barrow  T.C Shaw 《Geoderma》1977,18(4):309-323
In resin—solution systems at equilibrium, solution concentration of phosphate was proportional to the square of the phosphorus sorbed, and inversely proportional to the weight of resin and the volume of solution. The rate of approach to equilibrium was decreased by: enclosing the resin in mesh bags, by increasing the volume of solution, and by decreasing the vigour of shaking.In resin-solution-soil systems, the concentration of phosphate in the solution was important in determining the amount of phosphate extracted from the soil. Consequently, phosphorus extracted increased as volume of water and weight of resin increased, and decreased when the resin was enclosed in mesh bags. Even after long periods of shaking, when the concentration of phosphate in solution had reached low values, appreciable phosphate remained on the soil in equilibrium with this solution phosphate. Equations suggested that, if the solution concentration could be reduced to zero, phosphate sorbed by the resin would be proportional to the phosphorus added to the soil. However, at finite levels of addition of resin, the proportion of added phosphate sorbed by the resin increased as the level of addition of phosphate increased.  相似文献   

13.
We aimed to characterize humus macro-morphology and the associated soil microbial community within the unmodified litter (OL), the fragmented and humified layers (FH) and the organo-mineral (A) layer along a beech (Fagus sylvatica L.) forest chronosequence with four stand age-classes (15-, 65-, 95-, 130-yr-old) in Normandy, France. Humus macro-morphology was described with 36 quantitative and semi-quantitative variables. We measured microbial biomass N (Nmic), microbial N quotient (Nmic-to-Nt), fungal ergosterol, bacterial and fungal DNA using 16S and 18S rDNA real-time qPCR and evaluated the potential metabolic profile of heterotrophic bacteria within each soil layer and stand age-class. The log-transform ergosterol/fungal DNA ratio (EFR index) was used as an indicator related to active fungal biomass and the fungal/bacterial (F/B) ratio was calculated from qPCR results. There was a shift from mull (mainly dysmull) to moder humus forms along the chronosequence. While the Nmic did not change significantly, the Nmic-to-Nt decreased along the chronosequence in the OL layer. Ergosterol content increased in FH and A layers and the F/B ratio increased in the FH layer with increasing beech forest age. The EFR index was significantly higher in the OL and A layers of the oldest stands, whereas the highest EFR index in the FH layer occurred in the 15-yr-old stands. The functional diversity of heterotrophic bacteria was greater within OL and FH layers of 130-yr-old stands, but highest in the A layer of 15-yr-old stands while the Average Well Color Development remained stable for all soil layers. We found significant correlations between macro-morphology and microbial variables, especially between FH-based morphology and fungal biomass. Our main results are that beech forest maturation is accompanied by (1) an increase in fungal biomass in the FH layers and, (2) an increase in heterotrophic bacteria functional diversity in the organic layers. We have identified key macro-morphology variables that are good predictors of the structural and functional profile of the soil microbial community during beech forest development.  相似文献   

14.
We evaluate the use of signature fatty acids and direct hyphal counts as tools to detect and quantify arbuscular mycorrhizal (AM) and saprotrophic fungal (SF) biomass in three Hawaiian soils along a natural soil fertility gradient. Phospholipids16:1ω5c and 18:2ω6,9c were used as an index of AM and saprotrophic fungal biomass, respectively. Both phospholipid analysis and hyphal length indicated that the biomass of AMF was greatest at the highest fertility site, and lowest where phosphorus limits plant growth. Saprotrophic fungal biomass did not vary. Hyphal length counts appeared to under-estimate SF abundance, while the phospholipid AMF:SF ratio was in line with expectations. This study indicates that phospholipids may be a valuable and reliable tool for studying the abundance, distribution, and interactions between AM and saprotrophic fungi in soil.  相似文献   

15.
Feng Jiao  Zhong-Ming Wen  Shao-Shan An   《CATENA》2011,86(2):110-116
Soil fertility is important for vegetation growth and productivity. The relationship between vegetation and soil fertility is important for both scientific and practical reasons. However, the effects of soil fertility on vegetation development and succession are poorly documented on the Loess Plateau. In this study, we compared soil properties of the Yanhe Watershed in northern Shaanxi across five different land uses (shrubland, farmland, natural grassland, woodland and artificial grassland) and a chronosequence of soils undergoing restoration for 5, 10, 15, 20, 25, 30, 35, 40 and 45 years. We found that revegetation had a positive effect on soil bulk density decrease, total porosity and capillary porosity increase in the surface soil layers but not in the subsurface layer. Additionally, soil organic matter, total nitrogen, available nitrogen and available potassium were greater at shrubland and woodland sites compared with other land uses. Total phosphorus and available phosphorus were greater at farmland sites. Results of the study indicate that revegetation on eroded soil can produce important increases in soil fertility on older plantations and in areas with natural succession.  相似文献   

16.
《Applied soil ecology》2009,42(3):286-292
There is a growing interest in using soil microbial parameters as indicators of soil quality changes after revegetation of disturbed soils. This study investigated the changes in different soil microbial parameters as well as physico-chemical parameters as affected by vegetation rehabilitation of soil in the Loess plateau of China subjected to natural succession after enclosure. The results showed that the soil nutrients tend to be concentrated in the soil surface layer, especially the soil organic C, total N and alkali extractable N with soil organic C being doubled (up to 20 g kg−1) after 50 years of revegetation. Soil enzyme activities and microbial biomass C (Cmic) and N (Nmic) increased with rehabilitation time up to 23 years. After 23 years, soil Cmic and Nmic and enzyme activities remained stable. Enzyme activities increased rapidly during the early stage of revegetation, about 15–20 years after enclosure. Soil Cmic and Nmic also increased about 20% faster up to 23 years since enclosure in the 0–20-cm soil layer. Soil basal respiration (BR) in the 23 years site was higher than in other sites, indicating high microbial activity in this site. These findings demonstrated significant impacts of natural vegetation succession in overgrazed grassland on the properties of the surface soils, including the soil nutrients, organic matter, soil microbial biomass, respiration, and enzyme activities.  相似文献   

17.
红壤基质组分对磷吸持指数的影响   总被引:8,自引:1,他引:7  
在红壤旱地肥料长期定位试验(始于1988年)中,选取了无机肥试验区的NPK、NP、NK、PK,有机无机配施试验区的CK、CK+猪厩肥(BM)及CK+花生秸秆(SR)等7个施肥处理土壤,测定了土壤磷吸持指数(Phosphate sorption index,PSI),分析了PSI与红壤最大吸磷量(Xm)的相关关系,讨论了土壤pH、有机质、黏粒、铁铝氧化物及无机磷酸盐等基质组分对PSI的影响。结果表明:长期施磷或配施有机肥均可显著降低红壤PSI值,随着土壤pH的升高、有机质及铁结合态磷酸盐(Fe-P)含量的增加,红壤PSI显著降低;土壤游离铁铝氧化物及黏粒含量越高,PSI也越大。PSI与Xm呈显著线性相关关系(Xm=0.5PSI+412.8,n=15,r=0.967**,p<0.01),因此,可以用PSI替代Xm来表征土壤固磷能力,亦可由PSI的大小来推断土壤磷的供磷能力。  相似文献   

18.
Changes in the carbon (C) stock of grassland soil in response to land use change will increase atmospheric CO2, and consequently affect the climate. In this study we investigated the effects of land use change on soil organic C (SOC) and nitrogen (N) along a cultivation chronosequence in the Xilin River Basin, China. The chronosequence consisted of an undisturbed meadow steppe, a 28‐year‐old cropland and a 42‐year‐old cropland (abbreviated as Steppe, Crop‐28 Y and Crop‐42Y, respectively). Crop‐28Y and Crop‐42Y were originally created on the meadow steppe in 1972 and 1958, respectively. The soil samples, in ten replications from three depth increments (0–10, 10–20 and 20–30 cm), were collected, respectively, in the two cropland fields and the adjacent undisturbed steppe. Bulk density, SOC, total N and 2 m KCl‐extractable mineral N including ammonium and nitrate were measured. Our results showed that the greatest changes in the measurements occurred in the 0–10 cm soil depth. The SOC stock in the upper 30‐cm soil decreased by 9.83 Mg C ha−1 in Crop‐28Y and 21.87 Mg C ha−1 in Crop‐42Y, which indicated that approximately 10 and 25% of the original SOC of the steppe had been emitted over 28 and 42 years, respectively. Similarly, the total N lost was 0.66 Mg N ha−1 and 1.18 Mg N ha−1, corresponding to approximately 9% and 16%, respectively, of the original N at the same depth and cropping duration as those noted for SOC. The mineral N concentration in the soil of both the two croplands was greater than that in the steppe soil, and the ammonium‐N was less affected by cultivation than the nitrate‐N. The extent of these changes depended on soil depth and cropland age. These effects of cultivation were much greater in the top 10 cm of soil than in deeper soil, and also greater in Crop‐42Y than in Crop‐28Y. The findings are significant for assessing the C and N sequestration potential of the land use changes associated with grassland conversion, and suggest that improved management practices are needed to sequester SOC and total N in the cropped soil in a semi‐arid grassland.  相似文献   

19.
F. Peña  J. Torrent 《Geoderma》1984,33(4):283-296
Phosphate sorption isotherms for samples of the A- and upper B-horizons of Alfisols situated on a sequence of terraces of the River Guadalquivir, southern Spain, showed that phosphate sorbed at an equilibrium concentration of 0.3 μg P ml?1 was correlated with several soil properties. Crystalline Fe-oxides (goethite and hematite) appeared to be the most important P-sorbing components of the soil samples. Sorption was highly correlated with percent clay and with dithionite soluble Fe. This last property was as good a property to predict sorption as the specific surface of crystalline Fe-oxides (which was estimated by line profile analysis of the X-ray diffractograms), probably because the range of surface areas for goethite and hematite was relatively narrow in the samples and because of the limited accuracy of the method of line profile analysis.Well drained and imperfectly drained soils differed little in sorption properties. In imperfectly drained, hematite-free soils, chroma was correlated with sorption. This is promising for it would allow rapid field estimation of sorption.The sorption maximum, calculated from the fitted Langmuir isotherm, was about 1.7 μmol P m?2 of Fe-oxides, a value similar to those reported in the literature for natural and synthetic oxides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号